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Distributed Scheduling Problems in
Intelligent Manufacturing Systems

Yaping Fu, Yushuang Hou, Zifan Wang, Xinwei Wu, Kaizhou Gao�, and Ling Wang�

Abstract: Currently, manufacturing enterprises face increasingly fierce market competition due to the various

demands of customers and the rapid development of economic globalization. Hence, they have to extend their

production mode into distributed environments and establish multiple factories in various geographical locations.

Nowadays, distributed manufacturing systems have been widely adopted in industrial production processes. In

recent years, many studies have been done on the modeling and optimization of distributed scheduling problems.

This work provides a literature review on distributed scheduling problems in intelligent manufacturing systems. By

summarizing and evaluating existing studies on distributed scheduling problems, we analyze the achievements and

current research status in this field and discuss ongoing studies. Insights regarding prior works are discussed to

uncover future research directions, particularly swarm intelligence and evolutionary algorithms, which are used

for managing distributed scheduling problems in manufacturing systems. This work focuses on journal papers

discovered using Google Scholar. After reviewing the papers, in this work, we discuss the research trends of

distributed scheduling problems and point out some directions for future studies.

Key words: distributed manufacturing systems; distributed scheduling problems; modeling and optimization; intelligent

optimization methods

1 Introduction

With economic globalization and rising customer
demands, market competition has become increasingly
fierce. Manufacturing enterprises must extend their
production mode into distributed environments
and establish multiple factories in various remote
geographical locations. Currently, distributed
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manufacturing systems are extensively applied in
various types of manufacturing industries, such as
automotive[1], steel-making[2], and food and chemical
processing[3]. The modeling and scheduling of
distributed manufacturing systems have attracted
considerable attention because of their significant effects
on improving operational efficiency[4–7].

In industrial systems, scheduling plays an essential
role in decreasing production cost and improving
customer satisfaction[8–12]. In the past decades, a
large number of studies on scheduling problems in
manufacturing and service systems have been conducted.
These problems can be classified as single-machine
scheduling[13, 14], parallel-machine scheduling[15, 16],
flow-shop scheduling[17–19], job-shop scheduling[20, 21],
and their variants[22, 23]. In recent years, researchers have
proposed a new scheduling method, i.e., distributed
scheduling, which aims at scheduling distributed
manufacturing systems[24]. Distributed scheduling
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methods have wide applications in different areas,
such as operating room scheduling[25–28], distributed
computing systems[29], and geographically distributed
configuration systems[30]. In the manufacturing domain,
distributed scheduling focuses on simultaneously
scheduling all factories in distributed manufacturing
systems. Compared with the problems of scheduling
a single factory, distributed scheduling problems
have more highly complex characteristics, which are
presented as follows:

(1) In contrast to traditional scheduling problems,
where we just consider job allocation among machines
and job sequence on machines at a factory, in distributed
production scheduling problems, we must additionally
determine job allocation/assignment among various
factories.

(2) In practice, decision-makers usually consider time-
related criteria, such as achieving maximum completion
time (makespan), flow time, and tardiness minimization.
However, we must also consider the workload balance
among factories and total production cost in distributed
manufacturing environments.

(3) Generally, factories have geographically remote
locations, and thus it is not feasible to accurately
determine information regarding their production
circumstances, such as order arrival, machine
breakdown, and delivery time change. Therefore, there
are many uncertainties in the distributed production
process, which increases the difficulty of scheduling
them.

In recent years, distributed scheduling problems
have attracted significant research interest. Many
scholars have devoted efforts and attention to study
the modeling and optimization of scheduling various
distributed manufacturing systems. Meanwhile, some
researchers have contributed to summarizing existing
studies on distributed scheduling problems[31–34]. Toptal
and Sabuncuoglu[31] provided a literature survey on
distributed scheduling algorithms in a distributed
architecture. They made an analysis of the difference
between decentralized and centralized scheduling
systems and gave a detailed definition of distributed
scheduling systems. Behnamian and Ghomi[32] analyzed
previous works on distributed scheduling on various
models, such as distributed single machine, parallel
machine, flow shop, and job shop. Chaouch et al.[33]

focused on distributed job shop scheduling problems and
summarized optimization approaches for solving them.

Lohmer and Lasch[34] analyzed planning and scheduling
problems in distributed manufacturing systems and
summarized the literature in accordance with shop types,
objective functions, and solution methods.

The abovementioned reviews aim at introducing
the applications and advantages of distributed
scheduling problems in different areas and analyzing
the optimization approaches in solving distributed
planning and scheduling problems. In contrast to
the above literature, this work focuses on distributed
manufacturing systems and analyzes recent studies
on various models. In addition, it mainly focuses on
analyzing the optimization approaches for distributed
scheduling problems. Owing to the complexity
of distributed scheduling problems, conventional
mathematical optimization approaches are unable to
solve them within an acceptable amount of time. Thus,
we focus on approximation algorithms, particularly
Swarm Intelligence (SI) and Evolutionary Algorithms
(EAs), for handling distributed production scheduling
problems, although these algorithms do not guarantee
optimal solutions.

