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Ambipolar Transport Compact Models for Two-Dimensional Materials
Based Field-Effect Transistors

Zhaoyi Yan, Guangyang Gou, Jie Ren, Fan Wu, Yang Shen, He Tian�, Yi Yang�, and Tian-Ling Ren�

Abstract: Three main ambipolar compact models for Two-Dimensional (2D) materials based Field-Effect Transistors

(2D-FETs) are reviewed: (1) Landauer model, (2) 2D Pao-Sah model, and (3) virtual Source Emission-Diffusion

(VSED) model. For the Landauer model, the Gauss quadrature method is applied, and it summarizes all kinds

of variants, exhibiting its state-of-art. For the 2D Pao-Sah model, the aspects of its theoretical fundamentals are

rederived, and the electrostatic potentials of electrons and holes are clarified. A brief development history is compiled

for the VSED model. In summary, the Landauer model is naturally appropriate for the ballistic transport of short

channels, and the 2D Pao-Sah model is applicable to long-channel devices. By contrast, the VSED model offers a

smooth transition between ultimate cases. These three models cover a fairly completed channel length range, which

enables researchers to choose the appropriate compact model for their works.

Key words: Field-Effect Transistor (FET); compact model; ambipolar transport; Landauer formula; Pao-Sah model;

virtual source

1 Introduction

Ambipolar Two-Dimensional materials based Field-
Effect Transistors (2D-FETs), such as Black
Phosphorus[1–9] (BP), molybdenum diselenide[10]

(MoSe2), and tungsten diselenide[11, 12] (WSe2), have
been reported so far. Because of their ambipolar
characteristics, 2D-FETs are expected to achieve
p-FET and n-FET in the same device, and thus enable
various innovative applications, including ambipolar
flash memories, artificial synaptic transistors[13], logic
devices, and light-emitting transistors[14]. A recent
work[15] particularly demonstrated the potential of
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ambipolar devices in reconfigurable secure circuits,
where the ability of in situ switching between p-FET
and n-FET played an important role. More ambipolar
2D-materials are expected to be revealed, and the
wide tunable bandgap range of 2D materials affords
further versatile applications (Fig. 1). Here we focus
on the compact modeling of these materials to give an
appropriate description of their ambipolar drain current.
Clearly, it is of fatal importance to their applications
in the logic devices in which a clear interpretation of
the operational regime of transistors and an efficient
computational framework for the integrated circuit
design are demanded.

Three laws are mainly adopted for the selections of
the reviewed compact models: (1) They should have
been benchmarked by experiments. (2) They should be
systematically extended. (3) They should not rely on
numerically solving differential equation(s). However, in
our opinion, compact models can integrate numerically
and solve simple transcendental equations.

An extendable model can have several variants
rather than being only applicable to isolated cases,
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Fig. 1 Tunable bandgap of the ambipolar 2D material
family (adapted from Refs. [16] and [17]). The inset shows
the typical transfer curve of ambipolar 2D-FETs. Here, Ih

and Ie represent electron and hole components of the drain
current.

which affords the degree of freedom in choosing ideal
assumptions and nonideal corrections to accommodate
itself in different conditions. Establishing a compact
model for transistors follows a paradigm[18] in which
it regularly abstracts the realistic physical factors as
effective parameters or an ideal model. For example, the
crystalline anisotropy of the channel is reflected by the
anisotropic carrier effective masses[19], the layer number-
dependent transport characteristic[20] is tackled with
the layer-dependent bandgap[21] (and other parameters
that will be introduced later), and the carrier energy
dispersion is modeled with nearly-free-electrons[22].
However, a compact model cannot always result in a
closed-form final expression for current, and indeed,
it depends on the specific modeling approach[23]. For
instance, for the traditional Metal-Oxide-Semiconductor
Field-Effect Transistor (MOSFET), the resulting
computational complexity varies from the simplest
version of the square law approximated from the Pao-
Sah double-integral model[24] to the modern complicated
Berkeley Short-channel IGFET Model[25] (BSIM) for
MOS transistors comprising thousands of parameters.
Thus, compact model should not be simply defined
as a drain current model that has a friendly analytical
form. Otherwise, it is too stringent to include enough
representative works.

Applying the laws above, modeling works can be
summarized into three types, namely, (1) Landauer
formula based model, (2) 2D Pao-Sah model, and (3)

Virtual Source Emission-Diffusion (VSED) model. All
of them achieve ambipolar branch (a critical discussion
of the term “ambipolar” can be found in Ref. [26], and
we follow the conventional nomenclature[27, 28] here)
and have been benchmarked by the experimental data.
The Landauer method focuses on the junction-limited
mechanism at source (drain) Metal/Semiconductor (MS)
channel interfaces, whereas the 2D Pao-Sah model is
based on the drift-diffusion transport theory. However,
the VSED naturally incorporates both effects of Schottky
junctions and channel.

To date, these types of modeling methods have formed
their own research communities, as reflected on the
continuously increasing citations (Fig. 2).

Before we delve into the distinction between the three
models, we will present some general remarks on the
basic idea of constructing a drain current model for
2D-FETs. First, the raw FET structure is divided into
two sub-devices[29]: Part (1) the source-channel-drain
resistor, which decides the map � W .Vds; '/ 7! Ids, i.e.,
from the drain-source biased voltage Vds and the channel
potential ' to the drain current Ids, and part (2) the gate
capacitor, which couples the gate-source biased voltage
Vgs with ', defined as map � W ' 7! Vgs, as shown in
Fig. 3. Thus, formally, the drain current Ids is determined
by Vds and Vgs as follows:
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As is going to be explained in detail below, for the
Landauer formula based compact model, the ' in
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Fig. 2 Publication citations of three types of modeling
methods. Source: Web of Science.
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Formula (1) is more likely (but not necessarily) a scalar
number V` representing the overall channel potential.
Thus, map � stays as a function, whereas for the 2D
Pao-Sah model, ' represents the channel electrostatic
potential  s , and it varies with the channel coordinate
or quasi-Fermi level, thus making � a functional rather
than a function.

