
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 04/15 pp608–624
DOI: 10 .26599 /TST.2021 .9010005
Volume 26, Number 5, October 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Multi-Agent Modeling and Simulation in the AI Age

Wenhui Fan�, Peiyu Chen�, Daiming Shi, Xudong Guo, and Li Kou

Abstract: With the rapid development of artificial intelligence (AI) technology and its successful application in various

fields, modeling and simulation technology, especially multi-agent modeling and simulation (MAMS), of complex

systems has rapidly advanced. In this study, we first describe the concept, technical advantages, research steps,

and research status of MAMS. Then we review the development status of the hybrid modeling and simulation

combining multi-agent and system dynamics, the modeling and simulation of multi-agent reinforcement learning,

and the modeling and simulation of large-scale multi-agent. Lastly, we introduce existing MAMS platforms and

their comparative studies. This work summarizes the current research situation of MAMS, thus helping scholars

understand the systematic technology development of MAMS in the AI era. It also paves the way for further research

on MAMS technology.

Key words: artificial intelligence; system dynamics; reinforcement learning; large-scale multi-agent

1 Introduction

Agents emerged in distributed artificial intelligence
in the 1970s. Since the 1990s, agents have become
an essential frontier in computer research, especially
in the field of artificial intelligence (AI). At the
same time, research on agent-based modeling and
simulation (ABMS) has been conducted in various fields
(such as social science, economic system, biological
science, ecological science, engineering technology, and
simulation science), and the related influential research
and application are fruitful.

Agents have various definitions in different fields and
disciplines. Agents, which were initially used only as
a system component, have been extended to become
intelligent software, devices, robots, computers, or even
human beings. An agent is an autonomous individual

� Wenhui Fan, Peiyu Chen, Daiming Shi, Xudong Guo,
and Li Kou are with Department of Automation, Tsinghua
University, Beijing 100084, China. E-mail: fanwenhui@
tsinghua.edu.cn; cpy19@mails.tsinghua.edu.cn; shidm18@
mails.tsinghua.edu.cn; gxd20@mails.tsinghua.edu.cn; koul13@
mails.tsinghua.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2021-01-07; accepted: 2021-01-19

that can perceive the environment it is in, calculate and
reason in accordance with the information obtained,
communicate with other individuals, coordinate with
each other, and cooperate with each other to complete
a specific task and exert influence on the external
environment. In this process, each agent not only has its
own behavioral characteristics, such as autonomy, social
ability, responsiveness, and initiative, but also has mental
state characteristics, such as goals, knowledge, beliefs,
responsibilities, and commitments according to their
different roles and functions[1]. Agents also have other
important characteristics, such as mobility, adaptability,
and reasoning ability[2].

Although agents have various characteristics and
possess the ability of decision-making and execution, the
ability of a single agent remains limited. Such limitation
motivates the emergence of multi-agent systems (MASs).
Compared with single-agent systems, MASs not only
have stronger performance but also help multiple
agents solve certain problems independently through
the information resources of the system. In addition,
agents can cope with increasingly complex problems
through mutual assistance[3], which encourages the
emergence and development of multi-agent modeling
and simulation (MAMS) technology.



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 609

2 Multi-Agent Modeling and Simulation

2.1 Concepts and ideas

Generally, traditional system modeling and simulation
methods establish system models using the deductive
reasoning method before conducting simulation
experiments and analyses. This approach is a typical
engineering simulation modeling method, a top-down
modeling method, as well as an idea of reductionism.
Local and foreign researchers have indicated that
the existing traditional modeling methods based on
reductionism cannot appropriately describe complex
systems. In the modeling and simulation of complex
systems, inductive reasoning is commonly used to build
the formal abstract models of the systems, that is, using
abstract representations of the system to gain an insight
into the objective world and the natural phenomena;
such approach is based on system theory and is a
bottom-up modeling method. MAMS, which builds
the model by using the basic elements of a complex
system and their interactive relationship, organically
links the microscopic behavior and the “emergent”
phenomenon in the macroscope of complex systems.
MAMS, a method of ontology, is one of the most
effective simulation methods to solve the problem of
complex systems.

Multi-agent simulation mainly consists of two
aspects. On the macro aspect, the mechanism,
protocol, and strategy of communication, coordination,
and collaboration between agents, as well as the
decomposition and assignment of tasks, are included. On
the micro level, the dynamics, reasoning, and behavior of
the agents are studied. The prior task of complex system
simulation is to establish the system model and conduct
experiments to study the emergence of the system, that
is, studying when, where, and what kind of emergence
the studied object appears. The concepts and ideas of
MAMS mainly include the following six aspects[4]:

(1) Agents. Agents are autonomous computing
entities and basic modeling and simulation units, which
can sense the environment through sensors (physical or
software) and act on the environment through effectors.
A computing entity is a program that physically exists
and operates on a computing device. Autonomy means
that it can control its own behavior to a certain extent
and can take certain actions without the interventions of
human beings or other systems. To meet the design goals
of a system, agents pursue the corresponding subgoals
and perform the corresponding tasks. In addition, these

subgoals and tasks can be complementary or conflicting.
(2) Model aggregation. Agents are a nested

hierarchical concept. Basic agents, called meta-agents,
have all the attributes of an agent. Model aggregation
is needed to solve problems in complex large-scale
systems; in some cases, hierarchical modeling that
aggregates multi-granular, multi-scale, and multilevel
models is also needed.

(3) Perception and action. Agents perceive
information of the surrounding environment and other
agents through internal perceptions and then react to the
environment and other agents with the help of effectors,
thereby realizing the functional behavior modeling of
individual agents.

(4) Decentralized control. Each agent is relatively
independent in MAMS, where no central control
and coordination agents are needed for usual cases.
Moreover, multi-agent control has been applied in
various practical applications, such as robotics.

(5) External environment. In MAMS, the external
environment not only provides several conditions for the
existence of agents, but also acts as the perception and
action object of agents.

(6) Interactions and associations. The interaction
and association between agents are the cause of complex
behavior in complex systems, as well as an important
way to solve the dependence, conflict, and competition
among agents.

2.2 Technological advantage

Compared with other complex system modeling and
simulation technologies, MAMS has the following
advantages[5]:

(1) MAMS can describe complex systems
naturally. In many cases, MAMS is the most
natural description of a complex system composed of
numerous entities, and the concept of individuals in the
system is consistent with agents.

(2) MAMS can capture the emergence
phenomenon in complex systems. The “whole is
greater than the sum of its parts” feature of emergence
makes it difficult to predict. MAMS is a normative
method for modeling this emergence phenomenon. By
modeling the behavior of the micro individuals of the
system, the purpose of describing the macro behavior of
the system is achieved.

(3) MAMS has flexible organizational framework
and evolution mechanism. Agent-based paradigms
have a flexible potential computing mechanism for the



610 Tsinghua Science and Technology, October 2021, 26(5): 608–624

formation, maintenance, evolution, and disintegration
of organizations and are especially suitable for solving
the problem of flexible organization and scheduling in
different complex systems.

(4) Agent autonomic solving and decision-making
ability. The autonomic solution ability is the capacity
of accepting the “stimulus” of the environment and
other agents, reacting to the environment and other
agents in accordance with the internal state and stimulus
information, and modifying its own rules and states.

(5) Agent’s ability to interact with users. Direct
manipulation interfaces are used in traditional complex
modeling systems; however, with the increase in
task complexity, the manipulation process becomes
increasingly complicated and thus can eventually affect
the stability of the system. Nevertheless, the intelligence
mechanism of agents creates technical conditions for
human-computer interaction and cooperation, thus easily
forming a harmoniously coexisting problem-solving
system where the interaction and collaboration between
users and agents are realized. In addition, the ability also
guarantees system stability; thus, a single module error
does not easily lead to system collapse.

(6) Suitable for distributed simulation. Agents
describe the individual entities of a system and can
be conveniently distributed to multiple computer nodes,
thus providing the possibility for a distributed simulation
of large-scale complex systems.

(7) Reusability of the model. Agents are abstraction
entities with greater granularity than the object. By
reusing a mature agent model, the efficiency of software
development can be improved.

2.3 Research procedure

The MAMS procedure is mainly divided into the
following five steps[6]:

(1) Specification of the aims of simulation. The
complexity characteristics of the target system and
the requirements of simulation are analyzed. First, the
complexity of the target system is analyzed, and the
objectives, requirements, and system boundaries of the
simulation are specified. Then the specific characteristics
of the entities in the system are analyzed, and the
formal expression of the system is determined. Finally,
the evaluation mechanism and method are defined, the
data expression mode is determined, and the supporting
functions of the simulation environment are summarized
and formulated.

(2) Reasonable selection of abstract level.

Hierarchy structures are the inherent structures of
complex systems. Therefore, a multilevel abstract
modeling method must be used to establish the abstract
model of various object entities in a complex system,
thus ensuring that the abstract level is reasonable and
sufficient.

(3) Message flow analysis. The procedure includes
classifying the message types, ensuring the flow patterns
of various messages, and determining whether the
simulation target needs further decomposition.

(4) Agent modeling. The procedure includes building
analysis trees for complex systems through hierarchical
decomposition and message flow analysis, and building a
meta-agent model for each leaf node and an aggregation-
agent model for each non-leaf node, and abstracting out
different agents in accordance with the entities’ different
functions.