The essential components of a literature review
are the scope and purpose. This paper focuses on
summarizing and synthesizing distributed scheduling
problems in manufacturing systems and their optimization
approaches. The main objectives of this paper
are as follows: (1) classification of distributed
manufacturing systems; (2) evaluation of the model of
distributed scheduling problems; (3) classification of
optimization objectives, such as makespan, tardiness,
energy consumption, and machine workload; (4)
classification of optimization methods, particularly
SI and EAs; and (5) determination of the research
directions of distributed scheduling problems in
manufacturing systems. According to the purpose and
review contents of this work, we define the words
“distributed manufacturing”, “distributed production”,
“multi-factory production”, “distributed/parallel
scheduling”, “distributed parallel-machine scheduling”,
“distributed flow-shop scheduling”, “distributed job-shop
scheduling”, “distributed open-shop scheduling”,
“swarm intelligence”, “evolutionary algorithms”, “meta-
heuristics”, and their combinations as index keywords
in Google Scholar. All the keywords are presented in
Table 1. This work focuses on academic journals that
publish high-quality papers. Accordingly, we collected
the journal publications. By employing the keywords
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Table 1 Keywords indexed in Google Scholar.
Problem-related keyword Scheduling-related keyword Optimization method-related keyword
Distributed manufacturing Distributed/parallel scheduling SI

Distributed factory Multi-factory scheduling EA
Distributed production Distributed factory scheduling Meta-heuristics

Multi-factory production
Distributed parallel machine/ flow shop/ job shop/ open shop

scheduling
Genetic algorithm, particle swarm

optimization, etc.

in Table 1 to search the literature related to the topic
“distributed scheduling problems in manufacturing
systems”, we found 97 publications published from
2010 until January 2021, and the corresponding journals
are listed in Table 2. 85% of the acquired papers were
published in 16 journals, where at least two papers
have been published. Seventeen papers were published
in the journal International Journal of Production
Research, which was ranked first among all the journals
considering the number of papers published in the
dataset. In addition, the journal Swarm and Evolutionary
Computation was ranked second with ten papers.

2 Problem

Generally, distributed production scheduling problems
are considered and modeled about classical shop
scheduling problems. Table 3 reports the literature
about distributed production scheduling and shows
97 publications that are recorded from 2010 to 2021.
The types of production shops include (hybrid) flow
shop, parallel-machine scheduling, (flexible) job shop,
and generally distributed production environments. In
some studies, the distributed scheduling problems
are integrated with other problems, e.g., distribution
problems[35–37], planning problems[38, 39], resource
allocation problems[39], and vehicle routing problems[40].
Few publications focus on real-life areas, e.g.,
semiconductor wafer manufacturing[41].

Real-life constraints or special phases in various shop
types are considered in many problems on distributed
production scheduling. Flow time-related constraints,
including fuzzy processing time, stochastic processing
time, setup time, and transportation time, are considered
in Refs. [42–52]. Production shop-related constraints,
including no wait, no idle, blocking, limited buffer,
and lot streaming, are addressed in Refs. [40, 47, 52–
63]. In distributed production scheduling, a one- or
two-stage assembly line as a special phase in flow
shops and job shops have been researched in many
publications[42, 45, 51, 64–72]. Some other constraints are
also considered in distributed production scheduling,

Table 2 Reviewed journals and number of relevant papers.
Journal’s name Number

International Journal of Production Research 17
Swarm and Evolutionary Computation 10
Computers & Industrial Engineering 8

Expert Systems with Applications 8
Computers & Operations Research 6

Applied Soft Computing 5
IEEE Access 5

Knowledge-Based Systems 4
Engineering Optimization 3

Journal of Intelligent Manufacturing 3
Engineering Applications of Artificial Intelligence 2

European Journal of Operational Research 2
IEEE Transactions on Cybernetics 2

IEEE Transactions on Systems, Man, and Cybernetics:
Systems

2

International Journal of Production Economics 2
Mathematical Problems in Engineering 2

Applied Sciences 1
Enterprise Information Systems 1

IEEE Transactions on Electrical & Electronic
Engineering

1

IEEE Transactions on Automation Science and
Engineering

1

IEEE Transactions on Emerging Topics in
Computational Intelligence

1

IEEE Transactions on Industrial Informatics 1
International Journal of Computational Intelligence

Systems
1

Journal of Cleaner Production 1
Journal of the Operations Research Society of China 1

Memetic Computing 1
Omega 1

Procedia Computer Science 1
Procedia CIRP 1

Production Engineering 1
Simulation Modelling Practice and Theory 1

The International Journal of Advanced Manufacturing
Technology

1

e.g., job re-entrant[73], unrelated machines[74], and
heterogeneous production shops[48, 75].