Model evaluation by the experimental data is usually
based on the least squares regression to determine the
adjustable model parameters. The residual error function
can be expressed as

�2
�
a�IVds

�
D

1

N

NX
iD1

ˇ̌̌̌
ˇI
.i/
ds � ���1

.i/

I
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ˇ
2

(2)

where a�; I
.i/
ds , and N are model parameters, sampled

current data points, and sampled point number,
respectively. It should be noted that the loss function
is normalized for I .i/ds before to be summed over the
sampling data points in Eq. (2). It is necessary, because
of the current magnitude range over 3–4 orders (usually
even more). It is not surprising that with enough
model parameters, good fitting always can be acquired.
However, plethora of adjustable parameters can spoil
all the benefits associated with the improved model
accuracy, because the overfitting problem, in this case,
is nearly inevitable.

As for the organization of the chosen materials, the
general architecture of the compact model will be
systematically elucidated, and the subtle idea beneath
the model that produces the ambipolar branch and
the computational complexity of achieving the model
simulation coming up with the idea will be examined in
details. We adopt the top-down manner by exhibiting
the most general architecture of the theory at first and
then digging into other variants of the model or the
remarkable approximation proposed by the researchers.
Hence, both the general treatments and special tricks are
involved.

Nonetheless, these limited discussions are far from
the exhausted classifications on this topic, and some
interesting works are clearly unable to be attributed
to certain classes that we present here or a simple
combination of them. However, we manage to exhibit
the most intrinsic structures of the three types of models,
in order to lay a basis for understanding the models,
which cannot be covered by this review.

Sections 2–4 discuss the Landauer model, Pao-
Sah model, and VSED model, respectively. Then we

conclude the review with a comparison of these methods
in Section 5.

2 Landauer Model

Typical Landauer formula based models can be found
in Refs. [30, 31]. Although it was initially thought to
be rigorous in physics to describe the ballistic transport,
it turns out to be applicable to the diffusive regime and
can acquire a satisfactory agreement with experimental
data. It can be exploited as a kind of a lumped model, in
which the device’s internal parameter channel potential
distribution � is represented by a single value V` and its
interactions with the external biases, i.e., Vgs and �Vds <

0, are transmitted by the lumped model as introduced
below. The advantage of this approach is that it requires
only the attention on the MS junction formed at the
source/drain, thus being practical and efficient for the
quantitative analysis.

2.1 Definition and typical result of the model

The device structure is usually composed of source/drain
reservoirs, channel region, and serial connection of the
quantum capacitor Cq and gate oxide capacitor Cox as
shown in Fig. 4a. The channel electrical potential V`
is assumed to be homogeneous throughout the channel
and related to the effective gate voltage bias Vgs � Vfb by
the serial capacitor’s formula[31], that is, V` and Vgs are
connected with each other by Eqs. (3)–(6),
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where ¯ is reduced Planck constant, VT denotes the
thermal voltage equivalent, �m(BP) is the work function
of the gate metal (BP), Cox is the oxide capacitance per
unit area, tox is the thickness of the oxide, "ox is the
permittivity of the oxide layer, D.E/ is the number of
states per unit area per unit energy of the 2D periodic
system with nearly free electrons approximation, m�

e.h/
is the effective mass of the electrons and holes, Ec.v/ is
the minimum (maximum) of the conduction (valence)
band, Nf is the fixed charge density in the oxide layer
per unit area, Dit;a.d/ is the interface acceptors (donors)
trapped in the occupied density of states per unit area per
unit energy, Nit;a.d/ is the total amount of Dit;a.d/, and
�a.d/ is the standard deviation of Dit;a.d/.

To address the 2D-material channel, 2D quantum
capacitance Cq is exploited. Particularly, the integral
of Eq. (5) has a closed form because of the piecewise
energy-independent 2D density of states, as shown in
Formula (7).

Equation (6) shows that the ingredients of Vfb contain
not only the fixed charge of the oxide layer and
work function differences, but also channel potential-
dependent factors[32], i.e., the interface trap charge in the
channel as depicted in Eq. (8), which has been assumed
to obey the Gaussian distribution centered at Ec(v) . The
existence of the channel potential-dependent component
entails the numerical solution of V` � Vgs in Eq. (3).
The flat-band voltage Vfb plays a role in aligning the
minimum drain current points predicted by the model
to that of the benchmark, which might be experimental
data or other advanced numerical results.

Based on the channel potential V`, the vertex of
the energy band diagram as shown in Fig. 4b, can be
determined as follows:

Efs D �qV` � .1 � ˛/ � qVds (9)

Efd D �qV` C ˛ � qVds (10)

Ec.v/;s D Efs ˙ �sb;n.p/ (11)

Ec.v/;d D Efd ˙ �sb;n.p/ (12)

where ˛ is the distribution ratio ranging from 0 to 1
of the drain-source bias voltage Vds. Because of the

weak switch-on state, assigning a constant to define
the partition of the voltage drop makes sense. For
example, ˛ D 1 in Ref. [33], whereas it was set to be
0.5 in the Ref. [34]. The saturation characteristic of the
output curves of the two schemes differs[35]. �sb;n.p/ is
the Schottky barrier for electrons (holes), Efs.d/ is the
Fermi level of the source (drain) metal, Ec.v/;s is the
conduction (valence) band minimum (maximum) at the
channel/source electrode interface, and Ec.v/;d is that of
the drain. Here the symmetry source and drain metals are
assumed, but the generalization of the asymmetry case
is straightforward. �B, the width of the barrier formed
at the channel/source (drain) interface is approximated
using the screening length as[36]

�B D
p
tchtox �

�
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C
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��1=2

(13)

where "ch and tch are the permittivity and thickness
of the channel, respectively. The correctness of �B

evaluated with Eq. (13) should be noted because
the expression of the screen length depends on the
boundary conditions adopted[36] (electrical-potential-
type boundary conditions are adopted here as an
example, but the use of the electrical-field-type boundary
conditions in modeling the screen length can be found
in Refs. [30, 33, 37, 38]).

Then the drain current can be computed by the
Landauer formula as follows:
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where h is Planck constant, W is the channel width,
fs.d/.E/ represents the Fermi-Dirac distribution of the
carrier at the source (drain) electrode, M.E/ is the
number of modes per unit width[35], and T .E/ is the
transmission coefficients[39] calculated with the WKB
approximation[30, 33, 34, 37, 38]. Specifically, we have
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where �Œ�� denotes the Heaviside step function; L is the
channel length, gv is the valley degeneracy, which is
regularly set as 2; and �e.h/.E/ is the energy-dependent
mean free path. It is assumed that �e.h/.E/ consists of
two components expressed as[29, 34, 40]
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where Nit denotes the density of the ionized trap. Thus,

Nit D
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The first term on the right-hand side of Eq. (22) with
0 D 3=2 represents the contribution from the charged
impurity scattering and 1 D 1=2 represents that from
the phonon scattering. The adjustable parameters �0;e.h/
and �1;e.h/ are determined from the least squares method
as mentioned before. In addition, the right-hand side of
Eqs. (16) and (17) both require a summation over carrier
types.

