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A Cross-Layer Cooperative Jamming Scheme for Social
Internet of Things

Yan Huo�, Jingjing Fan, Yingkun Wen, and Ruinian Li

Abstract: In this paper, we design a friendly jammer selection scheme for the social Internet of Things (IoT). A

typical social IoT is composed of a cellular network with underlaying Device-to-Device (D2D) communications. In our

scheme, we consider signal characteristics over a physical layer and social attribute information of an application

layer simultaneously. Using signal characteristics, one of the D2D gadgets is selected as a friendly jammer to improve

the secrecy performance of a cellular device. In return, the selected D2D gadget is allowed to reuse spectrum

resources of the cellular device. Using social relationship, we analyze and quantify the social intimacy degree

among the nodes in IoT to design an adaptive communication time threshold. Applying an artificial intelligence

forecasting model, we further forecast and update the intimacy degree, and then screen and filter potential devices to

effectively reduce the detection and calculation costs. Finally, we propose an optimal scheme to integrate the virtual

social relationship with actual communication systems. To select the optimal D2D gadget as a friendly jammer, we

apply Kuhn-Munkres (KM) algorithm to solve the maximization problem of social intimacy and cooperative jamming.

Comprehensive numerical results are presented to validate the performance of our scheme.

Key words: Internet of Things (IoT); artificial intelligence; Device-to-Device (D2D) communications; social network;

cooperative jamming

1 Introduction

As one of the core researches of 5G wireless
communications, enhanced mobile broadband provides
convenience for numerous applications[1]. People are
increasingly using multimedia services, such as virtual
reality, augmented reality, real-time broadcasting,
telemedicine, and distance education to publish
various data[2–4]. These diverse services promote the
development of a heterogeneous Internet of Things (IoT)
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ecosystem and induce the explosive growth of billions of
wireless devices[5, 6]. A typical heterogeneous IoT system
is composed of a cellular network with underlaying
Device-to-Device (D2D) communication[7, 8]. In this
system, secure interconnection of massive wireless
devices with higher-level requirements has been put
forward for heterogeneous network resources and
hardware capabilities.

Traditional methods for achieving a secure
communication with high spectrum utilization
include spectrum sensing and reusing technologies for
the physical layer[9, 10] and cryptography-based security
mechanisms for the network layer[11–13]. However,
both methods are difficult to implement in massive
low-capability IoT devices. Spectrum sharing for
numerous devices may cause collisions and interference,
which lead to failure in reuse. Meanwhile, low-capability
devices may lack hardware resources and computing
capability to achieve encrypted communication.
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Thus, cooperative jamming communication is one
of the promising technologies to achieve secure
interconnection of massive wireless devices in an IoT
system.

Cooperative jamming-based physical layer security
exploits Artificial Noise (AN) to block eavesdroppers
without degrading the receiving performance of
legitimate nodes[14]. In review studies of cooperative
jamming, all existing methods focus on the design
of physical layer characteristics, including Channel
State Information (CSI), signal power and phase, and
antenna transmit parameters. These studies always
select a friendly jammer to send AN to achieve the
maximal secrecy capacity or minimal secrecy outage
probability. However, they ignore a basic problem,
i.e., the relationship between a candidate friendly
jammer and the target legitimate node[15]. If an excellent
social relationship exists between a candidate and the
target legitimate node, the candidate is willing to
transmit beneficial AN; otherwise, it may not provide
cooperative jamming. Thus, how to reasonably select
a candidate jammer is a bottleneck to achieve secure
communications.

In this paper, we present a cross-layer-based
cooperative jamming scheme for a heterogeneous
IoT system. In the scheme, we intend to exploit
social relationships to select a feasible D2D gadget to
help cellular users achieve secure communication. In
particular, we utilize a novel approach to quantify the
intimacy degree based on social relationship (contact
history records among devices) of the application layer.
Specifically, we introduce the number of successful
communications to describe social intimacy. Here, the
premise of successful communication is that two devices
have enough contact duration to avoid communication
interruption and device reselection. This duration must
be longer than the minimum contact duration threshold,
and the threshold should be an adaptive set to adapt to
changeable scenarios.