Modeling distributed production scheduling problems
is a way of employing various methods to solve
them. Modeling methods involve solution approaches
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Table 3 Literature about distributed production scheduling.
Ref. Author and year Shop type Constraint Model type Objective Method
35 Chang et al., 2014 Integrated production

and distribution
Mixed Integer Linear
Programming (MILP)

Delivery time,
distribution cost

SI/EA

36 Gharaei and Jolai,
2018

Integrated scheduling
and distribution

Mixed Linear
Programming (MIP)

Tardiness, distribution
cost

SH/DR,
SI/EA

37 Marandi an Fatemi,
2019

Production and
distribution scheduling

MIP Makespan SI/EA,
CPLEX

38 Mishra et al., 2012 Planning Supply chain
environment

General mathematical
model

Cost, machining time SI/EA

39 Zhang et al., 2017 Integration planning
and scheduling

General mathematical
model

Makespan SI/EA

40 Ribas et al., 2017 Flowshop Blocking General mathematical
model

Makespan SI/EA

41 Dong and Ye, 2019 Semiconductor wafer
manufacturing

MIP Makespan, carbon
emissions, tardiness

SH/DR,
SI/EA

42 Xiong et al., 2014 Flowshop Two-stage assembly
line, setup time

General mathematical
model

Total flow time SI/EA

43 Behnamian, 2014 General manufacturing
environment

Transportation time MILP Cost and profit CPLEX,
SI/EA

44 Zhang et al., 2016 Job shop Fuzzy processing time General mathematical
model

Makespan SI/EA

45 Neira et al., 2017 Flowshop Assembly line,
stochastic processing

time

None Makespan Others

46 Fu et al., 2019 Distributed
manufacturing system

Stochastic MIP Total tardiness, energy
consumption

SI/EA

47 Shao et al., 2019 Flowshop Blocking General mathematical
model

Makespan SI/EA

48 Li et al., 2020 Hybrid flowshop Heterogeneous, setup
time

MILP Makespan SI/EA

49 Ying et al., 2020 Flowshop Flexible assembly,
sequence-independent

setup time

MILP Makespan SI/EA

50 Zheng et al., 2020 Flowshop Fuzzy processing time General mathematical
model

Fuzzy tardiness and
robustness

SH/DR,
SI/EA

51 Song and Lin, 2020 Flowshop Assembly, setup time MILP Makespan SI/EA
52 Li et al., 2021 Flowshop No-wait General mathematical

model
Makespan SI/EA

53 Komaki and
Malakooti, 2017

Flowshop No-wait General mathematical
model

Makespan SI/EA

54 Ying et al., 2017 Flowshop No-idle MIP Makespan SI/EA
55 Ying and Lin, 2017 Flowshop Blocking MIP Makespan SI/EA
56 Shao et al., 2017 Flowshop No-wait General mathematical

model
Makespan SH/DR,

SI/EA
57 Cheng et al., 2019 Flowshop No-idle MILP Makespan SI/EA
58 Zhang et al., 2018 Flowshop Blocking General mathematical

model
Makespan SH/DR,

SI/EA
59 Ribas et al., 2019 Flowshop Blocking None Total tardiness SI/EA
60 Chen et al., 2019 Flowshop No-idle General mathematical

model
Makespan, total

energy consumption
SI/EA

61 Zhao et al., 2020 Flowshop Blocking General mathematical
model

Makespan SI/EA

(To be continued)
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Table 3 Literature about distributed production scheduling.
(Continued)

Ref. Author and year Shop type Constraint Model type Objective Method
62 Zhao et al., 2020 Flowshop No-idle None Assembly, completion

time
SI/EA

63 Shao et al., 2020 Flowshop Blocking MILP Makespan SI/EA
64 Hatami et al., 2013 Flowshop Assembly line MILP Makespan SH/DR,

SI/EA
65 S. Y. Wang and L.

Wang, 2015
Flowshop Assembly line General mathematical

model
Makespan SI/EA

66 Deng et al., 2016 Flowshop Two-stage assembly
line

MILP Makespan SI/EA

67 Lin and Zhang,
2016

Flowshop Assembly line General mathematical
model

Makespan SI/EA

68 Lin et al., 2017 Flowshop Assembly line General mathematical
model

Makespan SH/DR,
SI/EA

69 Zhang and Xing,
2018

Flowshop Two-stage assembly
line

General mathematical
model

Total flow time SI/EA

70 Wu et al., 2019 Flexible Job Shop
Scheduling (FJSP)

Assembly line General mathematical
model

Earliness/tardiness,
total cost

SI/EA

71 Zhang et al., 2020 Flowshop Flexible assembly line MILP Makespan SI/EA
72 Lei et al., 2020 Flowshop Two-stage assembly

flow shop
General mathematical

model
Makespan SI/EA

73 Rifai et al., 2016 Flowshop Reentrant General mathematical
model

Makespan, cost, and
tardiness

SI/EA

74 Lei et al., 2020 Parallel machine
scheduling

Unrelated parallel
machines

General mathematical
model

Makespan SI/EA

75 Meng and Pan,
2020

Flowshop Heterogeneous,
lot-streaming, setup

time

MILP Makespan SH/DR,
SI/EA

76 Naderi and Ruiz,
2010

Flowshop MILP Makespan SH/DR

77 Azab and Naden,
2014

Job shop MILP Makespan SH/DR,
CPLEX

78 Naderi and Azab,
2015

Job shop MILP Makespan SI/EA

79 Behnamian and
Ghomi, 2015

General manufacuring
environment

MILP Total completion time SH/DR,
CPLEX

80 Ying and Lin, 2018 Flowshop Multiprocessor tasks MILP Makespan SI/EA
81 Shao et al., 2019 Flowshop No-wait, setup time MILP Makespan, total

weight tardiness
SH/DR,
SI/EA

82 Pan et al., 2019 Flowshop MIP Makespan SI/EA
83 Huang et al., 2020 Flowshop Sequence-dependent

setup time
MILP Makespan SI/EA

84 Meng et al., 2020 FJSP MILP, constraint
programming

Makespan CPLEX

85 Gong et al., 2020 General manufacturing
environment

MILP Makespan, total
energy consumption

SH/DR,
SI/EA

86 Lu et al., 2020 Flowshop MILP Makespan, total
energy consumption

SI/EA

87 Wang et al., 2020 Flowshop MILP Makespan, energy
consumption

SI/EA

88 Pan et al., 2020 Flowshop Group scheduling MILP Makespan SI/EA
(To be continued)
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Table 3 Literature about distributed production scheduling.
(Continued)