(5) Distribution of agents. The distribution of agents
depends on the specific application requirements of
the complex system simulation, the adopted simulation
algorithms, and the hardware environment of the
simulation.

2.4 Research on application status

MAMS has been applied in many fields, including
social sciences, economics, artificial life, geographical
and ecological processes, as well as the industrial and
military fields. However, most studies are still in
their infancy, that is, these studies are still �thought
experiments�in the laboratory and have the nature of
academic research. In reality, simulation analysis and
control of complex systems still have a long way to go.
Nevertheless, research on the ABMS of complex systems
have been applied in practice.

2.4.1 Social field
The social sciences are one of the fields where MAMS
is most widely applied. Its research focuses on the
emerging behavior and self-organization of human
systems; MAMS, which has been widely recognized
by many social scientists, is the most suitable method
to capture these phenomena[7]. “Humans” in social
systems and agents in MAMS are essentially similar.
“Humans” are abstracted as agents with autonomous
decision-making, learning, memory, coordination, and
organization abilities. Therefore, neural networks,
evolutionary computation, or other learning skills
are required for agents to describe the learning and
adaptive ability of “humans”. For example, neural
networks were used to detect network’s abnormal



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 611

behavior[8] and isolation forest was applied to fault
diagnosis[9]. Research applications of MAMS in
the social field include flow[10], such as traffic[11],
evacuation in emergency circumstances, customer flow
management, organization formation, and political
interaction[12]. Casti from the Santa Fe Institute
simulated the traffic and environmental conditions
in Albuquerque[13], whereas Raney et al. studied
the traffic problems in Switzerland[14]. In addition,
Epstein and Axtell developed an agent model
based simulation software called ResortScape, which
can be used for parking lot management and
decision-making[15]. Bilge developed an agent model
based software called SIMSTORE for supermarket
management and monitoring; the software was
practically applied to the operation and management
of several supermarkets in the UK[16].

2.4.2 Economic field
Economics is a field in which MAMS is widely applied.
Researchers in Sandia National Laboratories in the
United States developed an agent-based US economic
simulation model called Aspen[17], which is a blend
of the latest technology of evolution learning and
parallel computing in the Sandia lab; this model is
superior in many aspects compared with the traditional
economic model. The variation of the influence of
laws, rules, and policies is considered in a single,
consistent economy simulation computing environment
(e.g., building detailed models for monetary policy,
tax law, and trade policy research; analyzing different
economic sectors separately or together with other
departments, thus facilitating the understanding of the
entire economic process; accurately simulating the
behavior of the basic decision-making sectors of the
economy, such as residents, banks, companies, and
policies). Aspen analyzed the effect of policies on
micro and macro units by regarding micro units, such
as individuals, residents, and enterprises, as simulated
objects. Through the statistics, analysis, inference, and
synthesis of characteristic variables, the influence of
policy changes on micro individuals and the effects of
policy implementation on macro and various levels can
be observed. Sandia National Laboratory has already
established a prototype model of the simple market
economy (a simple simulation of the US economy) and
a transition economy simulation model (a transition
economy simulation), which is a detailed model[18].

In addition, the virtual stock market developed by

a Bios team led by Arthur of the Santa Fe Institute
has been successfully applied to the NASDAQ stock
market simulation[19, 20]. The agent-based NASDAQ
simulation model successfully combined the agent-based
modeling idea with AI technologies, such as neural
networks and reinforcement learning. This simulation
method has further been used to study the US housing
market[21]. Agents in the stock market interact by
adopting different strategies from simple to complex.
Through the interaction between agents, the dynamic
behavior of the entire stock market can be expressed.

2.4.3 Military field
The military field is a new area of application for MAMS.
Military confrontation and land warfare systems are
complex adaptive systems (CASs)[22–25], which have
been recognized by researchers. Therefore, MAMS can
be used to study battlefield behavior, such as military
confrontation[26]. The results of existing research show
that MAMS, which has strong vitality, is more effective
than the current combat model based on the Lanchester
equation and is a good method for battlefield simulation.

The US Department of Defense (DOD) hopes to have
real-time, omnidirectional access to information in future
battlefields. For C4ISR to be useful, advanced real-
time distributed modeling and simulation tools must be
used, and complexity science can help develop C4ISR.
As the MAMS is a complexity science methodology,
it naturally became the DOD’s advanced modeling
and simulation methodology. The DOD’s applications
on ABMS include the irreducible semi-autonomous
adaptive combat (ISAAC) developed by the US Marine
Corps Combat Development Command (MCCDC), the
enhanced ISAAC neural simulation toolkit (EINSTein)
and SWarrior, the adaptive collection management
environment (ACME) developed by the US Army
Intelligence and Security Command (INSCOM), and the
tactical sensor and ubiquitous network agent modeling
initiative (TSUNAMI) co-developed by the Naval
Warfare Development Command and Argonne National
Laboratory’s Center for Complex Adaptive Systems
Simulation.

ISAAC[22, 23] was developed on the basis of the agent
model. Through the simulation of war, questions, such
as “to what extent do land warfare systems have the
characteristic of self-organizing CAS”, can be answered.
The software was not designed to construct a system-
level battlefield model but to serve as a simulation kit
to explore interactions from different low-level rules



612 Tsinghua Science and Technology, October 2021, 26(5): 608–624

to high-level emergent behavior (for example, from
individual warriors to a squad). ISAAC’s long-term
goal is to turn its subsequent product into a toolkit
through which the emergent aggregation behavior on the
battlefield can be explored. The agent in ISAAC has four
characteristics of rule, task, situational awareness, and
self-adaptability. Through the interaction of simple rules,
the ISAAC system presents operational concepts, such
as forward advance, frontline attack, local clustering,
penetration, retreat, attack attitude, containment and
containment, encircle maneuver, and guerrilla attack.

EINSTein[22, 23] is an enhanced version of ISAAC. The
main improvements include a Windows-style Console
User Interface (CUI) interface, an object-oriented
C++ code, context-dependent and user-defined agent
behavior, personalized script representation, online
genetic algorithms, neural networks, reinforcement
learning and pattern recognition toolkits, online data
collection and multidimensional visualization toolkits,
an online analysis toolbox, and a fitness coevolution
legend display. At present, EINSTein studies two basic
problems: command and control of topology and battle-
related information.

MCCDC also developed SWarrior[24], which is based
on Swarm, by combining certain characteristics of
ISAAC. SWarrior aims to transform Swarm into a new
analytical tool to gain an insight into future military
confrontation based on agent-based simulation.

INSCOM and the Bios team of Santa Fe developed
ACME[25], which helps commanders manage and
acquire real-time battlefield information and obtain the
enemy command post locations with the constantly
changing battlefield maps.

An agent-based model was built by TSUNAMI[25]

for the red, blue, and neutral forces, which have
complex behavior and different properties, such as
communication equipment, perception ability, mobility,
memory ability, and fuel and battery energy. TSUNAMI
simulates the battlefield space motion and interaction
by describing the real terrain, and it can “clone” various
sensors and use rule sets to simulate message flow and
service protocol quality.

In addition, the Australian Defense Force Academy
developed the reducible agent battlefield behaviour
through life emulation (RABBLE)[27]. In contrast to
ISAAC, RABBLE uses an MAS structure, adding up
the learning mechanism and thus making the simulated
group behavior conducive to decision-making. SWARM
and Battle Model[26] developed by the Air Operations

Division in Australia builds an agent-based model for
pilots, fight managers, sensor managers, air combat
defense commanders, and ground crew in air combat.
In the military field, Heinze investigated the military
combat concept by using the agent-based model[28],
and Hill designed and implemented Tactical Simulation,
an intelligent agent software model for air combat
(especially over-the-horizon combat) simulation[29].

3 Hybrid Modeling and Simulation Based
on Multi-Agent and System Dynamics

Hybrid modeling and simulation have received
considerable attention over the past few years due to their
flexibility and improved support tools. The construction
of hybrid modeling and simulation aims to describe the
complex behavior of the system[30]. A hybrid simulation
method should comprehensively consider all types of
interactions in the hybrid model to simulate various
behaviors in the complex system. MAMS and system
dynamics modeling and simulation (SDMS) are two
important simulation methods[31].

SDMS is a top-down feedback method proposed by
Forrester[32]. The essence of this method is a high-order,
multi-loop, and nonlinear feedback structure. SDMS is
a method for visualizing, analyzing, and understanding
complex dynamic feedback[33]. The advantage of SDMS
lies in its ability to consider nonlinear feedback and the
time-delay characteristics of the dynamics[34]. SDMS
has been widely used to solve various problems in social,
industrial, environmental, and project management
systems[35]. It uses feedback loops, stocks, and streams
to simulate the dynamics of complex systems over
time. In SDMS, the behavior of the system consists
of two basic types of feedback loops, including a
negative feedback loop for system regulation and a
positive feedback loop with the function of strengthening
input[36].

MAMS is a computer simulation method describing
the behavior of complex systems. It adopts the bottom-
up information feedback method to describe the
interaction between individuals, identifies each entity
as heterogeneous rather than identical, and allows
individuals to evolve and adapt dynamically[37]. In
MAMS, the complexity of the system is reflected in the
interaction between different agents[32, 38]. The purpose
of simulation is to track the interactions between agents
in artificial environments and understand the emergence
of global patterns[39]. Agents in MAMS have certain
properties and interact by defining appropriate rules in



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 613

a given environment[40]. Agents act or produce output
on the basis of their interactions, environments, and the
rules they follow.