Equations (3)–(22) define a complete compact model,
and the transfer and output curves of 2D-FETs can be
computed once the parameters are specified. The typical
transfer curves and variation of the band diagram are
shown in Figs. 5a and 5b, respectively. The current
component of thermal emission electrons (holes) is
defined by Te.h/ D 1, which is opposite to the tunneling
component, in which the tunneling barrier is non-
trivial. On regions I and III, as is depicted in Figs. 5a
and 5b, the channel potential V` is pushed close to
the edge of the band when the gate voltage is strong
enough. Thus, the dominant carrier tunneling component
is significant. On region II, the thermal emission
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component dominated for the tunneling of the carrier
is nearly banned. To give an intuitive impression of the
energy distribution of the product factors of the current
density in Eq. (14), T .E/, M.E/, fd.E/ � fs.E/, and
the current density j.E/ are plotted in Fig. 5c. When
the energy of the carrier becomes more remote from the
band edge,M.E/ and T .E/ increase, whereas the Fermi
window fd.E/ � fs.E/ exponentially decreases, so the
peak of j.E/ is clamped near the band edge.

It particular, the Landauer formula itself can be the
basis of the tight-binding transportation calculation
method[41]. One of the major differences of the compact
models reflects on the transmission modeling. Thus, the
success in the compact model based on Landauer theory
shows that tunneling transmission is approximated
reasonably. Moreover, the computational framework
holds only for the small Vds, so the quasi-Fermi level in
the channel does not deviate much from the equilibrium
location, because the approximated Landauer theory
applies only to nearly equilibrium transportation.

2.2 Numerical recipe

Typically, there are two scenarios where the efficient
numerical algorithm of the model is required to minimize
the time consumption of each calculation: (1) planting
the model into transistor-level circuits’ simulation
program for industrial application, and (2) extraction of
adjustable parameters by least squares regression defined
as Eq. (2). Except for parameters, such as physical
constants, environment temperature, and measurable
geometry quantities, which can be clearly known, the
parameters Eg, m�

c , m�
v , 'sb;n, Nit, Nf, �a.d/, �0;e.h/, and

�1;e.h/ are relatively tough to decide. Ideally, only the
last three parameters of the model are the adjustable
parameters that are fitted by the model, and the rests
possess specific physical meanings; however, difficulties
exist. The bandgap Eg and effective masses m�

e.h/ are
tunable by several factors, such as the layer of BP[19, 42],
impurity defect[43], and even electrostatic field[44]. Thus,
except for in situ measurements, other data sources are
susceptible. The accurate value of the Schottky barrier,
which is determined from an independent experiment
or theoretical calculation, will fade into insignificance
compared with the Fermi-level’s pining effect existing
in reality[45–47]. The value of Nit and Nf also suffer
from device-to-device variations. All these parameters
could be extracted from the experimental current-voltage
data in principle if the number of sample points is
far more than that of the fitted parameters. As for the

technique aspects, employing the advanced optimization
methods to minimized � defined by Eq. (2) is feasible,
such as simplex algorithm[48], which is insensitive to
the non-differentiable drawback of the model. Clearly,
the generalized integrals required by Eqs. (14) and
(16) are time-consuming. Provided that the speed of
calculating the integral improved by N 0 times, it will
cost .k C 1/N 0N less time to calculate � once, where
k denotes the iteration time necessary for the self-
consistently solution of Eq. (3). Thus, there is a great
potential to accelerate the model calculation.

A numerical method to accelerate the integral
speed is to first substitute the Fermi-Dirac distribution
by Boltzmann distribution, which holds for the
non-degenerated case. Then the V` � Vgs equation-
related integral Eq. (6) and the drain current integral
Eq. (14) can be evaluated by the Gauss-Hermite and
Gauss-Laguerre quadrature technique[49], respectively.
Compared to the built-in standard function of
commercial software, such as MATLAB, the trick
of employing Gauss quadrature can enhance the
computation speed by nearly two magnitudes with a
negligible relative error to MATLAB’s built-in function
“integral”, as indicated in Fig. 6, which takes Gauss-
Hermite quadrature as an example.

However, the plethora of adjustable parameters
improves the fitting accuracy of the model at the risk
of overfitting.

2.3 Basic blocks of the model

There are at least seven degrees of freedom to construct a
BP-compact model. Besides (1) the divide-ratio ˛ of Vds

and (2) boundary conditions of barrier width �B, which
have been mentioned before, the rest five are analyzed
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as follows:
The term “mode” M.E/ has a homology with the

concept of the mode number per unit width in a 2D
waveguide[35], equal to the reciprocal of the de Broglie
half-wavelength (up to a valley degeneracy constant
gv), which can be calculated at a given energy level
E, as shown in Eq. (16). Thus, it is an energy dependent
quantity in contrast to the 2D density of states, which is
energy independent, and more importantly, it depends
on the specific energy dispersion relation selected to
describe the carrier in BP.

The total transmission coefficient T .E/ is recognized
as the serial connection[39] of three components, i.e.,
source/channel interface barrier, channel scattering
region, and drain/channel interface barrier. Tunneling
through the forbidden gap (i.e., E falls in the energy
gap) is banned, as shown in Eqs. (17) and (18). The
coefficients at the interface barrier are evaluated using
the semiclassical WKB approximations, shown by
Eqs. (19) and (20). However, the approximation only
holds[50] at the short-wavelength limit and fails at the
turning point, i.e., E D V.x/, where

�de Broglie D
hq

2m�
c.v/ jE � V .x/j

! 1;

such that the electron entirely behaves like matter-waves
rather than a localized particle and the semiclassical
picture breaks down. Improvement can be achieved by
employing the Airy function and transfering matrixes
to get rid of the deficiency of the semiclassical
picture[51, 52].