Ref. Author and year Shop type Constraint Model type Objective Method
89 Xiong et al., 2020 Flowshop Concrete precast MINLP, MILP Total weighted

earliness and tardiness
SI/EA

90 J. Wang and
L. Wang, 2018

Flowshop General mathematical
model

Makespan, total
energy consumption

SH/DR,
SI/EA

91 Fu et al., 2019 Flowshop Total tardiness
threthold

Chance-constrained
programming

Makespan, energy
consumption

SI/EA

92 Luo et al., 2020 FJSP Transfer General mathematical
model

Makespan, workload,
energy consumption

SI/EA

93 Jiang et al., 2020 FJSP General mathematical
model

Makespan, energy
consumption

SI/EA

94 Guo et al., 2015 General manufacturing
environment

Production monitoring Intelligent decision
support system

Tracking and
monitoring

Others

95 Zou et al., 2018 Integrated scheduling
and vehicle routing

General mathematical
model

Maximum route time SH/DR,
SI/EA

96 Zhang and Gen,
2010

Distributed
manufacturing system

General mathematical
model

Total processing time,
workload

SI/EA

97 Giovanni and
Pezzella, 2010

FJSP General mathematical
model

Makespan SI/EA

98 Gao and Chen,
2011

Flowshop General mathematical
model

Makespan SH/DR,
SI/EA

99 Liu et al., 2014 FJSP Fastener manufacturer General mathematical
model

Makespan SI/EA

100 Chang and Liu,
2017

FJSP General mathematical
model

Makespan SI/EA

101 Wu et al., 2017 FJSP None SI/EA
102 Viagas et al., 2018 Flowshop General mathematical

model
Total flow time SH/DR,

SI/EA,
lower

bounds
103 Lu et al., 2018 FJSP General mathematical

model
Makespan SI/EA

104 Cai et al., 2018 Flowshop Transportation and
eligibility

General mathematical
model

Makespan, lateness,
cost

SH/DR,
SI/EA

105 Wang et al., 2013 Flowshop General mathematical
model

Makespan SH/DR,
SI/EA

106 Xu et al., 2014 Flowshop General mathematical
model

Makespan

107 Zhang et al., 2018 Flowshop General mathematical
model

Makespan SI/EA

108 Meng et al., 2019 Flowshop General mathematical
model

Makespan SI/EA

109 Yang and Xu, 2020 Flowshop Flexible assembly and
batch delivery

General mathematical
model

Total cost, tardiness SI/EA

110 Gao et al., 2013 Flowshop General mathematical
model

Makespan SI/EA

111 Li et al., 2018 FJSP General mathematical
model

Makespan, maximal
workload, and

earliness/tardiness

SH/DR,
SI/EA

112 Chaouch et al.,
2017

Job shop Disjunctive graph Makespan SI/EA

113 Zhang and Xing,
2019

Flowshop Limited-buffer General mathematical
model

Makespan SH/DR,
SI/EA

(To be continued)
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Table 3 Literature about distributed production scheduling.
(Continued)

Ref. Author and year Shop type Constraint Model type Objective Method
114 Naderi and Ruiz,