After analyzing the large amount of social
relationships over the application layer, we further
exploit Artificial Intelligence (AI) to predict social
intimacy[16–18]. Here, AI is a kind of development
software and machine which can imitate human-like
intelligence to capture abstraction of social relationships
in the application layer. We use an AI forecasting
model, called the Prophet forecasting model, to mine the
subsequent social intimacy[19–21]. In the Prophet model,
different prediction technologies, such as auto-regressive

integrated moving average and exponential smoothing,
are considered. Compared with the general prediction
models, the Prophet model can create reasonable and
accurate forecasts in a simpler and more direct manner.
This model is also robust against lost and abnormal
data and can identify outliers and deal with complex
features in a time series. Based on the calculated
intimacy between devices, potential devices are screened
and filtered to effectively reduce the detection and
calculation costs.

In accordance with the social relationship analysis,
we design an optimal scheme to closely integrate virtual
social relationships with actual communication systems.
In the scheme, we intend to find an optimal solution
for the normalization indexes of intimacy, security
rate of cellular nodes, and D2D throughput. This
co-optimization problem for cellular nodes and D2D
gadgets can be regarded as the maximum matching
problem of the weighted bipartite graph. To find
the optimal match, we apply Kuhn-Munkres (KM)
algorithm to solve the maximization problem. The main
contributions of this paper are summarized as follows.
� We propose a cross-layer-based friendly jammer

selection scheme, where both physical layer security
and social interactions in the application layer are
considered, in a social IoT system. In the physical layer,
the selected friendly jammer sends out jamming signals
to improve the secrecy performance of the network. In
the application layer, we use contact history records
among devices to quantify the degree of social intimacy.
� We design an adaptive communication time

threshold. The adaptive threshold can be adjusted based
on changeable scenarios. We also exploit the Prophet
model, which is robust against lost and abnormal data, to
create a reasonable and accurate social intimacy forecast.
� We formulate an optimization problem to find the

optimal match between D2D and cellular devices in
social IoT systems, and then use the KM algorithm to
solve the optimization problem.

The rest of the paper is organized as follows. The
related work is reviewed in Section 2. In Section 3, we
provide a cross-layer heterogeneous IoT system with
cellular and D2D communications on the physical layer
and abstract the corresponding social relationship on the
application layer. Next, we analyze social relationship
among nodes in the IoT system and present a cross-layer-
based friendly jammer selection scheme in Section 4.
We report our numerical simulation results to discuss
the performance of our scheme in Section 5. Finally, we
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draw a conclusion in Section 6.

2 Related Work

Cooperative jamming-based communication, which
was proposed by Tekin and Yener[22], is an effective
technology to achieve secure transmission. They
designed an optimal policy to preserve secrecy via
stopping nodes from transmission. Following this
work, existing studies on cooperative jamming
focused on secure communication in various
scenarios, including relay networks[23], full-duplex
networks[24], multiple antenna systems[25], energy-
constrained systems[26], D2D communications[27],
and heterogeneous networks[28]. Most of these works
formulated different optimization problems based on
various network frameworks, designed beamforming
vectors and precoding matrices, optimized jamming
transmission power, and finally achieved secure
communication. Essentially, these methods are
implemented based on the signal processing technology
over the physical layer.

We consider the secure transmission in D2D
communications as an example. D2D communication[29]

is a direct communication between two nodes without a
base station. This type of communication has attracted
major attention due to its potential capability to improve
spectrum efficiency. Zhang et al.[30] derived an optimal
power control scheme, designed a secrecy-based access
control scheme, and used a max-coalition order to
present a merge-and-split-based coalition formation
algorithm to achieve efficient cooperation for cellular
links and D2D devices. Other authors formulated a
trading scheme with two situations in which base stations
or D2D transmitters play the leader role and achieve the
Stackelberg equilibrium via closed form solutions[27].
One study provided an adaptive jamming receiver to
adapt to different receiving modes in a D2D link[31].
This work optimized transmitted powers, secrecy rate,
and mode switch criteria in the case of secrecy outage
probability constraint. Given a nonorthogonal multiple
access-based cooperative D2D network, in another work,
jamming signals were injected to a full-duplex receiver
to actively prevent eavesdropping without interfering
with legitimate receivers[32].