Besides the WKB approximation, Eqs. (19) and (20)
rely on the assumptions that (1) the band bending of
Ec.v/ at the interface barrier linearly varies with the
distance, i.e., �E / �x; (2) the band dispersion is
approximated by that of the nearly free electrons, i.e.,
parabolic dispersion relation; and (3) the quasi-Fermi
level at the drain (source) electrode should not be higher
(lower) than the Ec.v/ in the channel, so that no band-to-
band tunneling happens, which is nearly E-independent.
However, Ref. [37] adopted the distinct assumptions of
an elliptic complex band structure[53] and exponential
screening potential[36] (i.e., / exp.�x=�B/), which
is very similar to the Yukawa screening potential[54]

in particle physics except for the Coulomb-interaction
term. Reference [30] explored the involvement of band-
to-band tunneling into the transmission expression,
while keeping the other assumptions the same with
Eqs. (19) and (20). However, Ref. [38] adopted the

exponential screening potential and included the band-
to-band tunneling mechanism.

As for the channel scattering, Eq. (21) can be found
in Ref. [39] and is clearly the main symbol to extend
the Landauer formula into the diffusive regime. For
the subthreshold case, such as the Ref. [33], the
channel scattering term can be omitted, thus the total
transmission reads as

1

T
D

1

Ts
C

1

Td
� 1 (24)

Thus, at present, building a compact model for 2D-
FETs based on the Landauer formula is partly similar to
building Lego blocks, as shown in Fig. 7.

Based on the discussions above, seven categories of
building blocks are used to define a model: (1) “Vds”
blocks decide how to divide Vds between the source
and drain Fermi level; (2) “�B” blocks decide the kind
of boundary condition used to determine the interface
barrier width; (3) “TB” blocks indicate which method
between WKB approximation and Airy function and
related transfer matrix will be employed to calculate the
transmission coefficients of barrier tunneling; (4) “B.B.”
blocks distinguish different methods of band bending;
(5) “E.k/” blocks give the energy dispersion relation
used in M.E/ and T .E/; (6) “BtBT” blocks specify
whether the band-to-band tunneling is enabled; and (7)
“T`” blocks decide if channel scattering counts in the
T .E/.

All possible combinations of the blocks have been
far from being exhausted; more importantly, symbols
“A&T” and “ ” defined in Fig. 8 are not included in
Fig. 7, which means that almost all of the published
works at present rely on the field-type boundary
conditions and WKB approximation. Thus, there is still
enough room for enhancement in the Landauer-based

[30]

Ref. 𝑉ds 𝜆B 𝑇B B.B. 𝐸 𝑘 BtBT 𝑇𝓁

[33, 55]

[37]

[34]

[38]

1 W P BtB Bal.

1 W P&E noB Bal.

1 W E noB Bal.

1/2 W P noB Dif.

1 W P BtB Bal.

ε

ε

ε

ε

exp

x

x

exp

x

ε

Fig. 7 Structures of BP-compact models based on the
Landauer formula constituted by distinct building blocks.
The symbol designations are referred to Fig. 8.
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1 1/2

Field-type B.C. Potential-type B.C.

W WKB approx. A&T Airy function

Linear B.B. Exponential B.B.

P Parabolic dispersion E Ellipse dispersion

BtB BTBT is allowed noB BTBT is banned

Bal. C.S. neglected Dif. C. S. involved

α =1

x

ε

α =1.2

exp

ψ

Fig. 8 Symbol designation in Fig. 7. The following
abbreviations are used: B.C.= Boundary Condition, B.B.=
Band Bending, and C.S.= Channel Scattering.

compact model that 2D-FETs can be achieved.

3 Pao-Sah Model

3.1 General framework for the 2D Pao-Sah model

Recently published works[55–60] have drawn our attention
back to the traditional Pao-Sah model[24, 61, 62]. As is well
known, its original form cannot be directly applied to
simulate the ambipolar branch case of 2D-FETs. Inpired
by these works, we first review the general ambipolar
transport theory based on the drift-diffusion equation,
and then derive the 2D Pao-Sah model proposed by Ref.
[58] in a more reasonable way.

The device schematic and channel band diagram
are shown in Fig. 9, and for the MOS band
diagram, referring to the classical work by Sah[62]

is recommended. Particularly, the voltage reference
of all kinds of absolute energies/voltages should be
pointed out. Here, the reference point is selected as the
source metal Fermi energy level Efs, which is the same
with the channel Fermi energy E0fc when Vds D 0. This
convention is necessary for MS-junction-based 2D-
FETs.

The drift-diffusion net electrical drain current is
described in Eqs. (25)–(28):

je.h/ D ��e.h/ne.h/rEfn.p/ (25)

G

Vds

Vgs

S D

Oxide

Channel

x
z

y

(a) Device schematic

𝐸c

𝐸v

𝐸fp

𝐸fn

𝐸c
0

𝐸v
0

𝐸fs
𝜙Bp

𝜙Bn −𝑞𝜓s

−𝑞𝜓s

(b) Channel band diagram

1  𝑉 gs = 𝑉fb
𝑉ds = 0

2   𝑉 gs > 𝑉fb
𝑉ds > 0

Fig. 9 Schematic of the 2D-FET and channel band diagram.

r .je C jh/ D 0 (26)

Ids D �
W

L

Z Vds

0

�enedEfn C �hnhdEfp (27)

Vfb C Vox C  s D Vgs (28)

In Eq. (25), ne(h) denotes the electron (hole) density,
Efn.p/ D �qVn(p), and je(h) is the current density of
electrons (holes) in the plane (D!S) is set as the
positive direction for the current, and it is the reverse
for the coordinate). Although it seems more like a drift
current expression, the drift and diffusion components
are captured via the gradient of the quasi-Fermi level[24],
with a generalized Einstein relation[63]. Equation (26)
indicates that only steady current is considered here, and
neither net generation nor recombination remains, so the
current was kept constant through the channel.

Equation (27) shows an integral technique of
exploiting the continuity equation to derive the
expression for the drain current without being caught
in the detailed calculations of the spatial distribution of
je(h), which finally transforms the drain current integral
with the coordinate to that with the quasi-Fermi level.
Particularly, Eq. (27) has identified �e(h) as the average
surface mobility[62, 64–66], thus being independent with
the spatial coordinate, and ne(h) is described by the Fermi-
Dirac distribution under the control of the difference of
Efn(p) , i.e., �qVn(p), and the channel surface electrostatic
potential barrier �q s, where the subscript letter “s”
denotes the first letter of the word “surface” originating
from the inherited concept of the bulk material. Equation
(28), the electrostatic balance equation through the gate
MOS capacitor[58, 62], is introduced to determine the
formulas of  s and Efn(p), which are comprised of four
parts: gate-source voltage Vgs, flat-band voltage Vfb,
oxide voltage drop Vox, and surface potential  s. Then
the four components of Eq. (28) are analyzed as follows.