2014
Flowshop General mathematical

model
Makespan SI/EA

115 Pan et al., 2019 Flowshop General mathematical
model

Total flow time SH/DR,
SI/EA

116 Lin et al., 2013 Flowshop General mathematical
model

Makespan SH/DR,
SI/EA

117 Viagas and
Framinan, 2015

Flowshop General mathematical
model

Makespan

118 Ruiz et al., 2019 Flowshop General mathematical
model

Makespan SH/DR,
SI/EA

119 Shao et al., 2020 Hybrid flowshop General mathematical
model

Makespan SH/DR,
SI/EA

120 Mao et al., 2020 Flowshop Preventive
maintenance

General mathematical
model

Makespan SI/EA

121 Deng and Wang,
2017

Flowshop General mathematical
model

Makespan, total
tardiness

SI/EA

122 J. Wang and
L. Wang, 2020

Flowshop General mathematical
model

Makespan SI/EA

123 Bargaoui et al.,
2017

Flowshop None Makespan SI/EA

124 Zhang et al., 2017 Distributed
manufacturing resource

allocation

General mathematical
model

Operating time, cost,
risk, and quality

SI/EA

125 Hao et al., 2019 Hybrid flowshop General mathematical
model

Makespan SI/EA

126 Li et al., 2019 Flowshop Parallel batching,
deteriorating jobs

General mathematical
model

Makespan SH/DR,
SI/EA

127 Li et al., 2019 Flowshop Distance coefficient General mathematical
model

Makespan SH/DR,
SI/EA

128 Huang et al., 2020 Flowshop Sequence-dependent
setup time

General mathematical
model

Makespan SI/EA

129 Lei and Wang,
2019

Hybrid flowshop Two-stage flow shop General mathematical
model

Makespan SI/EA

130 Cai et al., 2020 Hybrid flowshop General mathematical
model

Makespan, total
tardiness

SI/EA

131 Sang et al., 2019 Flowshop General mathematical
model

Total flow time SI/EA

and algorithms. Mathematical programming is
usually used for modeling distributed production
scheduling problems, especially for exact
methods[35–37, 41, 43, 46, 48, 49, 51, 54, 55, 57, 63, 64, 66, 71, 75–89].
General mathematical models can be used for Simple
Heuristics (SHs), Dispatch Rules (DRs), SI, and EAs
to calculate objectives. For scheduling objectives, the
completion time-related and machine workload-related
ones are the most evaluated. Energy consumption and
low-carbon-related objectives are attracting increasing
attention; they can be considered as one of multiple
objectives and simultaneously optimized with traditional
objectives[46, 60, 85–87, 90–93].

For distributed production scheduling problems, few
researchers have used real-life cases[38, 41, 94, 95]. Most
instances are extended from the benchmark of classical
flow-shop and job-shop scheduling problems. The
methods for solving distributed production scheduling
problems include exact methods, SHs or DRs, SI, and
EAs. For SI and EAs, various strategies are used to
improve their local and global searching performance.
The corresponding contents will be discussed and
analyzed in the next section.

3 Method

Distributed scheduling problems in manufacturing
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systems are more complicated than traditional
scheduling problems because we must first decide job
assignments among factories and then make decisions on
their allocation and sequence on machines. Distributed
scheduling problems have been proven to be NP-hard[76].
Hence, the existing studies devote much effort to solve
them by employing heuristic methods, exact approaches,

SI, and EAs. Table 4 presents the employed optimization
approaches in the relevant literature. Figure 1 shows the
percentage of optimization approaches used for solving
distributed scheduling problems. The findings show that
most of the prior studies have chosen SI and EAs for
coping with distributed scheduling problems. A detailed
analysis is given in the following subsection.

Table 4 Optimization approaches in the relevant literature.

Ref. Author and year
Optimization approach

Heuristic Exact Swarm intelligence or evolutionary algorithm Improving strategy
35 Chang et al.,

2014
Ant Colony Optimization (ACO)

36 Gharaei and
Jolai, 2018

Multi-agent approach, Bees algorithm based on
decomposition

Local search

37 Marandi and
Fatemi, 2019

CPLEX Imperialist Competitive Algorithm (ICA) Local search based on
Simulated Annealing (SA)

38 Mishra et al.,
2012

Genetic Algorithm (GA) and SA

39 Zhang et al.,
2017

ICA and GA

40 Ribas et al., 2017 Iterative Local Search (ILS) and Variable
Neighborhood Search (VNS)

Solution initialization with
constructive heuristics

41 Dong and Ye,
2019

Grey Wolf Optimization (GWO) Population initialization with
learning strategy

42 Xiong et al.,
2014

GA, Differential Evolution (DE), VNS

43 Behnamian, 2014 CPLEX Tabu Search algorithm (TS) and VNS Local search
44 Zhang et al.,

2016
GA Local enhancement strategy

45 Neira et al., 2017 Randomized adaptive search procedure with
simulation approach

46 Fu et al., 2019 Brain Storm Optimization (BSO) Clustering method
47 Shao et al., 2019 Fruit Fly Optimization (FFO) Population initialization with

heuristic, local search
48 Li et al., 2020 Artificial Bee Colony algorithm (ABC)
49 Ying et al., 2020 TP DNEH Iterated Greedy Algorithm (IGA) Local search

50 Zheng et al.,
2020

mNEH2 Estimation of Distribution Algorithm (EDA)
and IGA Local search

51 Song and Lin,
2020

Genetic Programming (GP)+SA

52 Li et al., 2020 Discrete ABC Heuristics, VND
53 Komaki and

Malakooti, 2017
VNS Local search

54 Ying et al., 2017 Iterative reference greedy algorithm Solution initialization with
heuristics

55 Ying and Lin,
2017

IGA and TS Search with tabu list and
cooling process

56 Shao et al., 2017 IGA Solution initialization with
heuristics, speed-up strategy

57 Cheng et al.,
2019

Cloud theory-based IGA Local search

58 Zhang et al.,
2018

SPT, LPT,
large-small
method, NEH

Discrete DE Population initialization with
heuristic method, local search

(To be continued)
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Table 4 Optimization approaches in the relevant literature.
(Continued)

Ref. Author and year
Optimization approach

Heuristic Exact Swarm intelligence or evolutionary algorithm Improving strategy
59 Ribas et al., 2019 IGA
60 Chen et al., 2019 Collaborative Optimization Algorithm (COA) Population initialization with

heuristic
61 Zhao et al., 2020 Discrete DE (DDE) Population initialization with

heuristic methods
62 Zhao et al., 2020 Water Wave Optimization (WWO) Heuristics, local search, VNS
63 Shao et al., 2020 Heuristics

based on
NEH

IGA Local search

64 Hatami et al.,
2013

Constructive
heuristics

Variable Neighborhood Decent (VND)