The hybrid model combining MAMS and SDMS
emerged in the late 1990s. Scholl[41] conducted the first
studies on the applicable scope of SDMS and MAMS.

In this study, the author also studied the advantages
and disadvantages of each method and summarized the
possibility of multimethod modeling based on SDMS
and MAMS[41]. Pourdehnad et al.[42] deepened the above
work by conceptually comparing these two methods.
The authors discussed the potential synergies between
the two paradigms to solve problems in the teaching
and decision-making processes[42]. Similarly, Stemate et
al.[43] compared these modeling approaches and listed a
range of possible cross-applications, which provided a
reliable basis for researchers to conduct further research.
Lorenz and Jost[25] believed that the combination of
SDMS and MAMS makes the simulation model closer
to reality.

Schieritz et al.[44, 45] mainly worked on comparing
SDMS and MAMS in the field of operations research.
They identified the unique features of each approach and
presented a table of major differences. In Ref. [46], a
method that combines SDMS and MAMS was proposed
to solve supply chain management problems. The results
suggested that the use of combined methods does not
produce the same results as using SDMS alone. To
explore the reasons for these differences, the authors
pointed out that further research is needed[46].

Ramandad and Sterman[22] compared the results of
simulating the dynamic process of infectious disease
transmission using MAMS and SDMS, transformed
MAMS into SDMS, and examined the effects
of individual heterogeneity and different network
topologies. They concluded that SDMS produces a
single trajectory for each parameter set, whereas random
MAMS produces a distribution of the results.

Scholl[41] provided an overview of the general
modeling principles of SDMS and MAMS, described
their areas of applicability, discussed their relative
strengths and weaknesses, and attempted to identify
areas where the two modeling and simulation methods
complement each other and overlap. MAMS is inductive
because the resulting emergent behavior of such agents
is the basic unit of analysis. By contrast, SDMS
is deductive because it is described by its feedback
structure at an aggregate level. Both techniques aim to
discover leverage points in complex aggregate systems;

modelers of agent-based models seek them in rules and
agents, whereas SDMS does so in the feedback structure
of a system.

Similarly, Lorenz[24] proposed three aspects to
consider when choosing between SDMS and MAMS:
structure, behavior, and appearance. Structure is related
to how the model is built. The structure of the SDMS
model is static, whereas that of MAMS is dynamic. In
SDMS, all elements of emulation are preset, whereas
in MAMS, agents can be created or destroyed, and
interaction rules are defined during simulation. Another
aspect is the difference in the behavior center generators
of the model. For SDMS, the behavior generators are
feedback and accumulation, whereas for MAMS, the
generators are the interactions between system elements.
Both methods involve feedback. However, MAMS has
feedback at multiple modeling levels. In addition, the
ability of emergence in the simulation varies in the
two methods. In this study, the author pointed out that
MAMS can simulate emergence, whereas the single-
layer structure of SDMS cannot[24].

Despite the increasing amount of research on hybrid
simulation methods, research on the properties and types
of hybrid models is limited[27], and the hybrid simulation
framework should be able to consider all types of
interactions within the hybrid model[30]. To address
this problem, Swinerd and McNaught[27] proposed
three hybrid SDMS-MAMS simulation frameworks of
integration, interface, and sequence.

In recent years, the comparative research results
of SDMS and MAMS show that SDMS and MAMS
have their advantages and disadvantages in complex
system simulation. SDMS focuses on the dynamic
behavior of the system and the analysis of the interaction
and accumulation effect between different elements
while ignoring the spatial factors. MAMS focuses
on the interaction in space and ignores the feedback
effect of macro-socioeconomic factors on agents[26]. To
capture the heterogeneity and homogeneity of complex
socioeconomic system models in dynamic simulation
environments, two types of hybrid models combining
MAMS and SDMS were proposed. In the first type,
MAMS is used to create aggregate constructions, and
SDMS is used to aggregate constructions and thus
generate dynamic behavior. In the second type, SDMS is
used to deduce the characteristics (states) of agents at the
micro level, whereas MAMS deals with the interaction
process of these agents under different rules[47]. In the
past two decades, an increasing number of scholars



614 Tsinghua Science and Technology, October 2021, 26(5): 608–624

have begun to explore the combination of SDMS and
MAMS[22, 46]. The hybrid approach has already been
applied to solve problems in different fields, such
as transportation[48], health-related research[24, 25, 43, 48],
psychology[49], work environment[50], and ecological
modeling[51–54].

4 Multi-Agent Reinforcement Learning
Modeling and Simulation

Reinforcement learning is a mode of machine learning
that can actively perceive the environment through
different behaviors or actions, evaluate behavior
simultaneously, and apply the evaluation to adjust
the follow-up behavior; that is, it is a learning
technology that can map different environmental states
to behaviors[55]. The main purpose of reinforcement
learning is to select the optimal behavior of an agent to
complete the target. It is widely used in robot control
systems[56, 57], intelligent decision[58], nonlinear optimal
control[59–61], and other fields[62]. Complex practical
problems cannot be reflected due to the lack of decision-
making and environmental awareness ability of a single
agent; thus, the concept of multi-agent, which is a
collection of multiple intelligence called an MAS, was
proposed in the late 20th century. MAS, a frontier
domain of distributed AI, is mainly used to study the
coordination[63], communication, and conflict between
groups of agents[64].

4.1 Single-agent reinforcement learning

Studies on reinforcement learning mainly began in the
1850s[55], and the idea of trial-and-error learning was
established soon after. The representative of modern
reinforcement learning, i.e., temporal difference learning,
began to be applied to the Markov decision process, and
its efficiency was much higher than that of the traditional
reinforcement learning algorithm[65]. Subsequently, the
researchers integrated the time-series difference method
and other optimization methods and proposed the Q-
learning algorithm[66], which is acknowledged as the
basis of most of the current deep reinforcement learning
algorithms.

After the proposal of deep learning, traditional
reinforcement learning actively explored the possibility
of combining with deep learning. In the beginning,
the combination of deep learning and reinforcement
learning methods is mostly value-based, that is, it
uses a deep neural network approximation function or
an action-value function to extend the problems that

reinforcement learning can solve from limited state
space to continuous state space. The value-based deep
reinforcement learning algorithm can fit the continuous
state space; however, the value-based method cannot
solve the problem of continuous action space. Hence, the
stochastic strategy gradient method and the deterministic
strategy gradient algorithm, which are based on the
actor-critic framework policy gradient algorithm, were
gradually developed[67].

4.2 Multi-agent reinforcement learning

In 2000, machine learning researchers took MAS as an
important application background of AI[68] and proposed
the concept of multi-agent learning in 2006[69]. In
2013, the deep Q-network combined reinforcement
learning with deep learning for the first time[70] and
thus remarkably improved the performance and stability
of reinforcement learning algorithms, attracted several
researchers to take reinforcement learning as the learning
method of MAS, and initiated the study of the multi-
agent reinforcement learning[71, 72]. In the game theory
field, multi-agent reinforcement learning is classified
into complete cooperation, perfect competition, and
mixed type in accordance with the task types to be
solved[73]; it can also be classified into four types
according to different research contents and methods:
analysis of emergence behavior, learning how to
communicate, cooperate, and model the adversary[74].

The first is the analysis of emergence behavior. This
part of research mainly applies the existing single-
agent deep reinforcement learning algorithm to MAS,
analyzes the performance and behavior of multi-agent,
and observes the evolution of multi-agent. For example,
the competitive behavior of deep reinforcement learning
agents in table tennis tasks was studied[75]. In Ref. [76],
the performance and property of typical reinforcement
learning algorithms in counterattack tasks were explored.

The second is to learn how to communicate. In this
part of the study, the communication between agents can
help agents in completing tasks. This method mainly
learns when and how agents communicate with each
other. For example, Facebook proposed a CommNet
network structure that aggregates the communication
between agents through a summation operation[77]. In
Ref. [78], the communication relationship and
communication information between agents were
intelligently selected on the basis of the attention
mechanism.

The third part is to learn how to cooperate. This part



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 615

ignores how agents communicate with each other and
focuses on the performance of their cooperation. Multi-
agent deep deterministic policy gradient, an extension
algorithm based on deep deterministic policy gradient,
proposed a learning method of centralized training-
decentralized execution, which has become the paradigm
for most cooperative methods[79]. By contrast, the
researchers proposed a value decomposition network,
which decomposes the global value function into the
accumulation of the multi-agent’s local value functions
and further simplifies the center’s evaluation network[80].

The fourth part, which is how to model the adversary,
models the adversary’s strategy. The modeling of other
agents has applications and benefits in cooperative and
competitive tasks and can also help explain the behavior
of agents[81]. For example, performance can be improved
in the hiding information task by modeling others[82] and
in the study of the overfitting problem in the strategy
modeling of other agents[83].