(1) Gate-source voltage Vgs manifests itself in the
diagram as the difference of the metal Fermi level Efm

and source Fermi levelEfs, i.e., Vgs D .Efm�Efs/=.�q/.
(2) Flat-band voltage Vfb is set as the difference

between the work functions of the gate metal and BP,
i.e., Vfb D .�m � �BP/=q.

(3) Surface potential energy is defined as  s D

.Ec � E0c /=.�q/, where E0c D E0fc C �Bn D Efs C

�Bn D �Bn. �Bn is the electrons’ Fermi potential barrier.
Its counterpart �Bp D Eg � �Bn is the holes’ Fermi
potential barrier. For convenience, q Bn(p) � �Bn(p) is
assumed. E0c and E0fc represent the equilibrium location
of the conduction band edge and Fermi energy of
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the BP-channel, respectively. Once the drain-source
electrodes are biased, E0fc splits into Efn and Efp; thus
˙.Efn(p) � Ec(v)/ D ˙Efn(p) ˙ q s � �Bn(p) measures
the electron (hole) density and indicates a degenerate
transport system if it is positive.

(4) Vox D Qs=Cox, where Qs is the areal charge
density accumulating on the oxide/semiconductor
interface. Two kinds of routines can exist to tackleQs. If
one treats the 2D-channel as the ultrathin bulk material,
then the integral of the bulk charge density �b built-
up with Poisson’s equation and Gauss’s law along the
depth-direction is necessary to obtain the density Qbulk

s
as indicated in Eq. (29)[24, 67]:

Qbulk
s D sign . s/

p
2�s

ˇ̌̌̌
ˇ
Z  s

0

�bd 

ˇ̌̌̌
ˇ
1
2

(29)

where the coordinate variable is substituted with the
electrostatic potential  along the depth-direction. On
the contrary, if the BP-channel is purely assumed as a 2D-
system where the density of states with effective mass
and parabolic dispersion approximation is just constant
as depicted in Eq. (30), then no integral along the third
dimension exists and the Fermi-Dirac integral Fj.�/, i.e.,
Eq. (31) can benefit from the exponential zero condition
.j D 0/, resulting in a closed form expression[68–72]

for the areal density of the carrier Q2D
e(h) D ˙qne(h), as

shown in Eq. (32), which is different with Eq. (29) where
an analytical expression could only be obtained unless
a Boltzmann distribution approximation is used and
inconsistent boundary condition is tolerated[24, 67]. Thus,
the total density of charge is Q2D

s D Q2D
e(h) C Q2D

e(h) C

qN� � qNC, where N�.C/ is the ionized charge from
the completely ionized doped donors (acceptors), which
will be omitted in the following discussion, because they
both can be regarded as a part of the flat-band voltage.

De.h/ D m�
e.h/=

�
 ¯

2
�

(30)

ne.h/ D

Z ˙1

Ec.v/

˙De.h/

e˙
E�Efn.p/
kT C 1

dE (31)

Q2D
e.h/ D ˙qkTDe.h/ln

�
1C e˙

Efn.p/�Ec.v/
kT

�
(32)

Because of the inherent simplicity (analytical and strict
Fermi-Dirac distribution) and the reasonable physical
picture, Eqs. (30)–(32) are frequently exploited at
present in the compact modeling research. Thus, we
focus on the 2D-description of Qs. An intriguing history
of Eq. (32) is that it initially served as a smooth
modelling function that adjoints the strong inversion
status and subthreshold regime in bulk materials[73].

The proponents of the equation may not have realized
that their mathematical modeling trick will become a
physical fact decades later[74].

The regular treatment on the relation of  s and Efn(p)

applies with unipolar conduction FETs, where only
one type of carrier’s quasi-Fermi level, i.e., Efn or Efp

is assumed to vary in the channel and the other type
of carrier’s Fermi level is considered to be constant
throughout the channel. By assuming that the ambipolar
transfer curve can be reproduced by the compact model,
both variations of Efn and Efp should be involved.

Considering the resulting equation of  s, Efn, and Efp

from Eq. (28), with Vgs taken as the parameter,

ne . s; Efn/ � nh
�
 s; Efp

�
D
Cox

q

�
Vgs � Vfb �  s

�
(33)

Equation (33) indicates an implicit function of  s D

	.Vn; VpIVgs/, or a suppression of Vgs as  s D

	.Vn; Vp/ so that no confusion is caused.

3.2 Compact model

We rearrange Eq. (33) as follows:
Vn.p/ D  s �  Bn.p/�

VT ln
�
e.h/

�
Vp.n/

�
e

˙
Vgs�Vfb� s

�e.h/ � 1

�
(34)

where �e.h/ D me(h)�0,

e.h/ .x/ D

�
e

� Bp.n/� s˙x

VT C 1

�mh.e/=me.h/

(35)

Moreover, when Vp D 0, and 0 < Vn < Vds,

Vn D s� Bn�VT ln
�
e .x/ eC

Vgs�Vfb� s
�e � 1

�
(36)

whereas, when Vn D Vds, and 0 < Vp < Vds,

Vp D sC BpCVT ln
�
h .x/ e�

Vgs�Vfb� s
�h � 1

�
(37)

Clearly, Eqs. (36) and (37) enable us to numerically
compute the drain current. However, we take some
simplification here instead of laboring in the time-
consuming integral computing. Because the Boltzmann
approximation should be applied, the value of
exp.� Bn.p/ �  s ˙ Vp(n)=VT / is certainly not much
bigger than one. Thus, Eq. (34) can be properly
approximated as

Vn.p/D s� Bn.p/�VT ln
�

e
˙
Vgs�Vfb� s

�e.h/ � 1

�
(38)

Then Eqs. (36) and (37) follow the approximation. When
Vp D 0, and 0 < Vn < Vds,

Vn D  s �  Bn � VT ln
�

e
Vgs�Vfb� s

�e � 1

�
(39)
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whereas when Vn D Vds, and 0 < Vp < Vds,

Vp D  s C  Bp C VT ln
�

e
Vgs�Vfb� s

��h � 1

�
(40)

Equations (39) and (40) lead to the analytical
expression of electron and hole component of the
ambipolar current. Starting from Eq. (38), we have