The above studies on secure D2D communication only
focused on physical signal processing and transmitted
power optimization. However, a physical network not
only has inherent physical characteristics, but also the
corresponding inter-entities relationships that cannot be

ignored. With the emergence of social network, several
scholars noticed its serious effect and studied various
schemes while considering social characteristics[33].
Social relationships motivated the strong desire for
cooperation among cellular and D2D devices. Several
researchers introduced node attributes to the cooperative
jamming design and analyzed the impact of attributes on
security performance of D2D communication. Wang et
al.[34] evaluated the trust degree of potential jammers and
designed an algorithm to select a jammer and allocate
transmission power to achieve secrecy-oriented D2D
cooperation. Similarly, Wen et al.[35] investigated the
influence of node reputation on the secrecy performance
and proposed a scheme for trustworthy-friendly jammer
selection in perfect and statistical CSI scenarios. Wang
et al.[36] formulated a double-gamma-ratio approach
to describe social trust degree and obtained closed
forms of connection outage probability and secrecy
outage probability. Zhao et al.[37] introduced either
altruistic or selfish feature into a distributed resource
allocation scheme with low computation complexity and
achieved Nash equilibrium for the proposed social group
utility maximization game. One study proposed a data
dissemination scheme based on social tie strength and
utilized different mechanisms in accordance with the
application environment[38]. Another research presented
a social-community-aware D2D resource allocation
framework underlying cellular networks and solved a
two-step coalition game by adopting merge-and-split
iterations[39].

A notable challenge in above works is the lack of a
specific description of social relationship measurement.
Most of these research used node properties, such
as trust degree or reputation, to enhance system
performance[40–42]. These properties are inherent social
features of an individual node, whereas social
relationship is the basic characteristic of the application
layer. In Ref. [43], the authors defined social relationship
with content popularity and user impacts, and designed a
joint power, channel and link allocation, and welfare
maximization scheme based on social influence to
improve system efficiency. Wu et al.[44] exploited social
ties relying on common friends and transmission bytes
with a two-sided provider-demander matching algorithm
with respect to power control and pairing scheduling. In
addition, Sun et al.[45] modeled social relationship used
the Bayesian nonparametric model to integrate historical
observation sets from the social network and presented a
coalitional graph game to realize efficient data spreading.
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However, social relationships between devices
are constantly updated over time due to the time-
varying characteristics of interactive records in D2D
communication. To the best of our knowledge,
no research reported the use of changeable social
relationship to implement power control and resource
allocation. We apply the time series model prediction
method to calculate social relationships between
devices, and then exploit the predicted relationship to
achieve secure communication and improve the system
transmission rate.

3 System Model and Preliminary

3.1 Network model

We consider a heterogeneous IoT system with cellular
and D2D communications (Fig. 1). In the view of
physical layer, the system is composed of a Macro
Base Station (MBS), Nc cellular devices, and Nd D2D
gadgets. The MBS with a single antenna located in
a macro cellular can provide data transmission for
cellular (legitimate) nodes randomly located within the
communication range. These nodes do not interfere with
each other due to the orthogonality of spectrum resource
allocation. The D2D gadgets with a single antenna are

Cellular user

D2D user

Eavesdropper

Physical link

Relationship

Spectrum sharing

Application layer

Physical layer

Fig. 1 Heterogeneous IoT system supporting D2D
communication.

scattered in the macro cellular. They share spectrum with
the cellular nodes in an underlaying paradigm. Given
direct communications, the distance between both sides
of the underlaying D2D communication is restricted to
less than Dmax.

A single-antenna malicious node, called as an
eavesdropper, exists in the IoT system. The eavesdropper
constantly desires to eavesdrop messages transmitted
from cellular devices to the MBS. To protect the
transmitted messages from being eavesdropped, cellular
users may select a D2D gadget as a friendly jammer
to interfere with the eavesdropper. In return, the D2D
gadget may be allowed to use the cellular spectrum to
communicate with the D2D receiver.

