
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 01/15 pp565–573
DOI: 10 .26599 /TST.2020 .9010048
Volume 26, Number 5, October 2021


C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Design and Tool Flow of a Reconfigurable Asynchronous
Neural Network Accelerator

Jilin Zhang, Hui Wu, Weijia Chen, Shaojun Wei, and Hong Chen�

Abstract: Convolutional Neural Networks (CNNs) are widely used in computer vision, natural language processing,

and so on, which generally require low power and high efficiency in real applications. Thus, energy efficiency has

become a critical indicator of CNN accelerators. Considering that asynchronous circuits have the advantages of low

power consumption, high speed, and no clock distribution problems, we design and implement an energy-efficient

asynchronous CNN accelerator with a 65 nm Complementary Metal Oxide Semiconductor (CMOS) process. Given

the absence of a commercial design tool flow for asynchronous circuits, we develop a novel design flow to implement

Click-based asynchronous bundled data circuits efficiently to mask layout with conventional Electronic Design

Automation (EDA) tools. We also introduce an adaptive delay matching method and perform accurate static timing

analysis for the circuits to ensure correct timing. The accelerator for handwriting recognition network (LeNet-5 model)

is implemented. Silicon test results show that the asynchronous accelerator has 30% less power in computing array

than the synchronous one and that the energy efficiency of the asynchronous accelerator achieves 1.538 TOPS/W,

which is 12% higher than that of the synchronous chip.

Key words: Convolutional Neural Network (CNN) accelerator; asynchronous circuit; energy efficiency; adaptive delay

matching; asynchronous design flow

1 Introduction

The Convolutional Neural Network (CNN) is a
class of deep neural networks widely used in
computer vision and natural language processing[1, 2]. In
many real-world applications such as robotics, self-
driving car, and augmented reality, recognition tasks
need to be carried out in a timely fashion on a
computationally limited platform, which makes energy
efficiency become an increasingly critical indicator
of CNN accelerators[3]. With sparse MobileNet and
reconfigurable architecture, Eyeriss v2[4] in a 65 nm

� Jilin Zhang, Hui Wu, Weijia Chen, Shaojun Wei, and Hong
Chen are with the Institute of Microelectronics, Tsinghua
National Laboratory for Information Science and Technology,
and Beijing Engineering Center of Technology and research
on Wireless Medical and Health System, Tsinghua University,
Beijing 100084, China. E-mail: hongchen@tsinghua.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2020-08-31; accepted: 2020-10-09

Complementary Metal Oxide Semiconductor (CMOS)
process achieves a throughput of 1470.6 inferences/s
and 2560.3 inferences/J at a batch size of 1. With
butterfly structure, the NPU[5] achieves 6.9 TOPS and
3.5 TOPS with 75% zero-weights for 55 and 33 kernels,
respectively. The LNPU[6], fabricated in 65 nm CMOS
technology, can achieve 5.84 TFLOPS/W with 8.2 fps
and 2.74 TFLOPS/W with 32.8 fps on the VGG16
Conv-layer inference benchmark at FP8 precision by
maintaining training accuracy with a fine-grained mixed
precision of FP8-FP16.

However, most CNN accelerators are designed with
synchronous circuits. Asynchronous circuits have the
main potential advantages in low power consumption,
high-performance speed, and no clock distribution
problems[7, 8]. Many successful asynchronous chips
prove the advantages. Gageldonk et al.[9] implemented
an asynchronous 80C51 microcontroller, which showed
a power advantage of a factor 4 compared with a



566 Tsinghua Science and Technology, October 2021, 26(5): 565–573

synchronous implementation in the same technology.
Moreover, asynchronous circuits are characterized by
their local data or control-driven flow of operations,
which differs from the global clock-driven flow of
synchronous designs. This character enables the
different blocks of asynchronous circuits to operate at
individual ideal “frequencies” or in event idle mode as
needed, consuming energy only when and where needed.
Clock gating has a similar goal-enabling register only
when needed but does not address the power drawn by
the centralized control and clock tree buffers[10]. In
some event-driven applications, such as Spiking Neural
Networks (SNN), asynchronous circuits can control
circuits in an event-driven manner more naturally than
clock gating. As a result, asynchronous logic has been
advocated as a means of reducing power consumption
in many applications[11, 12]. IBMs TrueNorth, which
successfully implements SNN on a chip, has a low power
requirement of 65 mW[13], and the energy consumption
in every state change of the neuron in Intel’s Loihi is
only 52–81 pJ[14].