˙qne.h/ D Cox
�
Vgs � Vfb �  s;e.h/

�
(41)

Thus, the right-hand side of Eq. (27) can be expressed asZ Vds

0

˙q

Cox
ne.h/dVn.p/ D

Z Vds

0

�
Vgs � Vfb �  s;e.h/

�
dVn.p/

(42)

We use
Z
 dV D  V �

Z
V d to integrate the third

term in the right-hand side expression of Eq. (42) by
part, and then apply Eqs. (39) and (40), which express
Vn(p) as an explicit function of  s,e(h). Employing the
formula:Z

ln Œeu � 1� du D
u2

2
C Li2 .e�u/; u > 0 (43)

leads to a transcendental function Li2.�/, which denotes
the polylogarithm function of order two. By applying
Eq. (43) to the integrate-by-part result of Eq. (42), we
arrive at

Ie.h/ D ˙q
W

L
Cox�e.h/Œ

�
Vgs � Vfb �  2;e.h/

�
VdsC�

F
�
 2;e.h/

�
� F

�
 1;e.h/

��
�;

F .u/D
u2

2
� Bn.p/uC

1

2
�e.h/VT

�
Vgs�Vfb�u

�e.h/

�2
C

�e.h/VTLi2

 
e

�

�
Vgs�Vfb�u

�e.h/

�!
(44)

where the integral upper/lower limits  2;e(h)= 1;e(h) can
be determined from Eqs. (39) or (40) by setting Vn(p) D

Vds.0/.
The typical results of the transfer and output

characteristic calculation are shown in Fig. 10.
The ambipolar transfer and saturation drain output
characteristic are achieved by the model simulation. The
current curves calculated from Eqs. (36) and (37) are
also potted in Fig. 10, for comparison, which justifies the
approximation. Equation (39) holds  s < Vgs � Vfb but
is contrasting to Eq. (40), which means that Vn governs
the variation of  s until  s > Vgs �Vfb and then Vp takes
over  s.

To graphically illustrate the concept, the explicit
functions between Vn(p) and  s with different Vgs and
the mapping relation between the trajectory of  s and
that of .Vn; Vp/ are shown in Fig. 11a. Based on the
mapping between  s and Vn � Vp, we can sketch (but
not quantitatively because we do not tackle the accurate

(a) Transfer curve (b) Output curve
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Fig. 10 Ambipolar transfer and output characteristics. I ��� V
curves from Yarmoghaddam’s split electron hole model are
calculated with the following parameters: N���(+) DDD 0, m*

e DDD

m*
h DDD m0, Eg DDD 0.78 eV, ���Bn(p) DDD 0.5Eg, Vfb DDD ���0.27 V, tox DDD

2 nm, """ox DDD3.9 """0, W===L DDD 4, ���eff,e(h)DDD150 cm2===(V ��� s), VTDDD

0.026 V. The round dots represent the results from
Yarmoghaddam’s model (Eqs. (39) and (40)), and the solid
line represents the results from Eqs. (36) and (37). The
model reproduces the ambipolar transfer curve. The
transfer characteristic curves are calculated using Vds DDD

0.5 V:1 V:5.5 V, and the output characteristic curve Vgs DDD

5 V:1 V:11 V from bottom to top, respectively. The output
curves do not saturate with Vgs <<< 10 V because the hole’s
concentration benefits from the increasing Vds. Then it is
saturated with strongly positive Vgs.
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Fig. 11 (a) Mapping from (Vn,Vp) to    s and (b) channel
energy band diagram for Vds >>> 0. (a) Dots “a” – “f” are
the representative preimage of the map in the Vn ��� Vp space,
whose image is composed of dots “a” to “f” in the   s,h ���   s,e

space. Dots “a”, “b”, and “c” move along the Vn-axis and are
thus mapped through the Vn ���    s,e obeying Eq. (39). Dots
“d” – “f” follow Eq. (40) correspondingly. The details of the
mapping are relevant with Vgs, and here, we just show the
case for Vgs DDD 1.5 V because similar discussions also hold for
the other cases.
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spatial distribution) the channel energy band diagram
under a given bias as shown in Fig. 11b. Comparing the
band diagram with that in Fig. 5b, where the channel
potential V` does not split throughout the channel, is
intriguing.

Yarmoghaddam et al.[58, 59] proposaled Eqs. (39) and
(40) without explanations (we have omitted N�.C/ and
the trap interface here):

Vfb ˙
qne.h/

Cox
C  s;e.h/ D Vgs;e.h/ (45)

Clearly, Eq. (45) is equivalent to Eqs. (39) and (40).
Thus, we now understand that (1) Eq. (45) indicates
that a non-degenerate transport assumption has been
made, and (2) the subscript “e” or “h” in  s in Eq.
(45) claims which quasi-Fermi level controls the surface
potential  s but not the type of carrier it belongs to
(this is an improper concept because there is always one
unique electrostatic potential determined by Poisson’s
equation in an electronic system up to an additive
constant). With this approximation, Yarmoghaddam et
al.[58, 59] successfully determined the quasi-Fermi level
for electrons and holes successfully. Moreover, the p-
branch and n-branch of the predicted ambipolar transfer
curve by the model can be adjusted independently
according to the benchmark, which entails the flexibility
of the model. One can just omit the “a”–“c” (or “d”–“f”)
segments in Fig. 11, if the unipolar transfer curve is
expected for the device[57].

3.3 Other non-ideal effects

3.3.1 Schottky barrier junction effect
The discussion above assumes that the contacts formed
at the MS interfaces are Ohmic, which has been achieved
by the experiments[75]. Hence, the Schottky barrier at the
MS interfaces has been omitted. The Schottky barrier
was not altered by the bias in Fig. 11b, because the
barrier was not plotted out at all. The conduction carrier-
type conversion totally relies on the channel electrostatic
modulation. Such a treatment cannot tackle the case
in which a nearly intrinsic channel exhibits an unipolar
conduction, and thus the junction limited effect must be
considered. The concerning extension can be achieved
by introducing the concept of the ideal source/drain
potential,

Vs.d/i D Vs.d/ ˙
�
IeRe;s.d/ C IhRh,s.d/

�
(46)

where Re,s(d) and Rh,s(d) represent the resistances of the
electrons and holes at the source/drain junction.