In the view of application layer, the above physical
entities can be mapped into nodes with various
social relationships. The relationships include ordinary,
affiliated, familiar, stable, and close. In our work, we
exploit contact history records to compute intimacy, so as
to measure these various relationships. Intuitively, high
intimacy of two nodes indicates their high frequency
contact and closeness. When selecting one node as a
jammer, the user should be willing to assist their close
friend to achieve cooperative jamming-based secure
communication. On the contrary, poor intimacy implies
rare communication with each other, i.e., an ordinary
relationship. One node may not use its own energy
to transmit AN for an ordinary friend. As a result,
we can discuss the influence of social relationships on
jammer selection and exploit the intimacy to modulate
the implementation of cooperative jamming.

In order to better describe the signal transmission
model in the following subsection, we list the notations
and their descriptions in Table 1.

3.2 Signal transmission model

Within the physical layer, the i-th cellular device (Ci )
transmits its signals sic to the MBS, whereas the j -th

Table 1 Notation and the corresponding description.
Notation Description
Ci , Dj The i-th cellular device and the j-th D2D transmitter, respectively

hicb, hice, hij
cd, hjdb, hjde, hjdd Channel fading from Ci and Dj to the MBS, the eavesdropper, and the D2D receiver
˛ Path loss factor
�2 Variance of additive white Gaussian noise
˛ij; ˝ Binary matching indicator and its set of cooperative jamming
pic , pj

d
Transmission power of Ci and Dj , respectively

 icb,  ice, jdd Received Signal to Interference plus Noise Ratio (SINR) at the MBS, the eavesdropper, and the D2D receiver
Ric ,Rj

d
Achievable data rate of Ci and Dj ; respectively

!
ij
Ph, ! ij

So, uij
cd Utility of physical, social, and physical-social layers, respectively
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D2D transmitter (Dj ) sends sj
d

to its corresponding
receiver. Then, received signals at the MBS, the
eavesdropper, and the j-th D2D receiver can be expressed
as follows:

yicb D h
i
cbs

i
c C

NdX
jD1

˛ijh
j
dbs

j

d
C nc (1)

yice D h
i
ces
i
c C

NdX
jD1

˛ijh
j
des

j

d
C ne (2)

y
j
dd D h

ij
cds

i
c C

NdX
jD1

˛ijh
j
dds

j

d
C nd (3)

where nc , ne, and nd are the Additive White Gaussian
Noise (AWGN) over each transmission link, which
have complex normal distributions CN (0, �2) over each
transmission link. We define a set of binary matching
indicator variables as ˝ D

˚
˛ij
	
. The variables denote

whether Ci and the j-th D2D pair cooperate to achieve
cooperative jamming and spectrum multiplexing. If Ci
selects the j-th D2D pair, ˛ij is set as 1, otherwise ˛ij

is set as 0. For the simplicity of calculation, the quasi-
static channel fading of our wireless transmission model
is modeled as hwuv D gwuv.d

w
uv/
�˛2 , u; v 2 fc; b; e; dg,

w 2 fi; j g. The small-scale Rayleigh fading gwuv is
distributed as CN (0, 1). Meanwhile, .dwuv/

�˛2 is the
standard path loss for the large-scale fading, where dwuv
is the distance from transmitter u to receiver v and ˛ is
the path loss factor.

Based on the above signal transmission model,
the correspondingly received SINR at the MBS, the
eavesdropper, and the D2D receiver can be expressed as
follows:

 icb D
picjh

i
cbj
2

NdP
jD1

˛ijp
j

d
jh
j
dbj
2 C �2

(4)

 ice D
picjh

i
cej
2

NdP
jD1

˛ijp
j

d
jh
j
dej
2 C �2

(5)


j
dd D

NdP
jD1

˛ijp
j

d
jh
j
dej
2

picjh
ij
cdj
2 C �2

(6)

where pic D jsicj
2 and p

j

d
D js

j

d
j2 refer to the

transmission power of Ci and Dj , respectively.
Given the SINR expressions from Eqs. (4)–(6), the

achievable secrecy data rate of the i-th cellular device
Ci can be given by the following equation:

Ric D Œlog2.1C 
i
cb/ � log2.1C 

i
ce/�
C (7)

where Œ��C 4D max.�; 0/. In addition, if the j -th D2D pair
reuses the spectrum resources via the cellular network,
its transmission data rate is given by

R
j

d
D log2.1C 

j
dd/ (8)

Using the above expressions of secrecy rate (Eq. (7))
and transmission rate (Eq. (8)), we further introduce
social relationship to formulate an optimization problem
to maximize the total utility of the heterogeneous IoT
system supporting D2D communication.