In our previous work, we implemented asynchronous
and synchronous CNN accelerators with Xilinx
FPGA VC707 to maximize the advantages of
asynchronous circuits and compare their performance
with synchronous ones[15]. In the present study, we
implemented asynchronous CNN accelerators with
a TSMC 65 nm CMOS process to further verify
the performance of asynchronous accelerators. The
implemented CNN accelerators contain a Computing
Array (CA) that consists of six computing cores (CEs),
one Pooling Unit (PU), and one matrix multiplication
module. The CA has no global clock, and the data are
driven by the local pulse signals from the Click elements
in the asynchronous pipeline. We also implemented a
synchronous accelerator with the same technology for
comparison. The difference between asynchronous and
synchronous accelerators is that the asynchronous one
uses a Click-based pipeline instead of a global clock.

The rest of the paper is organized as follows. Section 2
introduces the handshake protocol, Click element, and
Click-based asynchronous pipeline. In Section 3, the
design of the asynchronous accelerator is discussed in
detail. The design flow to adopt commercial EDA tool
for asynchronous circuit design is illustrated in Section 4.
The ASIC implementation and test results are discussed
in Section 5, and the paper is concluded in Section 6.

2 Click-Based Asynchronous Circuits

2.1 Handshake protocol

In asynchronous circuits, the handshake protocol is used
to send and receive data instead of the global clock
adopted in synchronous circuits. As shown in Fig. 1,
with the handshake signals req and ack, the blocks Cn

and CnC1 exchange bundled data, in which the data
signals use normal Boolean levels to encode information,
and separate request and acknowledge wires are bundled
with the data signals[7]. Only when needed and the data
are ready, the sender Cn sends a request signal to remind
the receiver CnC1 that the data are valid, and then CnC1

receives the data and sends an acknowledgment signal
indicating that the receiving is completed. Then, the
sender Cn can send another request signal.

2.2 Click element

Click is an asynchronous control element that adopts the
two-phase handshake protocol, which outperforms the
four-phase protocol in speed and power[16]. In addition,
the “fire” impulse of the Click element can be regarded as
a local clock allowing Click-based circuits to be designed
with commercial EDA tools. The schematic of the Click
element is shown in Fig. 2, in which either the rising
or falling edge of the “in req” signal can cause a pulse
signal called “fire”, which is used as a local clock to
drive the D flip-flop to capture the data for computation.
The transition of “in req” signal can be delivered to
“out req”, which becomes the “in req” signal for the next
stages. The width of the pulse “fire”, which is decided
by the delay lines, should be designed carefully to meet
the setup and hold requirements of D flip-flop.

Fig. 1 Asynchronous handshake protocol.

Fig. 2 Click element[16].



Jilin Zhang et al.: Design and Tool Flow of a Reconfigurable Asynchronous Neural Network Accelerator 567

2.3 Comparison of asynchronous and synchronous
pipelines

We consider two-stage pipelines as examples to compare
the speed between asynchronous and synchronous
pipelines that are widely used in circuit design. The
synchronous pipeline is comprised of three DFFs, as
shown in Fig. 3, in which the delay of the combinational
logics CL1 and CL2 between the DFFs are D1 and D2,
respectively. As shown in Fig. 3, three Click elements
are connected in series. We suppose the data path in
the asynchronous pipeline is the same as that in the
synchronous pipeline and that D1 is larger than D2.
Between each stage of Click, delay lines (not shown) are
used to match the delay of the combinational logic in the
data path, which makes the interval of the fire signals
almost the same as the delay of the corresponding data
path and speeds up the circuits.

First, we analyze the throughput and delay of the
three-stage synchronous and asynchronous pipelines, as
shown in Fig. 3, and the results are shown in Table 1.
When the input data flow continuously, the throughputs
of the two pipelines are both 1/D1. When the input
data flow intermittently, the delay of the asynchronous
pipeline is D1+D2, which is shorter than that of the
synchronous pipeline (i.e., 2�D1). The clock period
of the synchronous circuits should be the worst case,
that is, the longest delay D1. In a word, the speed
of the asynchronous pipeline is faster than that of the
synchronous pipeline. In addition, asynchronous circuits
have no standby power consumption because of their
event-driven feature, no power consumption from the

Fig. 3 Synchronous (upper one) and asynchronous (lower
one) pipelines.