4.3 Status and outlook

With the popularity of robots, manufacturing, logistics,
disaster relief, unmanned vehicles, and other fields have
become the typical application scenarios of MASs. With
economic development, MASs with high efficiency and
intelligence are urged. As the frontier of solving MAS
problems in the field of AI, multi-agent reinforcement
learning provides a feasible method for developing
intelligent algorithms in different environments and
tasks. However, the current multi-agent reinforcement
learning algorithm still suffers from the following
problems:

(1) The convergence and stability of multi-agent
reinforcement learning have yet to be proven
systematically. Reinforcement learning optimizes
strategies by the agents’ self-exploration, which requires
agents to balance random exploration and autonomous
decision-making. The convergence and stability of
various single-agent reinforcement learning algorithms
have been widely studied and demonstrated; however,
the convergence of multi-agent reinforcement learning
algorithms depends not only on the environment but
also on the performance of other agents, thus making
it difficult to prove the convergence of the optimal
strategy and the stability after convergence of multi-
agent reinforcement learning[73].

(2) The state space of multi-agent reinforcement
learning is huge, and the training time is long. To
ensure the convergence of the strategy optimization

process, the single-agent reinforcement learning
algorithm needs to explore massive possibilities of the
“state-action” space. The joint “state-action” space of a
multi-agent increases exponentially with the number of
agents in the system, leading to an exponential increase
in training time, limiting the extensibility of the number
of agents in multi-agent reinforcement learning.

(3) The expansibility and knowledge transfer
ability of multi-agent reinforcement learning
are poor. On one hand, the current multi-agent
reinforcement learning can only be designed for specific
tasks and has trouble expanding and transferring
strategies for different tasks so that each task needs to
be trained and learned again. On the other hand, each
retraining requires training for multiple agents. How to
use experience between agents[84] and how to store and
transfer knowledge[85] are still hot topics in this field.

Although the theory and practice of multi-agent
reinforcement learning still face great challenges, multi-
agent reinforcement learning is still regarded as an
essential method to produce collective intelligence[86].
This study argues that the contributions of multi-agent
reinforcement learning have two aspects. First, multi-
agent reinforcement learning can bring robot teams with
cooperative consciousness and human-like intelligence.
Multi-agent reinforcement learning can train AI to
complete complex multi-agent tasks of Dota2[87] and
StarCraft II[88], and its performance can reach the level
of e-sports athletes. Second, research on the training
process of multi-agent reinforcement learning can help
explain the emergence and evolution of biological group
behavior and provide quantitative model support for
the development of anthropology and sociology. The
multi-agent reinforcement learning method combines
the actual characteristics of distributed decision between
biological population and robot population and the
advantages of independent learning optimization strategy
in AI. Moreover, it is becoming an interdisciplinary
science of multi-agent simulation, swarm game theory,
reinforcement learning, and other fields.

5 Large-Scale MAMS

In many disciplines, such as physics, social sciences,
electronic communication, ecology, and military
research, the number of agents involved in MAMS is
always large, and the millionth magnitude of scale makes
it difficult for ordinary computers to provide enough
computing power[89]. Similar computing problems



616 Tsinghua Science and Technology, October 2021, 26(5): 608–624

occur when the agent-based simulation algorithm
is complex[90]. These problems can be collectively
regarded as large-scale MAMS problems. Numerous
approaches have emerged in various fields trying to
solve this problem. Among them are two most effective
and common solutions: One is to restructure the model
at the software level by super individual or other
methods; another is to speed up large-scale computing
by distributed parallel computing[91, 92] or using new
computation tools, such as the Quantum tool[93].

Numerous software reorganizations have been
successful. For example, Blythe et al. successfully
simulated approximately 3 million agents and generated
a total of 30 million operations by using stationary
probability models, embedding link prediction, and
introducing Bayesian models, thus enabling large-
scale multi-agent simulation to model the evolution
of GitHub (a large collaborative software development
ecosystem)[94]. Campagne et al. proposed the use
of morphology to represent and control the state of
large organizations composed of large-scale agents that
represented the state of the system as the shape in
abstract geometric space[95]. In the era of AI, neural
networks can also be used in the abstraction and
simplification of models. Zhou et al. integrated the
emerging mean field game theory with reinforcement
learning technology on the basis of self-organizing
neural networks, which effectively break the “curse of
dimension” of large-scale MAMS and greatly reduce
computational complexity[96].

Progress has been achieved in distributed parallel
computing in recent years. Fachada et al. compared
different parallel computing strategies, such as
equal, equal with repeatability, equal with row
synchronization, and on-demand, and pointed out
that different parallelization strategies have specific
trade-offs in terms of performance and simulation
repeatability[97]. Predator-prey for high-performance
computing, an effective reference model that can
compare different parallelization strategies from
performance and statistical accuracy, was also
proposed[98]. Many scholars have begun to explore
the use of GPU and other hardwares. For example,
the GPU-based mobility simulator GEMSim designed
by Saprykin et al. accelerates the process of large-
scale multi-agent simulation, and its simulation
cycle is more than 12 times faster than the
previous method MATSim[99]. P-HASE designed by
Marurngsith and Mongkolsin can generate the GPU code

OpenCL automatically without any GPU programming
language knowledge to optimize large-scale multi-
agent simulation. By being evaluated through the
experiment on two GPU platforms, NVIDIA GeForce
240m LE and AMD Radeon HD6650M, the large-scale
multi-agent model in support of the newly generated
GPU can be 14 times faster than its multicore CPU
version[100]. The REPAST HPC framework raised by
Collier and North uses C++ and MPI for large-scale
distributed computing, which is accelerated by multi-
process parallel computing[101].

The application of the above two methods enables us
to extend the multi-agent simulation modeling method
to large-scale problems and calculate the simulation
results in a short time without losing too much
computational accuracy, which has important application
and promotion value. For example, in the transportation
field, Klügl and Rindsfüer simulated a scene of more
than 40 000 agents passing through the Bourne railway
station within 1.5 virtual hours, not only ensuring that
the agents are moving without collision between two
predefined positions but also planning and replanning
the way the agents pass through the railway station
flexibly[102]. Zhang et al. simulated the traffic flow
situation of Shanghai, China, with 200 000 agents on a
network with 50 000 links[103]. In the field of medical
imaging, Haroun et al. introduced large-scale multi-
agents to merge the local image processing results
after local processing on brain magnetic resonance
imaging and improve the quality of the image after
segmentation[104]. Zhang and Verbraeck studied the
control strategy for the mass spread of infectious diseases
on the basis of the large-scale ABMS method on PC; the
population size, namely, the number of agents, reached
19.6 million[105]. Suzumura et al.[106] proposed agent-
based complex cellular automata architecture, which
realizes the traffic flow simulation of one billion agents
on a supercomputer. The Los Amos National Laboratory
developed an agent-based model software package called
Traffic Analysis Simulation System[107]. The software
is currently used to simulate the traffic conditions in
Portland, including 120 000 traffic links and 1.5 million
agents.

6 Multi-Agent Modeling and Simulation
Platform

With the constant advancement of agent research,
various agent simulation platforms have been developed
internationally. Among them are typical platforms



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 617

with strong pertinence to a certain field. Examples
include OpEMCSS, which can perform complex traffic
system simulation; MaDKit, which simulates complex
supply chains; and James providing multi-negotiation
simulation between agents. However, these platforms
have poor generality, that is, their strong simulation
capability only precipitates in specific fields. As
for the general agent simulation platform, typical
platforms, including Java agent development framework
(JADE)[108], NetLogo[109], Swarm[110], REPAST[111],
MASON[112], AnyLogic[113], and JCass[114], have been
widely used.

6.1 JADE

JADE is a software platform that provides basic,
intermediate layer functions[108]. It follows the rules
of the Foundation for Intelligent Physical Agents (FIPA)
and can develop standard agent programs to complete
the interaction and simulation between multi-agents.
FIPA, established in 1996, aims to standardize agent
technology and improve the availability of agents. The
origin of JADE was to validate the FIPA specification set,
which was launched by Telecom Italia in 1998 and has
since evolved into JADE. The research of the platform
focuses on the simplicity and usability of agent-based
software development. The platform opened its source
code in 2000, becoming a free, open-source platform.
The biggest advantage of JADE is that it uses Java
language for agent abstract programming, making JADE
flexible, portable, and maintainable.

JADE can complete all agent basic services, such
as life cycle management, mobility, white and yellow
page services, information transmission, and security
management. In JADE, agents communicate with each
other in an asynchronous mode. Each agent has its own
unique ID, and its own message queue for sending and
receiving messages, and these features do not rely on
location. JADE does not provide a visual window for
model simulation and thus needs further development.
In recent years, JADE has been widely applied in various
agent-based simulation developments.

The agent of JADE exists in the container, and JADE
is composed of many agent containers distributed on the
network. The container is a Java process, which can run
multiple agents and provide the services needed by JADE
to run, manage, and execute agents. A main container
must be started first to provide access to JADE, and other
containers can only be added to the main container if
they are registered with it.

6.2 NetLogo

NetLogo is a programmable modeling environment
for simulating natural and social phenomena[109]. Uri
Wilensky introduced the tool in 1999 (http://ccl.
northwestern.edu/netlogo/), and the tool has been further
developed at the Center of Connected Learning and
Computer-Based Modeling, Northwestern University.
NetLogo, equipped with various types of agents, such
as turtle, patch, and link, is especially suitable for
modeling the evolution of complex systems. Modelers
can send instructions to thousands of independently
operated agents and thus help in gaining insight into
the connection between individual behavior at the
micro level and the macroscopic model, which emerges
through many individual interactions.