4 Cross-Layer Cooperative Jamming Scheme
Based on Social Relationship

In this section, we propose a cross-layer cooperative
jamming scheme (Fig. 2). In the scheme, we first analyze
social relationship in the heterogeneous IoT system
with cellular and D2D communications. We define the
intimacy degree based on the contact history records
between devices and predict the social intimacy by using
the Prophet forecasting model. Next, we formulate an
achievable rate maximization problem and propose the
cross-layer cooperative jamming scheme.

In an actual scenario, device locations and social
relationships are constantly updated over time. We
present a framework to update the optimal scheme as
shown in Fig. 3. We assume that the time period is T1,
T2, : : :, TnCm. Here n andm denote the label of the time
periods. We take the first m time periods as historical
records of the social relationship. The physical utility is
updated with the locations update for D2D and cellular

cd

Ph

So

Fig. 2 Framework of proposed scheme.
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Fig. 3 Framework to update the optimal scheme.

devices. In the social layer, the previous maximum of m
time periods is used as contact history records. Based on
the physical utility and the social intimacy, we update
the optimization scheme accordingly.

4.1 Analysis of social relationship

We introduce a social layer model to identify the
suitability and reciprocity of cellular nodes and
D2D gadgets. In real scenarios, a device always
cooperates with its familiar and close friends. Taking full
advantage of social relationship can effectively motivate
cooperation and stop selfishness. Then, we can extract
and utilize interactive information to analyze social
relationship during the cooperation process. In Fig. 1,
devices (including cellular users and D2D gadgets)
naturally construct a community with inherent social ties.
We define intimacy as a reflection and characterization
of the degree of devices’ tight social relationship with
one another. In particular, we use a weighted graph
G D fV;E; !g to model a social domain, where V is
the set of vertices corresponding to the cellular devices
and D2D gadgets, E refers to the set of available edges
in terms of whether social ties exist between devices, and
!
ij
So denotes the social graph weight, !, assigned to Ci

and Dj , which is the quantitatively measured strength
of social intimacy.

4.1.1 Intimacy degree
In general, social intimacy is related to the contact
history between devices in the heterogeneous IoT system.
In the existing references, the distribution of devices’
contact duration is modeled as a Gamma distribution
� .k; �/[46, 47], where k and � are two parameters that
determine the shape of the distribution function. The
values of k and � are related with the mean and variance
of the contact duration. We assume that each contact
process between different devices is independent of one

another, and use CDnij and CNij to represent the record
of contact duration and the number of contacts for Ci
and Dj . The statistically expected contact duration
Eij of the contact process and the variance Varij to
reflect the dispersion degree can be computed as follows:

Eij D

P
n

CDnij

CNij
; Varij D

P
n

.CDnij �Eij /
2

CNij
:

Based on the mean and variance of the contact process,
the contact duration distribution is as follows:

CDnij � � .k; �/ D � .E
2
ij =Varij ;Varij =Eij /:

Then, we can obtain the probability density function of
the contact duration,

f .xij I k; �/ D
1

�k
1

� .k/
xk�1ij e�

xij
� ;

where � .�/ is the Gamma function. An important
prerequisite for successful communication is that the
contact duration cannot be less than the minimum
threshold CDmin

ij .
In addition, we exploit CPij to denote the probability

of qualified contact duration, i.e.,

CPij D
Z 1

CDmin
ij

f .xij I k; �/dxij D1 �
.k;

CDmin
ij

�
/

� .k/
(9)

where .�/ is the lower incomplete Gamma function. In
this case, how to determine CDmin

ij plays a core role in
the calculation of CPij . If CDmin

ij is set at extremely high
value, the probability CPij will be notably low. This
condition will result in a limited number of devices
that will be eligible to cooperate with each other,
and vice versa. The threshold expresses the degree of
feasibility and acceptance of device communication. The
determination of the threshold must be consciously
objective, which also forms the evident characteristics
of the method for determining the threshold.