Table 1 Comparison of asynchronous and synchronous
pipeline.

Performance Throughput of
continuous input

Delay of
intermittent input

Synchronous pipeline 1/D1 2�D1
Asynchronous pipeline 1/D1 D1+D2

clock trees, no global clock skew, no jitter problem, and
so on.

Clock gating is widely used to mitigate the power
drawbacks of global clock trees in synchronous circuits.
However, it is generally performed at a very coarse level
and requires complex control circuitry to ensure proper
operation of all circuits[13]. Although the asynchronous
pipeline has many advantages, it is not widely adopted
because of the lack of commercial Electronic Design
Automation (EDA) tool support, which makes the correct
operation of the circuits hard to guarantee.

3 Design of the Asynchronous Accelerator

3.1 Architecture of the accelerator

The top-level architecture of the asynchronous CNN
accelerator is shown in Fig. 4, in which the weight data
are stored in the on-chip memory and the input data are
transmitted to the chip via a universal asynchronous
receiver/transmitter serial port. The configuration
information from the controller is considered in the
computation array, including six cores together with the
register array and a PU, which determines the calculation
mode of the CA, the direction of data flow in the register
arrays for input data reuse, the activation function of
Processing Element (PE) in each core, and pooling way
and size. The CA contains six CEs for convolution, a
PU, and a matrix multiplication for the computation of
the fully connected layer. The results are stored in the
output buffer.

3.2 Design of PE and PU

The basic computing modules in the CA are PEs and
PU. The designed PE circuits are shown in Fig. 5, in
which a three-stage asynchronous pipeline includes three
Clicks connected in series. Between each stage of
the control path, delay lines (not shown in Fig. 5) are
inserted to match the corresponding combinational logic

Fig. 4 Top-level architecture of the accelerator.



568 Tsinghua Science and Technology, October 2021, 26(5): 565–573

Fig. 5 Processing element circuits.

delay. In the absence of a request signal, the whole
asynchronous circuits are completely turned off and
have no dynamic power. Given that different stages have
different delay times, the time intervals of the signal
“fires” are also different. In stage 1, the configuration
information that decides the direction of the input data
is read. The multiplication of the input map and the
weights is performed in stage 2. In stage 3, the input
data are stored temporarily so that the neighbor PE can
reuse it.

As illustrated in Fig. 6, the PU circuits comprise four
Clicks, in which all the request signals from the 25 PEs
(PE1-PE25) are the input of a Muller C element[17] used
for completion detection in stage 4. The output of Muller
C is high (low) only when all the inputs are high (low);
otherwise, it remains unchanged. A 25-input Muller C
is used for completion detection, that is, only when all
the request signals are valid will the Muller C generate a
valid signal as the request signal to the next stage, which
ensures that all the multiplication results of the PEs are
ready and then the PU starts to work.

As mentioned above, the activation function, the
pooling method (maximum or average), and the pooling
size can be dynamically modified according to the
configuration information. The 25 PEs together with
1 PU form a seven-stage Click-based asynchronous
pipeline, which is easy to be split into a smaller pipeline
or reassemble into a larger one. In other words, we can
cut off any stage in the pipeline and connect it to the

control path of the other computation modules.

3.3 Design of the computing core

The 25 PEs and 1 PU, together with the 5×5 register
array, form a computing core (Fig. 7), in which each
PE has the function of both multiplication and data
storage. As a result, each PE can receive the data
from its neighbor PE from any direction (such as top,
bottom, left, and right). According to the requirement
of different layers or CNN models, we can configure
the data path of the core in real-time. The handshake
protocol instead of a global clock is adopted in the core
to ensure correct data flow between PEs. Given the
“event-driven” feature of the asynchronous handshake
protocol, a PE will be completely turned off when it
does not receive a request signal to save power. All the
calculation results from multipliers in PEs are added
up by the adder in stage 4, and pooling calculation is
completed in stages 5 to 7.

As shown in Fig. 8, the CA, including six CEs,
uses a Muller C element for completion detection.
The convolution computation with a larger size for

Fig. 7 Computing core.