The bottom layer of NetLogo is implemented in
the Java programming language and can run on all
major platforms (Mac, Windows, Linux, etc.) or in
browsers, such as Java applets. NetLogo has detailed
documentation and teaching materials. It also comes
with a model library that contains many already written
simulation models, which cover many areas of the
natural and social sciences, including biology and
medicine, physics and chemistry, mathematics and
computer science, economics, social psychology, and so
on.

NetLogo, a programming development platform
inherited from the Logo language, can control thousands
of individuals in modeling and thus compensate for the
deficiency wherein the Logo language can only control
a single individual. Therefore, NetLogo modeling can
well simulate the behavior of micro individuals and the
emergence of macro patterns, as well as the relationship
between them. NetLogo is a programming language and
modeling platform for natural and social phenomenon
simulation, especially for complex systems that develop
over time.

6.3 Swarm

Swarm is a standard multi-agent software toolset for
computer simulation developed by the Santa Fe Institute
of the United States on the basis of the theory of
CASs[110]. It provides an efficient, reliable, and reusable
software experiment platform. By establishing computer
models based on Swarm and invoking the rich class
libraries provided in the platform, simulation can be
performed in many research fields.

Given that the model and the way of interaction
between the model elements in Swarm are without
restrictions, the user can focus on their interested specific



618 Tsinghua Science and Technology, October 2021, 26(5): 608–624

systems rather than being bothered by data process, user
interface, and other pure software and programming
problems. It is also user friendly for noncomputer
professional scholars. Therefore, Swarm has received
wide attention from economics, management science,
ecology, systematics, military simulation, computer
science, and other fields.

Generally, the Swarm model is composed of
ModelSwarm, ObserverSwarm, and Individual Agent
and Environment, and it supports the analysis, display,
and control of simulation experiments through the class
library. ModelSwarm includes a schedule of actions
in the model and a set of inputs and outputs. The
input includes model parameters, such as the number
of objects and initial value. The output includes the
value of the variable to be observed and the result
of the model. ObserverSwarm is a window for target
model observation and measurement, including a set of
individuals and a schedule of behavior. Among them,
the individual is the detector used for observation and
the output interface, such as charts and two-dimensional
grid points. The behavior schedule is used to describe
the interval and sequence of sampling for each detector.

The Swarm agent can be further summarized by
four characteristics based on the CAS-based Swarm
modeling idea and its structure. The first is aggregation
that a single agent can adhere to each other to form
the aggregation of multi-agents that have the same
movement trend as a single agent. The second is
nonlinearity, that is, agents and their properties in the
event of change are not completely linear but nonlinear.
The third is flow, which refers to the exchange of
information flow, energy flow, and material flow between
agents. In addition, the channel and speed of flow directly
affect the process of the system. The fourth is diversity,
that is, a differentiation trend exists between agents.

In addition, the activation mechanisms of Swarm
agents are as follows: The first is tagging, which
helps realize information exchange and propose specific
implementation methods of searching and receiving
information in the environment. The second is internal
models, which indicate the concept of hierarchy, that is,
every agent has a complex internal mechanism. The third
is building blocks, that is, complex systems are often
formed on the basis of relatively simple components by
changing their combination. Therefore, Swarm’s agents
are living individuals with multiple levels, continuous
interaction with the outside world, and continuous
development and evolution.

6.4 REPAST

REPAST was jointly developed by the University of
Chicago and Argonne National Laboratory and was
subsequently maintained and updated by the REPAST
Organization for Architecture and Development[111].
The platform supports Java, C#, and Python. Its software
architecture is similar to Swarm, which is mainly used
in the field of social science and has professional tools
for social science model development. The platform
provides some simple model libraries, class libraries,
and genetic, regression, and other algorithms, which
can be used for model development by using interfaces
and display agent simulation data. REPAST was only
available as an implementation in Java and has been
available in C# and Python since version 3.0 was
proposed to expand the REPAST user base.

Since the release of REPAST, several applications can
be divided into the following four categories:

(1) Theoretical research: The generation process
of a specific phenomenon in the system is observed
through simulation, and the general rules of CAS can be
found and verified. Examples include implementing
the famous model “ECHO” in CAS theory with
REPAST and studying game theory through multi-agent
simulation, such as the prisoner’s dilemma problem.

(2) Social system simulation: Studies include the
interaction between agents and their environment and
how multi-agents with different goals and interests
achieve cooperative behavior. In addition, the agent
can be an individual or an organization.

(3) Economic system simulation: In agent-based
computational economics (an emerging branch of
economics), REPAST has been used to implement and
simulate economic models (e.g., commercial network
simulation and supply chain simulation).

(4) Comprehensive application: The Argonne
National Laboratory of the United States has extended
REPAST to support GIS, distributed simulation, and
other functions, and developed some large CAS
simulation (CASS) on this basis (e.g., the United States
electricity market simulation).

Advantages of REPAST: REPAST borrows
substantial design experience from Swarm, and the
graphical user interfaces of the two are similar. Hence,
REPAST is considered as a Swarm-like emulation
kit. Four multi-agent simulation tools were evaluated
and compared, including REPAST and Swarm, and
the results showed that REPAST ranked the first in



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 619

almost all the scoring programs, such as documentation,
modeling, simulation capability, and usability; its
synthesis score is also the highest.

6.5 MASON

MASON, which was developed by George MASON
University[112], is programmed with Java language
and is mainly used for agent-based discrete event
simulation. MASON’s main characteristics are fast
execution, flexible use, and graphical interface for 2D
and 3D visual display. Given the limited software size of
the MASON platform, it can only perform simulations
of a lower-magnitude model.

6.6 AnyLogic

AnyLogic, which was developed by XJ
Technologies[113], is a widely used tool for discrete,
system dynamics, and multi-agent and hybrid system
modeling and simulation. In addition to the basic
simulation, the platform also contains enterprise
libraries. AnyLogic supports development with Java
and Unified Modeling Language (UML)-Real Time, as
well as models by differential equations. Its professional
library covers a wide range of fields, including logistics,
transportation, urban planning, and other aspects.
AnyLogic is the first to use UML for simulation and
is the only commercial software that supports mixed
state machine language for simulation development.
AnyLogic has a complete visual window that can
observe the simulation process clearly and intuitively.
It can integrate multi-intelligence simulation with
machine learning, build a training environment for
multi-agent reinforcement learning schemes, and model
all cooperative, competitive, or hierarchical behavior.

6.7 JCass

JCass is a distributed simulation platform for complex
systems and was developed by the State Key Laboratory
of Parallel and Distributed Processing, National
University of Defense Technology[114]. It is a general
CASS platform that can be applied in many disciplines.

JCass supports hierarchical simulation and
hierarchical scheduling, allowing users to build
and test multitier models for the description of
emergence. The basic unit of JCass simulation is agents
who communicate with each other through a message
mechanism. JCass provides not only a conservative
time promotion mechanism and an optimistic time
promotion mechanism but also a hierarchical hybrid
time management protocol. It is developed in Java,

supports cross-platform emulation, and provides
libraries for building agents and debugging programs.

6.8 Comparison among platforms

Considering the space environment of the model,
JADE and Swarm only support 2D space environments,
whereas other platforms can support 2D and 3D
space environments. In terms of algorithms, NetLogo
does not support complex algorithms temporarily.
Swarm and REPAST support genetic algorithms, neural
network algorithms, and other Java computing packages.
MASON supports evolutionary algorithms and other
Java computing packages. AnyLogic and JADE support
any Java language based algorithm. In terms of graphics
and data visualization, all the platforms except JADE
are equipped with a visual display module. In terms
of performance, MASON, REPAST, and Swarm are
framework class library platforms, among which the
development of MASON is relatively immature, whereas
the development of Swarm is relatively mature. Swarm
is a stand-alone platform, which has low portability
and poor simulation performance for complex situations.
Similar to Swarm, REPAST is suitable for simple and
small-scale simulations, and its composition and design
cannot be self-improved. NetLogo and AnyLogic are
commercial softwares without independent property
rights for platform development and thus need a
certain fee to obtain all functions. JADE, an open-
source platform, is flexible and thus can be distributed
across different hosts. JCass is a general simulation
platform that uses the Java programming language.
It can strongly support the heterogeneous distributed
platform, design the rule base based on XML, and
support hierarchical multi-agent modeling. However,
it also has shortcomings, such as the single underlying
communication method, high cost of time management,
nonsupport of environment visual modeling, and
insufficient support for evolution mechanism modeling.

7 Conclusion

The concepts and ideas of MAMS, including
computational entities, model aggregation, perception
and behavior, decentralized control, environment, and
interaction, were introduced. This study expounded the
advantages of multi-agent simulation technology from
seven aspects, namely, descriptive ability, emergence
analysis, organizational framework and evolutionary
mechanism, autonomic solution and decision-making
ability, interaction ability, distributed simulation, and



620 Tsinghua Science and Technology, October 2021, 26(5): 608–624

model reuse, and presented the application status of the
technology in the social, economic, and military fields.

This work studied the developing status of hybrid
modeling and simulation based on system dynamics
and multi-agents and pointed out the advantages and
disadvantages of SDMS and MAMS in the complex
system simulation. SDMS focuses on system dynamic
behavior, analyzing the interaction between different
elements and accumulation effects while ignoring the
spatial factors. MAMS focuses on the interaction in
space and ignores the feedback effect of macro social
and economic factors on agents. The hybrid model based
on MAMS and SDMS is an effective method for complex
system modeling and simulation.