Assuming the mean, minimum, and maximum of Eij
as E, Emin, Emax, respectively, we define two average
values asE1 D .EminCE/=2 andE2 D .EmaxCE/=2.
The threshold CDmin

ij is selected based on Eij to adapt to
the devices’ contact network, which can be represented
as follows:

CDmin
ij D

8̂̂̂<̂
ˆ̂:
Emin; if Eij < E1I
E1; if E1 6 Eij < EI
E; if E 6 Eij < E2I
E2; else:

Considering the success probability CPij and the number
of contacts CNij comprehensively, we obtain the number
of successful communications SNij D CPijCNij . The



Yan Huo et al.: A Cross-Layer Cooperative Jamming Scheme for Social Internet of Things 529

strength of social intimacy can be normalized as follows:

!
ij
So D

SNijp
SNiSNj

(10)

where SNi D
PNd
jD1 SNij and SNj D

PNc
iD1 SNij

denote the total interaction in the application layer of Ci
and Dj , respectively.

4.1.2 Prediction of social intimacy
Social relationship between devices is related to
human behavior. This relationship can be regular and
predictable in the interaction process. According to the
theoretical analysis above, the value of social intimacy
can be calculated and can be mapped into a time series
f!

ij
t�1; !

ij
t�2; : : :g. The prediction of social intimacy at

time t , denoted by !ijt , is carried out by the Prophet
forecasting model. The range of social intimacy is !ijt 2
Œ0; 1�. Here, 0 means that the two nodes have never
intersected. Furthermore, high value of !ijt implies the
close relationship between two nodes.

The Prophet model allows us to intuitively adjust
interpretable parameters for the time series prediction.
The output of the Prophet model is given by the
following:

!.t/ D g.t/C s.t/C h.t/C �t (11)

where g.t/ represents the trend to fit nonperiodic
changes in a time series, s.t/ is the seasonality reflecting
periodic changes, h.t/ denotes the effect caused by
holidays, festivals, and other special occasions, and �t is
the error term reflecting the random and unpredictable
fluctuations. Here, �t follows a normal distribution
CN .0; �2e / and its parameter �2e is estimated from data.

In the Prophet model, we model the trend term g.t/

of Eq. (11) as a piecewise linear function, which can be
expressed as follows:

g.t/ D .b C a.t/T���/t C .d C a.t/T���/ (12)

where b C a.t/T��� is the growth rate of the trend, b is
the growth rate, ��� is the adjustment of b based on the
change points. �j represents the amount of change in the
growth rate on the timestamp tj . a.t/ , Œaj .t/� 2 f0; 1g
is defined as a binary indicator function,

aj .t/ D

(
1; if t > tj I
0; else:

In addition, d is the offset parameter. �j D �tj�j must
be adjusted to guarantee that the function is continuous.

For the periodic function, we use the Fourier series to
simulate the seasonality component of time series, and
can be expressed as follows:

s.t/ D

LX
lD�L

�
cle j 2 ltT

�
(13)

where T represents the regular period and L is the order
of the Fourier series, L can be set to a high value and
used to improve prediction accuracy. cl is a coefficient
of the Fourier Series that follows a normal distribution
with mean 0.

In Eq. (11), the effects of different holidays are
independent of each other. The holiday term is defined
as follows:

h.t/ D D.t/# (14)

where D.t/ D Œ1; 1; : : : ; 1�, t 2 D1; D2; : : : ; Dz;

represents the list of holidays and # is a prior parameter
reflecting the corresponding influence, following the
normal distribution.

4.2 A cross-layer cooperative jamming scheme

Considering all cooperative devices in the heterogeneous
IoT system with cellular and D2D communications,
we embody a transmission rate influence factor. The
factor is the weight of physical layer, i.e., wijPh D

Ri�c =R
�
c C R

j�

d
=R�

d
, by a normalization process. In

this case, we maximize the achievable rate of Ci and
Dj while satisfying several constraints. Specifically, for
Ci or Dj , we have a similar objective function in the
optimization problem, which is expressed as follows:

R�c D max
˝;p

j

d

Ric ; R
�
d D max

˝;p
j

d

R
j

d
(15)

The optimization problem comes with five constraints:
C1 W p

j

d
6 pmax (16)

C2 W
NcX
iD1

˛ij 6 1 (17)

C3 W
NdX
jD1

˛ij 6 1 (18)

C4 W Ric > Rcth (19)

C5 W R
j

d
> Rdth (20)

where C1 specifies the transmission power constraint. C2
and C3 indicate that each cellular device can be
only selected at most one D2D pair and each
D2D pair can reuse the spectrum resource from at
most one cellular device. C4 and C5 guarantee the
performance requirements of cellular links and D2D
links, respectively. Note that Rcth denotes the minimum
secrecy rate threshold for cellular devices and Rdth

denotes the minimum data rate threshold of D2D
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communications. Then, we introduce two lemmas to
compute the optimal value of Ric and Rj

d
.