Fig. 8 Part of the schematic of computing array.

Fig. 6 Pooling unit circuits.



Jilin Zhang et al.: Design and Tool Flow of a Reconfigurable Asynchronous Neural Network Accelerator 569

the deeper layer can be realized in the array if more
PEs are included. If we want to perform convolution
computation for the deeper layer with a larger size,
we must add more PEs in the CEs and adopt a
Muller C element to connect them and set up an eight-
stage asynchronous pipeline. In addition, the matrix
multiplication module completes the computation for
the fully connected layer.

4 Chip Design Methodology

4.1 Design flow

We propose a design flow (Fig. 9) to implement Click-
based asynchronous circuits. The first step is “Hardware
description of Asyn. circuits”, in which the Click-
based asynchronous circuits are described with Verilog
codes. The second step is “Synthesis with ADM”, in
which Design Compiler (DC) is used to synthesize the
Verilog codes to generate a netlist of the circuits. During
synthesis, we put forward an Adaptive Delay Matching
(ADM) method. After synthesis, physical design of the
circuits including “Place and Route” is implemented
with Encounter Digital Implementation (EDI). Then, the
Design Rule Check, Layout Versus Schematic check,
and Static Timing Analysis are carried on.

4.2 Synthesis with the method of ADM

We first design the Click elements in the gate level
by using the standard cells in the library and take
the fire signals generated by the Click elements as
the local clocks. Hence, we can adopt the command

Fig. 9 Design flow for Click-based asynchronous circuits.

“create clock” to create clocks, with which we can
synthesize the Click-based asynchronous circuits with
DC. The synthesis process for asynchronous circuits
is different from that for synchronous circuits in the
following aspects: (1) the Click element should not be
modified to guarantee its correct operation once it is
instantiated; (2) fire signals are treated as local clocks;
(3) delay matching is needed; (4) delay lines should
be inserted carefully between the Click elements to
facilitate hazard-free circuit operations. The approach of
creating clocks and delay matching for the asynchronous
circuits is discussed in Section 4.3.

4.3 ADM

Delay matching is essential to meet the timing
constraint for asynchronous bounded-data circuits, such
as Click-based asynchronous circuits. ADM according
to corresponding data paths is critical to ensure the
function and high performance of the circuits. We could
insert delay lines with the command “set min delay”.
However, the most critical step is to determine the length
of the inserted delay lines. Without a global clock, DC
tools cannot obtain the timing path, making the delay
matching impossible. ADM is used to solve this problem,
as shown in Fig. 10, with which we can perform delay
matching adaptively in asynchronous circuits.

First, we generate local clocks for asynchronous
circuits. In general, the DC tools consider that two
clocks are synchronous if they share a common source
and have a phase relationship. The fire signals in the
Click-based asynchronous circuits have latency equal
to the delay between the Click elements. As a result,
we can treat all the fire signals as local clocks with

Fig. 10 Method of adaptive delay matching.



570 Tsinghua Science and Technology, October 2021, 26(5): 565–573

a phase relationship. Therefore, we create clocks for
the fire signals and describe their relationship using
the command “create generated clock”. In this way, all
the timing paths are checked, and the combinational
logic are optimized according to the latency of the fire
signals by DC. During the synthesis, the worst corner is
used to perform the delay matching to guarantee timing
convergence.

Second, the proposed method of ADM not only
determines the timing paths in asynchronous circuits
but also tries to identify the length of delay lines to be
inserted between the Click elements to optimize speed.
Considering that the exact delay values are undetermined
before synthesis, we first create a delay variable with
a small non-zero value, such as 0.1 ns, by using the
command “set min delay”.

Finally, we synthesize the circuits and run the
command “for in collection” to obtain the slack values
of each timing path from the report of command
“report timing” cyclically. Taking the parasitic estimation
after Place and Route into account, only if all the slacks
reported have a margin (noted as th) of +10% with
respect to the delay of the corresponding timing paths
will the synthesis be finished. If not, the delay variable of
each stage will be reset to a new value, which is the delay
value of the current timing path plus the threshold, and
the circuit will be resynthesized. The synthesis process
will be finished until the delay lines for each stage meet
the timing constraint. In general, our design shows that
if the initial value is larger than zero and smaller than 5
ns, then only two iterations of the synthesis process are
needed.