65 S. Y. Wang and L.
Wang, 2015

EDA and Memetic Algorithm (MA) Local search

66 Deng et al., 2016 Competitive MA (CMA) Ring-based
neighbor-structure,

knowledge-based local search
67 Lin and Zhang,

2016
Biogeography-Based Optimization (BBO) Local search

68 Lin et al., 2017 Low-level
heuristics

Backtracking Search (BS) Hyper-heuristic approach

69 Zhang and Xing,
2018

Social Spider Optimization (SSO) Problem-specific local search,
restart strategy

70 Wu et al., 2019 DE and SA Local search
71 Zhang et al.,

2020
SSO Local search based on

meta-Lamarckian learning
72 Lei et al., 2020 Teaching-Learning-Based Optimization (TLBO)
73 Rifai et al., 2016 Adaptive Large Neighborhood Search (ALNS)
74 Lei et al., 2020 ICA Memory and neighborhood

structures-based improving
strategy

75 Meng and Pan,
2020

Constructive
heuristics

ABC Collaboration mechanism,
restart strategy

76 Naderi and Ruiz,
2010

Heuristics
based on

dispatching
rules

VND

77 Azab and Naderi,
2014

Greedy
heuristics

CPLEX

78 Naderi and Azab,
2015

SA Local search, restart operation

79 Behnamian and
Ghomi, 2015

CPLEX Monte Carlo algorithm Solution initialization with
heuristics, local search

80 Ying and Lin,
2018

Self-tuning IGA Solution initialization with
heuristics

81 Shao et al., 2019 Pareto-based EDA Population initialization with
heuristic method, local search

82 Pan et al., 2019 Constructive
heuristics

VNS and IGA

83 Huang et al.,
2020

IGA Restart scheme (IGR), control
parameter, local search

(To be continued)
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Table 4 Optimization approaches in the relevant literature.
(Continued)

Ref. Author and year
Optimization approach

Heuristic Exact Swarm intelligence or evolutionary algorithm Improving strategy
84 Meng et al., 2020 CPLEX
85 Gong et al., 2020 MA Balance-transfer method,

local search
86 Lu et al., 2020 Iterative Greedy (IG) Local search
87 Wang et al., 2020 Whale Swarm Algorithm (WSA) Problem-dependent local

search
88 Pan et al., 2020 EA Heuristics, reinitialization

scheme
89 Xiong et al.,

2020
NEH IGA and TS Local search

90 J. Wang and
L. Wang, 2018

NEH Knowledge-based Cooperative Algorithm (KCA) Population initialization with
heuristic method, local search

91 Fu et al., 2019 BSO Clustering approach
92 Luo et al., 2020 MA Three effective neighborhood

structures
93 Jiang et al., 2020 MOEA with decomposition
94 Guo et al., 2015 Multi-objective EA
95 Zou et al., 2018 Backward

and
forward
batching
method

GA and two-stage algorithm Local search

96 Zhang and Gen,
2010

GA

97 Giovanni and
Pezzella, 2010

GA Local search

98 Gao and Chen,
2011

NEH2 GA and VND Local search

99 Liu et al., 2014 GA Probability-based encoding
operator

100 Chang and Liu,
2017

GA

101 Wu et al., 2017 GA
102 Viagas et al.,

2018
Constructive
heuristics

GA Population initialization with
heuristic methods, local

search
103 Lu et al., 2018 GA
104 Cai et al., 2018 NEH

adaptive
(NEHA)

Nondominated Sorting Genetic Algorithm II
(NSGA-II)

Population initialization with
heuristic method, local search

105 Wang et al., 2013 Heuristics
with SPT,
LPT, and

NEH

EDA Population initialization with
heuristics, local search

106 Xu et al., 2014 Immune Algorithm (IA) Problem-feature-based local
search

107 Zhang et al.,
2018

VNS and Particle Swarm Optimization (PSO) Population initialization with
heuristic method

(To be continued)
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Table 4 Optimization approaches in the relevant literature.
(Continued)

Ref. Author and year
Optimization approach

Heuristic Exact Swarm intelligence or evolutionary algorithm Improving strategy
108 Meng et al., 2019 VND, ABC, and IGA Solution initialization with

heuristic rules
109 Yang and Xu,

2020
Batch

allocation
strategy

VND and IGA

110 Gao et al., 2013 TS Local search
111 Li et al., 2018 Pareto-based TS Solution initialization with

heuristic approaches
112 Chaouch et al.,

2017
ACO Neighborhood strategy

113 Zhang and Xing,
2019

Constructive
heuristics

DE Population initialization with
heuristic approach

114 Naderi and Ruiz,
2014

Scatter Search (SS) Subset generation
combination methods,

local search
115 Pan et al., 2019 Constructive

heuristics
ABC, SS and IGA Solution initialization with

heuristics, reference local
search

116 Lin et al., 2013 NEH2 IGA
117 Viagas and

Framinan, 2015
NEH2 Bounded-search IGA Local search

118 Ruiz et al., 2019 NEH2 en
based on

NEH

IGA Solution initialization based
on a new NEH2 en, local

search
119 Shao et al., 2020 Distributed

NEH
(DNEH)

IGA Multi-search construction
with greedy insertion

120 Mao et al., 2020 INEH2 dp Multi-start IGA Heuristics, local search
121 Deng and Wang,

2017
CMA Local search

122 J. Wang and
L. Wang, 2020

MA

123 Bargaoui et al.,
2017

Chemical Reaction Optimization (CRO) NEH, One-Point crossover
and greedy strategy