Lemma 1 For the achievable secrecy rate in Eq. (7),
we define the following equations:

A D jhicej
2
jh
j
dbj
2
� jhicbj

2
jh
j
dej
2;

B D .jhicej
2
� jhicbj

2/�2;

C D �2

 
jhicej

2.picjh
i
cbj
2 C �2/

jh
j
dbj
2

�

jhicbj
2.picjh

i
cej
2 C �2/

jh
j
dej
2

!
;

where the related discriminant is� D 4.B2�AC/. The
optimal solution of transmission power for Eq. (7), pj�

d
,

in different cases is as follows:
� When A < 0 and � > 0,

p
j�

d
D

8̂<̂
:
pmin; when 0 < p1 6 pminI

p1; when pmin < p1 6 pmaxI

pmax; when p1 > pmax;

where

pminD
.2Rdth � 1/.pic jhcdj

2
C �2/

jhddj
2

; p1D
�2B �

p
�

2A
:

� When A D 0 and B > 0, or A > 0 and � 6 0,
p
j�

d
D 0.
� In other cases, pj�

d
D pmin.

Then, we can obtain the maximum achievable rate R�c D
max
j
Ri�c .

Proof See Appendix A. �
Lemma 2 In the constraint of C4, the equation

Ric D Rcth has 0, 1 .pa/, or 2 .pa > pb/ positive
solutions. If zero solutions exist or pb > pmax, pj�

d
D 0.

In other cases, pj�
d
D min.pmax; pa/. Thus, we can

obtain R�
d
D max

i
R
j�

d
.

Proof See Appendix B. �
According to Lemmas 1 and 2, we construct

an evaluation framework with coupling of social
relationships and physical entities, and take !ijPh and
!
ij
So as two performance indices. In general, we should

select D2D gadgets with close social relationships with
cellular devices and excellent cooperative jamming
capabilities as possible. Consequently, our objective
is to maximize the social-physical utility with respect
to the binary matching variables ˝, while guaranteeing
the requirements of cellular devices and D2D gadgets.
The whole optimization problem can be formulated as
follows:

max
˝

NcX
iD1

NdX
jD1

˛ij .!
ij
Ph C !

ij
So/;

s.t. C1 --- C5 (21)

Next, we propose a social property-based cooperative
jamming algorithm to solve Eq. (21). Based on the social
relationships sorted in descending order, we develop a
social group U to further satisfy requirements of the
physical layer. U is composed of N

0

D2D gadgets
with the highest intimacy degree. In this way, we do
not need to traverse all devices to calculate the social-
physical utility. Then, we can temporarily match each
cellular device Ci with each D2D pair Dj , i.e., ˛ij D 1,
to obtain the corresponding social-physical utility. The
utility is the weight for all possible matching between
cellular devices and D2D gadgets uijcd D !

ij
Ph C !

ij
So.

The implementation detail of the proposed algorithm is
described in Algorithm 1.

The entire problem involves the spectrum resource
allocation belonging to the domain in application of
matching theory, and can be modeled as the optimal two-
dimensional matching problem of the weighted bipartite
graph. Cellular devices and D2D gadgets are disjoint
sets of vertices and the set of weights is defined as D

fu
ij
cdg. We aim to find a matching result to optimize the

sum of based on graph theory. An equality subgraph
is defined as a graph where the sum of labeling is equal
to the weight uij

cd. The neighbor of a vertex is defined as a
set of all vertices adjacent to the vertex. An augmenting
path starts and ends at unmatched points and alternately