3.3.2 Defect charge and non-constant mobility
Vulnerability to moisture results in defects, such as oxide
charge and other scattering mechanisms important to
BP-FETs[76]. However, the description of the ionized
defect charge does share the expression with Eq. (6);
thus resulting in a quite similar generalization of Eq.
(41) to involve the defect charge effect. Other scattering
mechanisms can be easily incorporated into the ideal
model by tailing the constant mobility with charge
scattering[77, 78].

3.3.3 Geometry correction of channel irregularity
A high-quality BP channel produced in a laboratory
is usually fabricated via mechanical exfoliation[79–81],
which makes the geometry of the BP flakes highly
unpredictable, and thus the top view of the channel
is not strictly rectangular but often approximately a
trapezoid unless the post-process of lithography is used
to artificially scissor the shape at the risk of impairing
BP. The channel-limited compact model enables us to
compute the effective channel width W0 due to the
geometry correction of channel irregularity, which reads
as

W0 D L=

Z L

0

1

W .x/
dx (47)

whereW.x/ denotes the channel width at the position of
x. We attached its proof as follows.

For convenience, we consider the unipolar electron
conduction. At position x in the channel, we have

Ids D �e
dVn .x/

dx
W .x/Qn.x/ (48)

where Qn.x/ denotes the charge density per unit area.
We consider the integral with variable upper limit,Z x

0

Idsdx0
D

Z Vn

0

�W
�
x0
�
Qn

�
x0
�

dV 0
n (49)

and use the condition of constant-Ids, so the left-hand
expression of Eq. (49) is equal to x � Ids. Then we
differentiate Vn on both sides of Eq. (49), which results
in

dx
dVn

� Ids D �W .x/Qn .Vn/ (50)

Rearranging the factors in Eq. (50) as
dx
W .x/

� Ids D �Qn .Vn/ dVn (51)

Consequently, we find

Ids D

 Z L

0

dx
W .x/

!�1 Z Vds

0

�Qn .Vn/ dVn (52)

The geometry effect on the drain current is involved
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in the pre-factor of Eq. (52), it allowing us to define
the effective channel width as indicated by Eq. (47).
However, clearly, we cannot derive it from a junction-
limited model.

4 VSED Model

The virtual source[82–86] (such as that adopted in
Refs. [9] and [87]), or more specifically, the VSED
model[88, 89] (such as that adopted in Ref. [90]), is
a physical-based method that seamlessly connects
the diffusive and ballistic regimes of MOSFETs. It
adapts the thermal emission theory of the Schottky
diode developed by Crowell and Sze[91] for unipolar
MOSFETs. Thus, it naturally includes the effect of the
junction into the model. A recent work[90] demonstrated
that it can also be extended to describe ambipolar 2D-
FETs.

The concept of “virtual source” in FETs was first
introduced in the 1980s by Owczarek[92] to study the
punch-through effect, which has been defined as the
point x0 where the transverse (along the channel length
direction) electrical field vanishes and the electrostatic
potential reaches its maximum lower than the original
built-in potential barrier (Fig. 12) or, equivalently[96, 97],
the top of the barrier seen by the carrier emission from
the source. Furthermore, Owczarek[92] pointed out
that the “virtual source” is also the start point where
carrier injection into the drain space charge region takes
place[92].

Nonetheless, we would prefer to argue that the concept
is initially defined for traditional FETs[96–98] in which
the source and drain junctions are homogeneous. Thus,
in principle, it seems to be generalized when applied to
Schottky barrier FETs[94, 95]. The resulting formula is
invariant because the scattering process implied by the
VSED model treats the source barrier as a black box,
and does not distinguish its component[98, 99].

𝐸c
𝑉 n   0

𝑉 n   𝐿

𝓋𝑥0

𝑉ds

𝑥

𝐸

𝐼ds =𝑊𝑄n   0  𝓋𝑥0

𝑉G

          Virtual

    source 𝑥0

Fig. 12 Sketch of the energy band diagram of the basic
VSED model reproduced from Ref. [93]. We emphasize that
the details of the diagram at the source and drain need
modifications when the theory is applied to Schottky barrier
FETs, but it will not break down the original computational
framework[94, 95].

4.1 MIT Virtual Source (MVS) model

In the most succinct VSED model[93, 98], the net quasi-
ballistic current is recognized as[98]

Ids D WQnvx0 (53)

where Qn is often modeled by[83, 90]

Qn D Cgne � VT ln
�
1C exp

�
Vgs � Vth,e

ne � VT

��
(54)

where ne is the introduced nonideal factor of electrons
related with nonideal subthreshold swing[83]. Now, we
have known Eq. (54) is the 2D fermions statistics
augmented with parameter ne.

According to the one-flux scattering theory in the
ballistic channel (Fig. 13) by Lundstrom et al.[99–102],
the relation between Qn and the injection flux from the
source js is given by

Qnvth D .1C rC/ js (55)

where rC is the reflection coefficient and vth is the
thermal velocity of electrons. Thus, the drain current Ids

reads as
Ids � WjstC D WQnvth .1 � rC/=.1C rC/ (56)

which is compared with Eq. (53) to get the expression
for vx0 ,

vx0 D
1 � rC

1C rC
vth (57)

If there holds

rC D
`

`C �
(58)

` D VT =E (59)

Dn D vth�=2 (60)

then combining Eqs. (58)–(60), it is easy to find Eq. (57)
equivalent to

1

vx0
D

1

�nE
C

1

vth
(61)

where an ordinary Einstein relation has been used.
Later on, to provide a smooth transition from the

saturation regime to the linear regime, an empirical ratio
function Fsat is added to the model[9, 82, 84], namely,

Ids D WQnvx0Fsat (62)

where 0 6 Fsat < 1 and it reads as

Fsat D
Vds=Vdsat�

1C .Vds=Vdsat/
ˇ
�1=ˇ (63)

S
VS

C D
𝑡C = 1 − 𝑟C

𝑗s

𝑟C 1

Fig. 13 Schematic of the scattering theory by Lundstrom.
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Clearly, Fsat ! 1 when Vds � Vdsat, and Eq. (62)
degrades back to Eq. (53).

Equations (53)–(63) represent the MVS model.
Besides the nonlinearity of the parasitic source/drain
resistance, the model gives the virtual source velocity
vx0 that is restricted to the non-degenerated statistics
of the carrier and has assumed a biased-independent
gate capacitance Cg to evaluate Qn. To overcome the
shortcomings, a generalization about Cg and vx0 , which
is the so-called MVS-2 model, can be found in Refs.
[84] and [85].