Our study reviewed the development of multi-agent
reinforcement learning modeling and simulation and
presented the algorithm problems to be solved in
multi-agent reinforcement learning. These problems
are summarized as follows: First, the convergence
and stability of multi-agent reinforcement learning
have not been proven systematically. Second, the state
space of multi-agent reinforcement learning is too large,
and the training time is long. Third, the expansibility
and knowledge transfer of multi-agent reinforcement
learning are poor.

The current situation of large-scale MAMS was also
summarized. The two most effective and common
solutions for large-scale MAMS were analyzed. First,
the model was reorganized at the software level
via “super individual”. Second, distributed parallel
computing was used to accelerate large-scale computing.

Typical MAMS platforms, including JADE, NetLogo,
Swarm, REPAST, MASON, and AnyLogic, were
introduced. Furthermore, representative and widely used
general multi-agent modeling and simulation platforms
were compared and analyzed.

References

[1] C. M. Macal and M. J. North, Agent-based modeling and
simulation: Desktop ABMS, presented at 2007 Winter
Simulation Conf., Washington, DC, USA, 2007, pp. 95–
106.

[2] Z. B. Tao He, Research on the key technology of multi-
agent system design, (in Chinese), Modern Electron. Techn.,
vol. 29, no. 14, pp. 31–34, 2006.

[3] K. Liu, Modeling and simulation of complex adaptive
system based on multi-agent, PhD dissertation, Central
South University, Changsha, China, 2011.

[4] M. Abbas, Agent-based modeling and simulation,
presented at Artificial Intelligence Applications to Critical
Transportation Issues, Washington, DC, USA, 2012, p. 58.

[5] H. Z. Deng, Modeling and simulation method and its
application based on multi-agent, (in Chinese), PhD
dissertation, National University of Defense Technology,
Xi’an, China, 2002.

[6] H. Z. Deng, Y. J. Tan, and Y. Chi, A complex system
research method-multiagent-based ensemble modeling and
simulation method, (in Chinese), Syst. Eng., vol. 18, no. 4,
pp. 73–78, 2000.

[7] B. J. L. Berry, L. D. Kiel, and E. Elliott, Adaptive agents,
intelligence, and emergent human organization: Capturing
complexity through agent-based modeling, Proc. Nat. Acad.
Sci. USA, vol. 99, no. S3, pp. 7187–7188, 2002.

[8] M. H. Haghighat and J. Li, Intrusion detection system
using voting-based neural network, Tsinghua Science and
Technology, vol. 26, no. 4, pp. 484–495, 2021.

[9] J. Zhang, Z. Tang, Y. Xie, M. Ai, and W. Gui, Visual
perception-based fault diagnosis in froth flotation using
statistical approaches, Tsinghua Science and Technology,
vol. 26, no. 2, pp. 172–184, 2021.

[10] D. Bloembergen, K. Tuyls, D. Hennes, and M. Kaisers,
Evolutionary dynamics of multi-agent learning: A survey,
J . Artif. Intell. Res., vol. 53, no. 1, pp. 659–697, 2015.

[11] P. Tranouez, E. Daudé, and P. Langlois, A multiagent urban
traffic simulation, arXiv preprint arXiv: 1201.5472, 2012.

[12] D. Schreiber, The emergence of parties: An agent-based
simulation, Polit. Res. Quart., vol. 67, no. 1, pp. 136–151,
2014.

[13] J. L. Casti, Would-be Worlds: How Simulation is Changing
the Frontiers of Science. New York, NY, USA: John Wiley
& Sons, Inc., 1998.

[14] B. Raney, N. Cetin, A. Völlmy, M. Vrtic, K. Axhausen, and
K. Nagel, An agent-based microsimulation model of swiss
travel: First results, Netw. Spat. Econ., vol. 3, no. 1, pp.
23–41, 2003.

[15] J. M. Epstein and R. Axtell, Growing Artificial Societies:
Social Science from the Bottom Up. Washington, DC, USA:
Brookings Institution Press, 1996.

[16] C. Bilge, Venables, an agent-based model of a supermarket,
http://www.simworld.co.uk/, 2021.

[17] R. Pryor, N. Basu, and T. Quint, Development of
ASPEN: A microanalytic simulation model of the US
economy, Working Paper SAND-96–0434, Sandia National
Laboratories, Albuquerque, NM, USA, 1996.

[18] N. Basu and R. J. Pryor, Growing a market economy.
SAND-97-2093 Distribution, presented at Unlimited
Release Category UCD905, Albuquerque, NM, USA, 1997.

[19] W. B. Arthur, S. N. Durlauf, and D. Lane, The Economy
As an Evolving Complex System II. Boca Raton, FL, USA:
CRC Press, 1997.

[20] W. B. Arthur, J. H. Holland, B. LeBaron, R. Palmer, and
P. Tayler, Asset pricing under endogenous expectations in
an artificial stock market, presented at the Economy As an
Evolving Complex System II, Reading, MA, USA, 1996.

[21] A. Khalafallah, Neural network based model for predicting
housing market performance, Tsinghua Science and
Technology, vol. 13, no. S1, pp. 325–328, 2008.

[22] H. Rahmandad and J. Sterman, Heterogeneity and network
structure in the dynamics of diffusion: Comparing agent-
based and differential equation models, Manag. Sci., vol.



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 621

54, no. 5, pp. 998–1014, 2008.
[23] M. Komosinski and A. Adamatzky, Artificial Life Models

in Software. 2nd ed. London, UK: Springer Science &
Business Media, 2009.

[24] T. Lorenz, Abductive fallacies with agent-based modeling
and system dynamics, in Int. Workshop on Epistemological
Aspects of Computer Simulation in the Social Sciences, F.
Squazzoni, ed. Berlin, Germany: Springer-Verlag, 2009, pp.
141–152.

[25] T. Lorenz and A. Jost, Towards an orientation framework in
multi-paradigm modeling, in Proc.24th Int. Conf. System
Dynamics Society, Nijmegen, the Netherlands, 2006, pp.
2134–2151.

[26] Z. K. Ding, W. Y. Gong, S. H. Li, and Z. Z. Wu, System
dynamics versus agent-based modeling: A review of
complexity simulation in construction waste management,
Sustainability, vol. 10, no. 7, p. 2484, 2018.

[27] C. Swinerd and K. R. McNaught, Design classes for hybrid
simulations involving agent-based and system dynamics
models, Simulat. Model. Pract. Theory, vol. 25, pp. 118–
133, 2012.

[28] C. Heinze, B. Smith, and M. Cross, Thinking quickly:
Agents for modeling air warfare, in Australian Joint Conf.
Artificial Intelligence AI 1998, G. Antoniou and J. Slaney,
eds. Berlin, Germany: Springer, 1998, pp. 47–58.

[29] R. W. Hill, J. Chen, J. Gratch, P. Rosenbloom, and M.
Tambe, Soar-RWA: Planning, teamwork, and intelligent
behavior for synthetic rotary wing aircraft, in Proc.7th Conf.
Computer Generated Forces & Behavioral Representation,
Orlando, FL, USA, 1998, pp. 12–14.

[30] A. Alvanchi, S. Lee, and S. AbouRizk, Modeling
framework and architecture of hybrid system dynamics and
discrete event simulation for construction, Comp. Aided
Civil Infrastruct. Eng., vol. 26, no. 2, pp. 77–91, 2011.

[31] L. Lättilä, P. Hilletofth, and B. S. Lin, Hybrid simulation
models–when, why, how? Expert Syst. Appl., vol. 37, no.
12, pp. 7969–7975, 2010.

[32] J. W. Forrester, System dynamics, systems thinking, and
soft OR, Syst. Dynam. Rev., vol. 10, nos. 2�3, pp. 245–256,
1994.

[33] F. Nasirzadeh, M. Khanzadi, and M. Mir, A hybrid
simulation framework for modelling construction projects
using agent-based modelling and system dynamics: An
application to model construction workers’ safety behavior,
Int.J . Construct. Manag., vol. 18, no. 2, pp. 132–143, 2018.

[34] D. D. Wu, K. F. Xie, H. Liu, S. Zhao, and D. L.
Olson, Modeling technological innovation risks of an
entrepreneurial team using system dynamics: An agent-
based perspective, Technol. Forecast. Soc. Change, vol. 77,
no. 6, pp. 857–869, 2010.

[35] F. Nasirzadeh, A. Afshar, and M. Khanzadi, System
dynamics approach for construction risk analysis, Int.J .
Civil Eng., vol. 6, no. 2, pp. 120–131, 2008.

[36] J. Swanson, Business dynamics-systems thinking and
modeling for a complex world, J . Oper. Res. Soc., vol.
53, no. 4, pp. 472–473, 2002.

[37] M. Watkins, A. Mukherjee, N. Onder, and K. Mattila,
Using agent-based modeling to study construction labor
productivity as an emergent property of individual and crew

interactions, J . Construct. Eng. Manage., vol. 135, no. 7,
pp. 657–667, 2009.

[38] S. E. Phelan, A note on the correspondence between
complexity and systems theory, Syst. Pract. Act. Res., vol.
12, no. 3, pp. 237–246, 1999.

[39] J. M. Epstein and R. Axtell, Growing Artificial Societies:
Social Science from the Bottom Up. Cambridge, MA, USA:
MIT Press, 1996.