The proposed delay matching method is fully
automatic during synthesis. This ADM method for the
Click-based asynchronous circuits can also be used to
perform static analysis of the asynchronous circuits.
For complex asynchronous pipeline structures including
fork, join, split, or merge, ADM can also be used to
perform delay matching with the created clocks and
control circuits for different handshaking protocols[8],
which controls the data flow to guarantee the correctness
of circuits.

5 Chip Test Results and Discussion

The asynchronous and synchronous CNN accelerators
are implemented in a TSMC 65 nm process, and the
die micro photo of the chips is shown in Fig. 11,
including six CEs, each of which contains 5�5 PEs,

Fig. 11 Die micro photo of the asynchronous (left) and
synchronous (right) CNN accelerators.

a PU, and a matrix multiplication. The area of the
asynchronous accelerator is slightly larger than that of
the synchronous one because of the Click elements used
in the asynchronous accelerator. As mentioned above,
the commercial EDA tool like DC cannot capture the
timing path between each asynchronous pipeline because
of the lack of a global clock in the asynchronous circuits,
making delay matching for each pipeline challenging.

To avoid inserting the delay lines manually, we adopt
the ADM method, with which all the timing paths in
the asynchronous pipelines can be captured by DC so
that the length of delay lines to be inserted between
Click elements can be calculated. We use the command
“set min delay” when the circuits are synthesized to
insert delay lines between Click elements to match the
delay of the combinational logic between each pipeline.
In this way, the delay lines to be inserted in each pipeline
are adaptive to its corresponding combinational logic,
which saves unnecessary delay lines and power of the
circuits as a result. With the ADM method, accurate
static timing analysis on the asynchronous circuits can
be performed by PrimeTime to ensure the correct timing
of asynchronous circuits.

LeNet-5 is implemented on our accelerator, and the
chip test platform is shown in Fig. 12, in which the test
chip recognizes the input picture and sends the results
to the Field-Programmable Gate Array (FPGA) board
to display. As shown in Fig. 12, the picture of number
five is correctly recognized by the test chip. Figure
13 illustrates the waveforms of the request and the fire
signals from the test chip. Figure 13 shows that each
transition of the request signal “req” triggers the Click to
generate a fire signal “fire1” and the fire signal transfers
to the next stage to generate another fire signal “fire2”,
and so on. The matched delay lines determine the time
intervals of the fire signals. The test results show that
the time intervals between “fire1” and “fire2”, and “fire2”



Jilin Zhang et al.: Design and Tool Flow of a Reconfigurable Asynchronous Neural Network Accelerator 571

Fig. 12 Chip test platform.

Fig. 13 Test results of the asynchronous CNN accelerator
test chip.

and “fire3” are 4 and 5.5 ns, respectively.
The synchronous CNN accelerator chip has the

same architecture with the asynchronous one and only
differs in that the asynchronous circuits adopt a Click-
based pipeline when designing the CA. The area and
performance comparison of the two chips is shown in
Table 2, from which we can see that the area of the
asynchronous accelerator is almost the same as that of
the synchronous one because the area of Click elements
only accounts for 1.65% of the total area, which means
that the Click elements only consume a small amount of

Table 2 Test results of asynchronous and synchronous
accelerators chips.

Asynchronous Synchronous
Area (mm2) 1.96�1.96 1.93�1.93

Click element gate 30 177 0
Clock tree buffers 1076 1270

Performance (GOPS) 60.9@150 MHz 48.4@120 MHz
static power (mW) 8.0 7.76

Standby power (mW)
24.0@

(0.8 V, 100 MHz)
28.8@

(0.8 V, 100 MHz)
Power in working mode

(mW)
26.4@

(0.8 V, 100 MHz)
29.6@

(0.8 V, 100 MHz)
Energy efficiency

(TOPS/W)
1.538 1.37

static power. The peak performance of the asynchronous
accelerator is 60.9 GOPS at 150 MHz, which is 1.25
times higher than that of the synchronous one. The
number of clock tree buffers of the asynchronous
accelerator is 1076, which is 84.7% of the synchronous
one because the asynchronous CA saves 194 clock
tree buffers, saving 11% power in the asynchronous
accelerator compared with synchronous one.