124 Zhang et al.,
2017

TLBO

125 Hao et al., 2019 BSO Improved NEH, improved
crossover operator

126 Li et al., 2019 Batch
assignment,

right-
shifting

heuristics

ABC Local search

127 Li et al., 2019 ABC Distributed Iterated Greedy
(DIG)

128 Huang et al.,
2020

Constructive
heuristics

Discrete ABC Local search

129 Lei and Wang,
2019

Shuffled Frog-Leaping Algorithm (SFLA) Population initialization with
heuristic, memeplex grouping

130 Cai et al., 2020 SFLA
131 Sang et al., 2019 Invasive Weed Optimization (IWO) Local search
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3.1 SI and EAs

To address the highly complicated distributed scheduling
problems, SI and EAs have been adopted, including
GA[38, 39, 44, 51, 88, 93–104] , EDA[50, 81, 105] , MA[106] ,
VNS[40, 42, 43, 53, 64, 76, 82, 98, 107–109], TS[43, 55, 89, 110, 111],
PSO[107], ACO[35, 112], DE[42, 58, 61, 70, 113], SS[114, 115],
IGA[49, 50, 55–57, 59, 63, 80, 82, 83, 86, 89, 108, 109, 115–120] ,
SA[38, 51, 70, 78], MA[65, 66, 85, 92, 121, 122], BBO[67], ICA[37, 39, 74],
CRO[123], COA[60], FFO[47], TLBO[124], SSO[69, 71],
KCA[90], GWO[41], BSO[46, 91, 125], SFLA[129, 130],
ABC[48, 52, 75, 108, 115, 126–128], IWO[131], WSA[87], WWO[62].
As shown in Fig. 1, SI and EAs account for 74% of
all the employed methods. Thus, SI and EAs are
the mainstream methods for addressing distributed
scheduling problems. Generally, they do not depend on
problem characteristics and have no requirements for
mathematical models. The procedure of SI and EAs is
given below:

Step 1: Initialize the algorithm parameters and
generate a set of solutions as a population.

Step 2: Calculate the objective function values of
solutions in the population.

Step 3: Generate new solutions by adopting the
solutions in the population.

Step 4: Evaluate newly generated solutions and update
the population.

Step 5: If a given termination is reached, go to Step 6;
otherwise, go to Step 3.

Step 6: Output the best-acquired solution and the
corresponding objective function value.

SI and EAs have strong stochasticity. To enhance
their search performance, many studies have adopted
improvement strategies. These studies account for 71%
of all the articles, as shown in Fig. 2. SI and EAs attach
importance to enhance the exploration ability for quickly

Fig. 1 Optimization approaches for solving distributed
scheduling problems.

Fig. 2 SI and EAs with and without improvement strategies.

finding promising regions in the solution space, while
they are not good enough to perform the exploitation
ability in the found promising regions. As shown in the
above procedure, they usually start with a population.
Normally, their search performance greatly benefits from
a high-quality population. Hence, some studies generate
a set of solutions with heuristics to construct a better
initial population. In addition, most studies have used
local search methods to enhance their exploitation ability.
Accordingly, balancing the exploration and exploitation
abilities has been regarded as a challenging work in
designing SI and EAs.

3.2 Other approaches

As shown in Fig. 1, some studies have selected heuristics
and exact approaches to solve distributed production
scheduling problems. The studies employing heuristics
account for 21% of the total, and those adopting exact
methods account for 4% of the total. Heuristics can
acquire feasible solutions for distributed scheduling
problems with less computation resources by applying
dominated properties. They have the clear characteristics
of quickly finding solutions regardless of the quality of
solutions. Conversely, exact methods aim at attaining
optimal solutions without consideration of computation
resources. Thus, most of the existing studies have
used them to solve small-scale problems, considering
that they have the capacity to reach globally optimal
solutions within reasonable running time. To make a
trade-off between the solution quality and computation
resources, the previous works have widely employed SI
and EAs, combining heuristics and exact methods, to
solve distributed scheduling problems.

4 Research Status and Trend

Distributed scheduling problems in manufacturing
systems have become an important research focus over
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the last few years. As shown in Fig. 3, the number of
publications for solving distributed scheduling problems
in manufacturing areas rapidly increased. Particularly,
in the most recent three years, it has grown rapidly and
has reached a maximum in 2019 with 21 articles. The
results show that distributed production scheduling
problems have recently attracted much attention, and
studying their modeling and optimization are very
important to effectively organize and manage distributed
manufacturing systems.

4.1 Single objective vs. multiple objectives

Production scheduling problems involve many criteria,
such as minimizing the makespan, flow time, tardiness,
and energy consumption. As shown in Fig. 4, most of
the previous studies considered optimizing only one
objective function when solving distributed scheduling
problems in manufacturing systems. Much attention has
been given to multi-objective optimization in recent
years, especially in 2019 and 2020, where nearly half of
the publications focused on multi-objective distributed
scheduling problems. Generally, decision-makers have

Fig. 3 Year-wise publication count of distributed scheduling
problems.

Fig. 4 Year-wise comparisons of single-objective and multi-
objective publications

to consider multiple criteria to determine a trade-off
among them when making scheduling decisions. In
such a situation, multi-objective optimization needs to be
employed for handling distributed scheduling problems
in manufacturing systems.