[40] M. Barbati, G. Bruno, and A. Genovese, Applications of
agent-based models for optimization problems: A literature
review, Expert Syst. Appl., vol. 39, no. 5, pp. 6020–6028,
2012.

[41] H. J. Scholl, Agent-based and system dynamics modeling:
A call for cross study and joint research, in Proc.34th Ann.
Hawaii Int. Conf. System Sciences, Maui, HI, USA, 2001.

[42] J. Pourdehnad, K. Maani, and H. Sedehi, System dynamics
and intelligent agent-based simulation: Where is the
synergy, in Proc. 20th Int. Conf. System Dynamics Society,
Palermo, Italy, 2002, pp. 1–16.

[43] L. Stemate, C. Pasca, and I. Taylor, A comparison
between system dynamics and agent based modeling
and opportunities for cross-fertilization, in Proc. Winter
Simulation Conf., Washington, DC, USA, 2007, pp. 2376.

[44] N. Schieritz, Integrating system dynamics and agent-based
modeling, in Proc. 20th Int. Conf. System Dynamics Society,
Palermo, Italy, 2002, pp. 1–3.

[45] N. Schieritz and P. M. Milling, Modeling the forest or
modeling the trees: A comparison of system dynamics and
agent-based simulation, in Proc. System Dynamics Conf.,
New York, NY, USA, 2003, pp. 1–15.

[46] N. Schieritz N and A. Grobler, Emergent structures in
supply chains-a study integrating agent-based and system
dynamics modeling, in Proc. 36th Ann. Hawaii Int. Conf.
System Sciences, Big Island, HI, USA, 2003, p. 9.

[47] M. Teose, K. Ahmadizadeh, E. O’Mahony, R. L. Smith, L.
Zhao, S. P. Ellner, C. Gomes, and Y. Grohn, Embedding
system dynamics in agent based models for complex
adaptive systems, in Proc. 22nd Int. Joint Conf. Artificial
Intelligence, Barcelona, Spain, 2011, pp. 2531–2538.

[48] E. Shafiei, H. Stefansson, E. I. Asgeirsson, B. Davidsdottir,
and M. Raberto, Integrated agent-based and system
dynamics modelling for simulation of sustainable mobility,
Transp. Rev., vol. 33, no. 1, pp. 44–70, 2013.

[49] C. M. Macal, To agent-based simulation from system
dynamics, in Proc. 2010 Winter Simulation Conf.,
Baltimore, MD, USA, 2010, pp. 371–382.

[50] A. Djanatliev, R. German, P. Kolominsky-Rabas, and B. M.
Hofmann, Hybrid simulation with loosely coupled system
dynamics and agent-based models for prospective health
technology assessments, in Proc. 2012 Winter Simulation
Conf. (WSC), Berlin, Germany, 2012, pp. 1–12.

[51] G. P. Figueredo, P. O. Siebers, U. Aickelin, A.
Whitbrook, and J. M. Garibaldi, Juxtaposition of system
dynamics and agent-based simulation for a case study in
immunosenescence, PLoS One, vol. 10, no. 3, p. e0118359,
2015.

[52] J. Schryver, J. Nutaro, and M. Shankar, Emulating a
system dynamics model with agent-based models: A
methodological case study in simulation of diabetes
progression, Open J. Model. Simul., vol. 3, no. 4, p. 60811,



622 Tsinghua Science and Technology, October 2021, 26(5): 608–624

2015.
[53] F. Ferrada and L. M. Camarinha-Matos, A system

dynamics and agent-based approach to model emotions
in collaborative networks, in Doctoral Conference
on Computing, Electrical and Industrial Systems, L.
Camarinha-Matos, M. Parreira-Rocha, and J. Ramezani,
eds. Springer, 2017, pp. 29–43.

[54] N. Marilleau, C. Lang, and P. Giraudoux, Coupling agent-
based with equation-based models to study spatially explicit
megapopulation dynamics, Ecol. Model., vol. 384, pp. 34–
42, 2018.

[55] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 1998.

[56] M. D. Awheda and H. M. Schwartz, The residual gradient
FACL algorithm for differential games, presented at
2015 IEEE 28th Canadian Conf. Electrical and Computer
Engineering (CCECE), Halifax, Canada, 2015, pp. 1006–
1011.

[57] W. D. Smart and L. Pack Kaelbling, Effective reinforcement
learning for mobile robots, in Proc. 2002 IEEE Int.
Conf. Robotics and Automation (Cat.No.02CH37292),
Washington, DC, USA, 2002, pp. 3404–3410.

[58] M. L. Littman, Markov games as a framework for multi-
agent reinforcement learning, in Proc. 12th Int. Conf.,
Elsevier, 1994, pp. 157–163.

[59] B. Luo, H. N. Wu, and T. W. Huang, Off-policy
reinforcement learning for H1 control design, IEEE Trans.
Cybernet., vol. 45, no. 1, pp. 65–76, 2015.

[60] B. Luo, H. N. Wu, and H. X. Li, Data-based suboptimal
neuro-control design with reinforcement learning for
dissipative spatially distributed processes, Ind. Eng. Chem.
Res., vol. 53, no. 19, pp. 8106–8119, 2014.

[61] W. Dixon, Optimal adaptive control and differential games
by reinforcement leanring principles [book review], IEEE
Contr. Syst. Mag., vol. 34, no. 3, pp. 80–82, 2014.

[62] P. X. Cai and Y. Zhang, Intelligent cognitive spectrum
collaboration: Convergence of spectrum sensing, spectrum
access, and coding technology, Intelligent and Converged
Networks, vol. 1, no. 1, pp. 79–98, 2020.

[63] B. Hou, F. C. Sun, H. B. Li, and G. B. Liu, Consensus
of second-order multi-agent systems with time-varying
delays and antagonistic interactions, Tsinghua Science and
Technology, vol. 20, no. 2, pp. 205–211, 2015.

[64] Z. H. Zhao, Y. Gao, B. Luo, and S. F. Chen, Reinforcement
learning technology in multi-agent system, (in Chinese),
Comp. Sci., vol. 31, no. 3, pp. 23–27, 2004.

[65] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 1998, pp.
133–160.

[66] C. J. C. H. Watkins and P. Dayan, Q-learning, Mach. Learn.,
vol. 8, nos. 3�4, pp. 279–292, 1992.

[67] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,
Policy gradient methods for reinforcement learning with
function approximation, in Proc. 12th Int. Conf. Neural
Information Proc. Systems, Denver, CO, USA, 2000, pp.
1057–1063.

[68] P. Stone and M. Veloso, Multiagent systems: A survey from
a machine learning perspective, Auton. Robots, vol. 8, no.
3, pp. 345–383, 2000.

[69] Y. Shoham, R. Powers, and T. Grenager, If multi-agent
learning is the answer, what is the question? Artif. Intell.,
vol. 171, no. 7, pp. 365–377, 2006.

[70] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller, Playing atari
with deep reinforcement learning, arXiv preprint arXiv:
1312.5602, 2013.

[71] G. Papoudakis, F. Christianos, A. Rahman, and S. V.
Albrecht, Dealing with non-stationarity in multi-agent deep
reinforcement learning, arXiv preprint arXiv: 1906.04737,
2019.

[72] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, Deep
reinforcement learning for multiagent systems: A review
of challenges, solutions, and applications, IEEE Trans.
Cybernet., vol. 50, no. 9, pp. 3826–3839, 2020.

[73] L. Busoniu, R. Babuska, and B. De Schutter, A
comprehensive survey of multiagent reinforcement learning,
IEEE Trans. Syst. Man Cybernet. Part C Appl. Rev., vol. 38,
no. 2, pp. 156–172, 2008.

[74] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, A survey
and critique of multiagent deep reinforcement learning,
Auton. Agents Multi Agent Syst., vol. 33, no. 6, pp. 750–
797, 2019.

[75] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus,
J. Aru, J. Aru, and R. Vicente, Multiagent cooperation and
competition with deep reinforcement learning, PLoS One,
vol. 12, no. 4, p. e0172395, 2017.

[76] M. Raghu, A. Irpan, J. Andreas, B. Kleinberg, Q. V.
Le, and J. Kleinberg, Can deep reinforcement learning
solve erdos-selfridge-spencer games? arXiv preprint arXiv:
1711.02301, 2018.

[77] S. Sukhbaatar, A. Szlam, and R. Fergus, Learning
multiagent communication with backpropagation,
presented at 30th Ann. Conf. Neural Information Proc.
Systems, Barcelona, Spain, 2016, pp. 2244–2252.

[78] J. C. Jiang and Z. Q. Lu, Learning attentional
communication for multi-agent cooperation, in Proc.
32nd Int. Conf. Neural Information Processing Systems,
Montréal, Canada, 2018, pp. 7254–7264.

[79] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I.
Mordatch, Multi-agent actor-critic for mixed cooperative-
competitive environments, in Proc. 31st Int. Conf. Neural
Information Processing Systems, Long Beach, CA, USA,
2017, pp. 6379–6390.

[80] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and
S. Whiteson, Counterfactual multi-agent policy gradients,
arXiv preprint arXiv: 1705.08926, 2018.

[81] S. V. Albrecht and P. Stone, Autonomous agents modelling
other agents: A comprehensive survey and open problems,
Artif. Intell., vol. 258, pp. 66–95, 2018.

[82] R. Raileanu, E. Denton, A. Szlam, and R. Fergus, Modeling
others using oneself in multi-agent reinforcement learning,
arXiv preprint arXiv: 1802.09640, 2018.