To analyze further the power of CA in the synchronous
and asynchronous accelerators, we test the chips in two
modes. One is the standby mode, in which the clock
is turned on, and the circuits wait for the enable signal
to perform computation. The clock power accounts for
about 70% of the total power of both chips in this mode,
and clock buffers in the memory consume most of the
clock power. Therefore, in the standby mode, the tested
power consists of static power and clock power for both
chips. In the working mode, the tested power of the
synchronous accelerator power is composed of static
power and dynamic power, including the clock power
and dynamic power of the combinational logic in CA. In
addition, the dynamic power of the Click element should
be considered when calculating the dynamic power of
the asynchronous accelerator. According to the tested
static power, standby power, and working power, the
power of CA can be calculated roughly based on the
proportion of the area of CA to the total area of the chip
and the proportion of the number of clock buffers in CA
to the total number of clock buffers.

The comparison of power consumption between
asynchronous and synchronous CAs is illustrated in
Fig. 14. Figure 14 shows that the asynchronous CA
saves 3.49 mW clock power at the cost of consuming
1.6 mW dynamic power of Click elements and that the

Fig. 14 Comparison of asynchronous and synchronous
computing array. (Data in Fig. 14 is calculated based on the
test results of the chips.)



572 Tsinghua Science and Technology, October 2021, 26(5): 565–573

dynamic power of combinational logic (both are 0.8 mW)
is considerably less than the clock power of 3.49 mW.
The static power of the asynchronous CA (1.75 mW) is
only 0.13 mW greater than that of the synchronous one
(1.62 mW). As a result, the asynchronous CA saves 30%
power compared with the synchronous CA. Therefore,
when the clock power accounts for a high percentage
of the total power and the control circuits are complex
with clock gating in some applications, asynchronous
circuits are a promising alternative to design low-power
circuits with a significant reduction in dynamic power
consumption.

6 Conclusion and Future Work

We implement a reconfigurable asynchronous CNN
accelerator with a TSMC 65 nm CMOS process that
consumes 11% less total power than that of the
synchronous one and an energy efficiency reaching
1.538 TOPS/W. The performance of the asynchronous
accelerator can achieve 60.9 GOPS, which is 1.25 times
than that of the synchronous one. In the computing
cores, asynchronous circuits consume 30% less power
than synchronous ones. We also propose a design flow
to adopt a commercial EDA tool for asynchronous
circuit design. This work proves that asynchronous
circuits are an alternative to design low-power and high-
energy-efficiency circuits. Our proposed design flow for
asynchronous circuits is also verified.

Future works will include ultra-low-power-
asynchronous circuits for the SNN accelerator, which is
a biologically plausible neuronal model that uses sparse
spikes to transmit information. The sparsity of spikes
and the event-driven characteristics of asynchronous
circuits allow the realization of ultra-low-power and
high-energy-efficiency SNN accelerators.

Acknowledgment

This work was supported by National Science and
Technology Major Project from Minister of Science
and Technology, China (No. 2018AAA0103100) and
the National Natural Science Foundation of China (No.
61674090), partly supported by Beijing National Research
Center for Information Science and Technology (No.
042003266), and Beijing Engineering Research Center
(No. BG0149).

References

[1] S. X. Zheng, P. Ouyang, D. D. Song, L. D. Liu, S. J. Wei
and S. Y. Yin, An ultra-Low power binarized convolutional

neural network-based speech recognition processor with
on-chip self-learning, IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 66, no. 12, pp. 4648–4661,
2019.

[2] S. Schneider, A. Baevski, R. Collobert, and M. Auli,
wav2vec: Unsupervised pre-training for speech recognition,
arXiv preprint arXiv: 1904.05862, 2019.

[3] A. Howard, M. Sandler, G. Chu, L. C. Chen, B. Chen, M.
X. Tan, W. J. Wang, Y. K. Zhu, R. M. Pang, V. Vasudevan,
et al., Searching for MobileNetV3, arXiv preprint arXiv:
1905.02244, 2019.

[4] Y. H. Chen, T. J. Yang, J. Emer, and V. Sze, Eyeriss v2: A
flexible accelerator for emerging deep neural networks on
mobile devices, IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308,
2019.