4.2 VSED theory

The VSED theory stated above is aimed at the quasi-
ballistic regime. Long-channel-length devices need
modifications to incorporate the diffusion component
into the model, which is the motivation for the VSED
model.

According to the pioneer work by Crowell and Sze[91],
once the Schottky barrier height of the carrier (e.g.,
electrons) q�Bn D Ec.0/ � EF is given, the current
density Jn can be expressed as

Jn DN2DvD

�
eVn.L/=VT �eVn.0/=VT

�
� e�Ec.0/=.qVT /

(64)
where

Vn .L/ D Vds; Vn .0/ D EF (65)

vD D Dn=`
0 (66)

`0
D

Z L

0

eŒEC.x/�EC.0/�=kBT dx (67)

Equation (64) reflects the continuity of the emission and
diffusion current across the Schottky barrier.

The original form which is based on the Crowell-Sze
formula is designed for Schottky diode devices. After
incorporating the electrostatic potential, the formula is
adapted to describe the current in FETs.

The idea of the model adapted to MOS electrostatics
lies in building up the relation between Vgs and q�Bn .
This is performed by giving an extra relation between Jn

and �Bn , which incorporates Vgs-modulated Qn.
We assume[89] two fluxes FC and F � at the virtual

source that determine the net electron density Jn as
Jn D �q

�
FC

� F �
�

(68)

F˙ should satisfy that
Qn � vth D q

�
FC

C F �
�

(69)

and

FC
D
1

2
N2Dvthe�

Ec.0/�EF
qVT (70)

Then we arrive at[83]

Jn D Qnvth

T
2�T

�
1 � e�Vds=VT

�
1C

T
2�T e�Vds=VT

(71)

where

T D
�

�C `0
D

1

1C vth=.2 �Dn=`0/
(72)

We define

Fsat,VSED D
T

2 � T
1 � e�Vds=VT

1C
T
2�T e�Vds=VT

(73)

Then Ids can be simply expressed as
Ids D WQnvthFsat,VSED (74)

Clearly, we can recognize
Ids ! WQnvth .T =2/ .Vds=VT / ; Vds ! 0 (75)

Ids ! WQnvthT =.2 � T /; Vds ! C1 (76)

The high and low Vds limitations of the VSED model
correspond to thoes of the VS model[88], which implies
that the former is a proper variant of the latter.

4.3 Ambipolar model

The ambipolar generalization of VSED was initially
developed by Ref. [90], suggesting that the virtual source
of electrons and holes arise near different contacts, which
is reflected in the expression for the virtual source charge,
that is,

Qe D CgneVT ln
�
1C exp

�
C
Vgs � Vth,e

neVT

��
(77)

Qh D CgnhVT ln
�
1C exp

�
�
Vgd � Vth,h

nhVT

��
(78)

where Vgs � Vgs � Vds, and Vth,e(h) denotes the threshold
voltage for electrons and holes, respectively.

Their treats on the entanglement of Vn and Vp are
straightforward, which continue their philosophy about
the splitted electrostatic potential. Thus, `0 can be
defined for both types of carrier as

`0
i D

Z L

0

exp
�

�
Vi .x/ � Vi .0/

VT

�
dx (79)

where Vi .x/ is the profile of electrostatic potential and
i D e or h, denoting for electrons and holes, respectively.
Moreover, � can be easily generalized from Eq. (60) as

�i D 2�iVT =vth;i (80)

based on which the ambipolar-generalization Ti from
the channel transmission T of Eq. (72) reads

Ti D �i=
�
�i C `0

i

�
(81)

The ambipolar saturation transition function Fsat;i is then
defined as

Fsat;i D
Ti

2 � Ti
�

1 � e�Vds=VT

1C
Ti
2�Ti

e�Vds=VT
(82)
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Thus, the ambipolar current reads
Ie D WQevT;eFsat;e (83)

Ih D WQhvT;hFsat;h (84)

According to Eq. (79) (or Eq. (67)), the model requires
that proper approximations[88] about the potential profile
should be used for obtaining a satisfactory result from
the model, such as gradual channel approximation[77]

accommodated for long-channel devices (L > �). There
are also other choices, such as the exponential form
adopted by Ref. [94] for short channel devices. However,
one can always turn to the numerical simulation for
an accurate profile, even though it usually gives the
potential and current simultaneously.

Other corrections such as nonlinearity source/drain
resistance, complexity in mobility, and threshold voltage
available for the model, show at least the same
extendable merit with other approaches[90].

5 Conclusion and Prospect

Published ambipolar transport compact models are
classified into three types: (1) Landauer formula based
model, which mainly reflects the Schottky junction effect
on the drain current; (2) 2D Pao-Sah model, which on the
contrary mainly focuses on the channel-limited effect;
and (3) VSED model, which potentially contains the
effects of the junction and channel.

The junction-limited model treats the channel
potential as a lumped parameter. On one hand, it allows
to customize a compact model, such as Lego blocks, and
to release the computational load. On the other hand, this
condition restricts the model’s application. For example,
as we have discussed, the channel’s detailed geometry
characteristic cannot be tackled in a junction-limited
model and Vds should be restricted to small amplitudes in
principle. However, it naturally applies for short-channel
lengths, where scattering events are rare.

For the 2D Pao-Sah model, we have explained the
compact model proposed by Yarmoghaddam et al.[58, 59]

Compared to the Landauer formula based approach,
the model is more refined in delving into the physics
of devices and is more stretchable in incorporating
various nonideal effects. The junction effect and other
nonideal effects can then be added to the model easily.
Consequently, the Pao-Sah based model is more suitable
for use if the channel length is not small enough and the
drain-source bias does not vanish at all.

The VSED model provides appropriate descriptions
for the critical transition from long to short-channel

lengths because it originated from the ballistic transport
theory of FETs and was adapted to the diffusive regime.
Thus, it serves as a connection between the ultimate
channel length cases.

In summary, the ambipolar compact models reported
nowadays have covered a fairly complete range of
channel lengths and thus formed a relatively systematic
simulation methodology. However, with the increase
in model complexity, which manifests itself with the
number of model parameters, the simulation accuracy is
improved at the cost that the underlying device physics
becomes more ambiguous. Consequently, improvement
of the model without impairing the clear physical picture
still remains unsolved. With the development in this
field, we can expect that there will be more solid works
to cover this aspect in the near future.
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