[83] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K.
Tuyls, J. Pérolat, D. Silver, and T. Graepel, A unified game-
theoretic approach to multiagent reinforcement learning,
in Proc. 31st Int. Conf. Neural Information Processing
Systems, Long Beach, CA, USA, 2017, pp. 4190–4203.



Wenhui Fan et al.: Multi-Agent Modeling and Simulation in the AI Age 623

[84] L. O. Souza, G. de Oliveira Ramos, and C. G. Ralha,
Experience sharing between cooperative reinforcement
learning agents, presented at 2019 IEEE 31st Int. Conf.
Tools with Artificial Intelligence (ICTAI), Portland, OR,
USA, 2019, pp. 963–970.

[85] S. Barrett, A. Rosenfeld, S. Kraus, and P. Stone, Making
friends on the fly: Cooperating with new teammates, Artif.
Intell., vol. 242, pp. 132–171, 2017.

[86] P. Y. Jiang, M. L. Yang, W. D. Li, J. J. Liu, W. Guo, and P.
L. Li, Ci literature review and its application exploration in
social manufacturing, (in Chinese), Chin Mech. Eng., vol.
31, no. 15, pp. 1852–1865, 2020.

[87] OpenAI, Openai five, https://blog.openai.com/openai-five/,
2018.

[88] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev, et al., Grandmaster level in starcraft II using
multi-agent reinforcement learning, Nature, vol. 575, no.
7782, pp. 350–354, 2019.

[89] H. R. Parry and M. Bithell, Large scale agent-based
modelling: A review and guidelines for model scaling,
in Agent-Based Models of Geographical Systems, A.
Heppenstall, A. Crooks, L. See, and M. Batty, eds. Springer,
2012, pp. 271–308.

[90] H. R. Parry and A. J. Evans, A comparative analysis
of parallel processing and super-individual methods for
improving the computational performance of a large
individual-based model, Ecol. Model., vol. 214, nos. 2�4,
pp. 141–152, 2008.

[91] F. Ablayev, M. Ablayev, J. Z. Huang, K. Khadiev, N.
Salikhova, and D. M. Wu, On quantum methods for
machine learning problems part I: Quantum tools, Big Data
Mining and Analytics, vol. 3, no. 1, pp. 41–55, 2020.

[92] J. Q. Huang, W. T. Han, X. Y. Wang, and W. G. Chen,
Heterogeneous parallel algorithm design and performance
optimization for WENO on the sunway taihulight
supercomputer, Tsinghua Scicence and Technology, vol.
25, no. 1, pp. 56–67, 2020.

[93] Z. Bo, H. C. Zhou, G. Q. Li, and Y. H. Huang, ZenLDA:
Large-scale topic model training on distributed data-parallel
platform, Big Data Mining and Analytics, vol. 1, no. 1, pp.
57–74, 2018.

[94] J. Blythe, J. Bollenbacher, D. Huang, P. M. Hui, R. Krohn,
D. Pacheco, G. Muric, A. Sapienza, A. Tregubov, Y. Y. Ahn,
et al., Massive multi-agent data-driven simulations of the
GitHub ecosystem, in Int. Conf. Practical Applications of
Agents and Multi-Agent Systems, Y. Demazeau, E. Matson,
J. Corchado, and F. De la Prieta, eds. Springer, 2019, pp.
3–15.

[95] J. C. Campagne, A. Cardon, E. Collomb, and T. Nishida,
Massive multi-agent systems control, in Int. Workshop
on Formal Approaches to Agent-Based Systems, M. G.
Hinchey, J. L. Rash, W. F. Truszkowski, and C. A. Rouff,
eds. Springer, 2004, pp. 275–280.

[96] Z. J. Zhou and H. Xu, Decentralized adaptive optimal
control for massive multi-agent systems using mean field
game with self-organizing neural networks, presented at
2019 IEEE 58th Conf. Decision and Control (CDC), Nice,
France, 2019, pp. 1225–1230.

[97] N. Fachada, V. V. Lopes, R. C. Martins, and A. C. Rosa,
Parallelization strategies for spatial agent-based models,
Int.J . Parallel Program., vol. 45, no. 3, pp. 449–481, 2017.

[98] N. Fachada, V. V. Lopes, R. C. Martins, and A. C. Rosa,
Towards a standard model for research in agent-based
modeling and simulation, PeerJ Comp. Sci., vol. 1, no. 2, p.
e36, 2015.

[99] A. Saprykin, N. Chokani, and R. S. Abhari, Large-scale
multi-agent mobility simulations on a GPU: Towards high
performance and scalability, Proced. Comp. Sci., vol. 151,
pp. 733–738, 2019.

[100] W. Marurngsith and Y. Mongkolsin, Creating GPU-
enabled agent-based simulations using a PDES tool, in
Distributed Computing and Artificial Intelligence Advances
in Intelligent Systems & Computing, S. Omatu, J. Neves, J.
Rodriguez, J. Paz Santana, and S. Gonzalez, eds. Springer,
vol. 217, pp. 227–234, 2013.

[101] N. Collier and M. North, Parallel agent-based simulation
with repast for high performance computing, Simulation,
vol. 89, no. 10, pp. 1215–1235, 2013.

[102] F. Klügl and G. Rindsfüser, Large-scale agent-based
pedestrian simulation, in German Conf. Multiagent System
Technologies, P. Petta, J. P. Müller, M. Klusch, and M.
Georgeff, eds. Springer, 2007, pp. 145–156.

[103] L. Zhang, W. C. Yang, J. M. Wang, and Q. Rao, Large-
scale agent-based transport simulation in Shanghai, China,
Transport. Res. Rec.J . Transport. Res. Board, vol. 2399,
no. 1, pp. 34–43, 2013.

[104] R. Haroun, F. Boumghar, S. Hassas, and L. Hamami, A
massive multi-agent system for brain MRI segmentation,
presented at Int. Workshop on Massively Multiagent
Systems, Kyoto, Japan, 2004, pp. 174–186.

[105] M. X. Zhang, R. Q. Meng, and A. Verbraeck, Including
public transportation into a large-scale agent-based model
for epidemic prediction and control, in Proc. Summer
Computer Simulation (SummerSim ’15). Society for
Computer Simulation International, San Diego, CA, USA,
2015, pp. 1–8.

[106] T. Suzumura, C. Houngkaew, and H. Kanezashi, Towards
billion-scale social simulations, in Proc. Winter Simulation
Conf., Savannah, GA, USA, 2015, pp. 781–792.

[107] L. A. N. Laboratory, Traffic analysis simulation system,
http://transims.tsasa.lanl.gov, 2021.

[108] W. H. Yu, JADE-based Multi-agent System Development
Technology, (in Chinese). Beijing, China: National Defense
Industry Press, 2011.

[109] C. Zhu, Macroscopic and microscopic expressway traffic
flow modeling and simulation based on multi-agent system,
Master dissertation, Beijing University of Technology,
Beijing, China, 2016.

[110] S. Y. Liao, J. Chen, H. W. Lu, and J. H. Dai, Summarization
of agent-based modeling and simulation, (in Chinese),
Comput. Simul., vol. 25, no. 12, pp. 1–7, 2008.

[111] D. C Zhou and X. P. Wu, Realization of ACS in repast,
(in Chinese), J . Wuhan Univ. Technol., vol. 29, no. 8, pp.
121–124, 2007.

[112] Department of Computer Science, Nguyen Engineering
Building, 4400 University Drive, Mason, https://



624 Tsinghua Science and Technology, October 2021, 26(5): 608–624

cs.gmu.edu/, 2021.
[113] T. A. Company, Anylogic, https://www.anylogic.cn/, 2021.
[114] M. Zhou, The design and implement of agent modeling

in complex system distributed simulation platform, (in
Chinese), Master dissertation, National University of
Defense Technology, Xi’an, China, 2013.

Wenhui Fan received the PhD degree
in mechanical engineering from Zhejiang
University, Hangzhou, China in 1998. He
obtained the postdoctoral certificate from
Tsinghua University, Beijing, China in 2000.
He is a vice president of China Simulation
Federation. He is currently a professor at
Tsinghua University, Beijing, China. His

current research interests include multi-agent modeling and
simulation, large scale agent modeling and simulation, and multi-
agent reinforcement learning.

Peiyu Chen received the BS degree
in automation from Beihang University,
Beijing, China in 2019. She is now
pursuing the PhD degree at Department of
Automation, Tsinghua University, Beijing,
China. Her research interests include
complex network, multi-agent system, and
hybrid simulation.

Daming Shi received the BS degree
in automation from Beihang University,
Beijing, China in 2018. He is now
pursuing the PhD degree at Department of
Automation, Tsinghua University, Beijing,
China. His main research interests include
multi-agent system, reinforcement learning,
scheduling, and game theory.

Xudong Guo received the BS degree
in automation from Tsinghua University,
Beijing, China in 2020. He is now
pursuing the PhD degree at Department of
Automation, Tsinghua University, Beijing,
China. His research interests include
complex network modeling and multi-agent
system.

Li Kou received the master degree from
the University of Defense and Technology,
Changsha, Hunan in 2006. Currently,
he is pursuing the PhD degree at
Tsinghua University. His research interests
include modeling and simulation of
complex system, intelligent decision, and
information system engineering.