[5] J. Song, Y. Cho, J. S. Park, J. W. Jang, S. Lee, J. H. Song,
J. G. Lee, I. Kang, An 11.5 TOPS/W 1024-MAC butterfly
structure dual-core sparsity-aware neural processing unit in
8 nm flagship mobile SoC, in Proc. IEEE Int. Solid-State
Circuits Conf., San Francisco, CA, USA, 2019, pp. 130–
132.

[6] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H. J. Yoo, LNPU:
A 25.3 TFLOPS/W sparse deep-neural-network learning
processor with fine-grained mixed precision of FP8-FP16,
in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco,
CA, USA, 2019, pp. 142–144.

[7] J. Sparsø and S. Furber, Principles of Asynchronous
Circuit Design: A Systems Perspective. Boston, MA, USA:
Springer, 2001, pp. 3–11.

[8] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s
Guide to Asynchronous VLSI. Cambridge, UK: Cambridge
University Press, 2010, pp. 7–9.

[9] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann,
D. Gloor, and G. Stegmann, An asynchronous low-power
80C51 microcontroller, in Proc. 4th Int. Symp. Advanced
Research in Asynchronous Circuits and Systems, San Diego,
CA, USA, 1998, pp. 96–107.

[10] P. A. Beerel and M. E. Roncken, Low power and energy
efficient asynchronous design, Journal of Low Power
Electronics, vol. 3, no. 3, pp. 234–253, 2007.

[11] I. E. Sutherland, Micropipelines, Communications of the
ACM, vol. 32, no. 6, pp. 720–738, 1989.

[12] A. Steininger, V. S. Veeravalli, D. Alexandrescu, E.
Costenaro, and L. Anghel, Exploring the state dependent
SET sensitivity of asynchronous logic – The muller-pipeline
example, in Proc. 32nd Int. Conf. Computer Design (ICCD),
Seoul, South Korea, 2014, pp. 61–67.

[13] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J.
Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.
J. Nam, et al., TrueNorth: Design and tool flow of a
65mW 1 million neuron programmable neurosynaptic chip,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.

[14] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Q. Cao,
S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, et al.,
Loihi: A neuromorphic manycore processor with on-chip
learning, IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.



Jilin Zhang et al.: Design and Tool Flow of a Reconfigurable Asynchronous Neural Network Accelerator 573

[15] W. J. Chen, H. Wu, S. J. Wei, A. P. He, and H. Chen,
An asynchronous energy-efficient CNN accelerator with
reconfigurable architecture, in Proc. IEEE Asian Solid-State
Circuits Conf. (A-SSCC), Tainan, China, 2018, pp. 51–54.

[16] A. Peeters, F. te Beest, M. de Wit, and W. Mallon,

Click elements: An implementation style for data-driven
compilation, in Proc. IEEE Symp. Asynchronous Circuits
and Systems, Grenoble, France, 2010, pp. 3–14.

[17] D. E. Muller, Theory of asynchronous circuits, http://
hdl.handle.net/2027/uiuo.ark:/13960/t7pp0n320.

Jilin Zhang received the BS degree
from Lanzhou University, China in 2019.
He is pursuing the master degree in
microelectronics at Tsinghua University,
China. His research interests include
asynchronous circuit design and spiking
neural network.

Hui Wu received the MS degree from
Tsinghua University, Beijing, China in
2020. His current research interests include
asynchronous low power circuit design and
electronic design automation methodology.

Weijia Chen received the BS degree from
Chongqing University, China in 2016, and
the MS degree from Tsinghua University
in 2019. His research interests include
asynchronous circuit design and neural
network processor.

Shaojun Wei received the PhD degree from
the Faculte Polytechnique de Mons, Mons,
Belgium, in 1991. He is a professor at
the Institute of Microelectronics, Tsinghua
University, Beijing. His current research
interests include the VLSI SoC design, EDA
methodology, and communication ASIC
design. He is a fellow of the IEEE.

Hong Chen received the PhD degree from
the Department of Electronic Engineering
from Tsinghua University in 2005. From
2005 to 2007, she worked at the Institute
of Microelectronics in Tsinghua University
(IMETU) as a post-doctoral fellow. Since
2007, she has been working with IMETU,
and currently she is an associate professor.

Her research interests include monitoring-system design for
TKR/THR surgery, low-power digital integrated-circuit design,
asynchronous circuit design, PZT power electronics, and low-
power mixed-signal SoC design.