4.2 Objective functions

The publication count of various objective functions
shown in Fig. 5 proves that most of the existing
studies, accounting for 67% among all the publications,
considered minimizing the makespan, which is a
frequently used objective to maximize machine
utilization in real-world manufacturing systems. In
addition, minimizing tardiness, which accounts for
10%, has received much interest due to their great
influence on customer satisfaction. The prior works
also focused on decreasing the energy consumption
in scheduling the distributed manufacturing systems
because of the huge pressure from the government and
public on environmental protection issues. Particularly,
the workload balance among factories is an important
criterion for distributed manufacturing systems, and 3%
of the existing studies considered the workload-related
objectives.

4.3 SI and EAs

To further analyze the applications of diverse SI and EAs,
we classify the publications regarding them for handling
distributed production scheduling problems. The number
of articles that used the various methods is illustrated
in Fig. 6. A total of 27 algorithms were adopted
for solving distributed scheduling problems. The IGA,
which addresses single- and multi-objective distributed
scheduling problems, is the most popular among all
the adopted methods, with a total of 20 publications.
The second most popular method is GA, which has 17
publications. For “Others”, some search approaches

Fig. 5 Publication count of various objective functions.
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Fig. 6 Publication count of specific SI and EAs.

based on neighborhood structures[73], simulation[45], and
multi-agent methods[36] were employed. The above
analysis clearly shows that SI and EAs have been
employed to handle distributed scheduling problems,
which further confirms their excellent performance in
solving this kind of problem.

5 Conclusion and Further Direction

This work provides an overall picture of the
advanced research on distributed scheduling problems
in manufacturing systems. After starting with an
introduction to distributed scheduling problems, we
discussed their classification and analyzed them. Next,
we analyzed the framework of optimization approaches
on distributed scheduling problems, particularly SI
and EAs. Finally, we identified the research trends
according to the articles based on the publication count
of the publication year, single- and multi-objective
optimizations, objective functions, and various SI and
EAs.

Analyzing the research achievements and the status
of distributed scheduling problems in manufacturing
systems, we explored future research directions:

(1) Optimizing highly important objectives
According to the above summary, the time-related

and cost-effective criteria have been taken into account
in solving distributed scheduling problems. With
fierce market competition and economic globalization,
the government and public have put forward new
requirements for industrial development, such as energy
reduction and quality improvement. Nowadays, decision-
makers attach great importance to energy conservation
operations in industrial systems[132]. A significant topic
is energy-efficient scheduling that aims at decreasing
the total energy consumption of manufacturing systems.
Therefore, highly important objectives, such as
decreasing energy consumption[133–135] and improving
processing quality[136], need to be considered in solving
distributed production scheduling problems.

(2) Modeling with consideration of uncertainties
Generally, there are many uncertainties in industrial

systems, such as order arrival and machine breakdown,
which results in the production process being performed
differently from what is planned[137–143]. According to
the analysis, almost all of the existing studies focus
on distributed scheduling problems in deterministic
environments. Therefore, we should fully consider the
uncertainties when making decisions for distributed
scheduling problems. Generally, stochastic, fuzzy, and
robust models can be formulated to mathematically
describe distributed scheduling problems in uncertain
environments. Furthermore, it is significant to explore
the solution algorithms for these models by employing
popular approaches and simulation optimization
methods.

(3) Scheduling distributed manufacturing systems
with heterogeneous factories

Nowadays, many scheduling systems, including
distributed production scheduling, are heterogeneous
because of the extensive applications of multi-purpose
intelligent equipment in manufacturing systems[144].
As a result, jobs have various production routes in
different factories. Scheduling heterogeneous factories
are more complicated than scheduling homogeneous
factories in distributed environments because the
manufacturing process of jobs among factories has
diverse production cost, processing quality, and energy
consumption. Considering the significant applications
of manufacturing systems with heterogeneous factories,
it is necessary to perform modeling and optimization to
effectively schedule them.

(4) Studying more distributed scheduling models and
their applications

By analyzing the existing studies, we found that
distributed scheduling models with parallel machines,
flow shop, and job shop have received much attention
due to their important applications in manufacturing
systems. However, only a few studies are concerned with
distributed open-shop scheduling problems, although
they have essential applications in different areas, such
as healthcare and vehicle inspection systems[145]. In
addition, some distributed manufacturing systems with
special circumstances, such as no wait, blocking, and
lot streaming, should be fully taken into consideration
because of their significance in the production
environment where machines and jobs have specific
requirements[146]. Distributed scheduling models can
also be used to solve networking scheduling and control
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problems[147].
(5) Designing SI and EAs
Over the past years, SI and EAs have been successfully

used to handle various complex optimization
problems[148–152]. According to the analysis and
discussion, they have excellent performance in
addressing distributed scheduling problems in
manufacturing systems, particularly those with
complicated constraints and large solution spaces.
Designing more highly efficient methods based on
them, especially multiobjective optimization approaches
for coping with multiobjective distributed scheduling
problems, is an essential and promising direction. In
addition, some local search methods based on dominated
properties have shown better ability to enhance the
performance of SI and EAs, and thus the design of
problem-dependent local search strategies should be
given enough consideration in future works.
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