Algorithm 1 Social properties-based cooperative jamming
Input: Nd , Nc , jhwuv j

2, pic , pmax, Rcth, Rdth, �2

Output: ˝, pj
d

1: Calculate the value of social intimacy in Subsection 4.1
2: Sort social intimacy ! ij

So in descending order
3: Choose N D2D gadgets with the highest social intimacy to

join in the social group U
4: Calculate the number of devices N

0

in U
5: for i 2 1 to Nc do
6: for j 2 1 to N

0 do
7: Initialize the matching indicator as ˛ij D 1

8: Calculate the weight uij
cd of Ci and Dj with the

optimization of transmission power pj
d

according to
Lemmas 1 and 2

9: end for
10: end for
11: Utilize Algorithm 2 to obtain the optimal matching ˝
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passes through unmatched and matched edges. Here, we
utilize KM algorithm to obtain the optimal management
and control scheme and calculate the total utility. The
detail of the KM algorithm is described in Algorithm 2.

5 Performance Analysis and Discussion

In this section, we evaluate and analyze the performance
of the proposed cross-layer cooperative jamming scheme
for social IoT via numerical simulation. The simulation
parameters are summarized in Table 2.

In the simulation, we compare the performance of our
scheme with other four schemes. The first one is the
socially-blind selection scheme. This scheme considers
the weight of physical layer wij

Ph. Second, we exploit
the random selection scheme to select a D2D gadget to
achieve cooperative jamming, where the D2D gadget

Algorithm 2 KM algorithm for the optimal scheme
Input: Weight matrix , Nc , N

0

Output: Matching set ˝
1: Add jN 0 �Nc j vertices
2: Set weights of added vertices and original vertices as zero
3: Initialize ˝ as a zero matrix
4: for i 2 1 to N 0 do
5: Set the labeling �c.i/ D maxj .u

ij
cd/

6: end for
7: for j 2 1 to N

0 do
8: Set the labeling �d .j / D 0
9: end for

10: Initialize the equality subgraph  
11: while ˝ does not cover all vertices of vic do
12: Choose a free vertex i in ˝
13: Set S D fvicg, T D �
14: Set the neighbor N�.S/ of all vertices in S
15: if N�.S/ DD T then
16: d� D mini2S;j…T f�c.i/C �d .j / � u

ij
cdg

17: while vic 2 S do
18: �c.i/ D �c.i/ � d�
19: end while
20: while vj

d
2 T do

21: �d .j / D �d .j /C d�
22: end while
23: end if
24: Choose a vertex vj

d
2 N�.S/ � T

25: if vj
d

is matched by another vertex k then
26: Set S D S [ fkg and T D T [ fvj

d
g

27: Go to Line 12
28: else
29: Find an augmenting path P from vic to vj

d

30: Set ˝ D ˝ [ P �˝ \ P
31: end if
32: end while

Table 2 Simulation parameter.
Parameter Description Value

R Maximum cell coverage 100 m
Dmax Maximum D2D distance 5 m
˛ Path loss factor 4

�2 Noise power 10�10W
Nd Number of D2D gadgets 15

pmax Maximum D2D power 30 dBm
Rcth Threshold for cellular devices 1 bps/Hz
Rdth Threshold for D2D gadgets 1 bps/Hz
N Number of repeated experiments 100

randomly reuses cellular spectrum resources. And the
last two are the nearest selection and furthest selection
schemes. In these two schemes, cellular devices and
D2D gadgets with the minimum and maximum distances
share the resources.

We first analyze the sum of social-physical utility for
different schemes, we set the variable number of cellular
devices from 1 to 10, as shown in Fig. 4, the sum utility
increases with the increasing number of cellular devices,
which indicates that our proposed cross-layer scheme
outperforms others. The reason is that our scheme is
designed based on the couplings of social relationship
in the application layer and physical characteristics of
the physical layer. Among the five schemes, the nearest
selection scheme has the worst performance. The reason
is that D2D gadgets cause the largest interference to
cellular devices.

In Fig. 5, we discuss the impact of the number of
cellular devices on the sum rate of all cooperative cellular
devices and D2D gadgets. The sum rate increases as
the number of cellular devices increases. The reason is
that one spectrum resource can support additional D2D
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Fig. 4 Influence of the number of cellular users Nc on the
sum utility.
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Fig. 5 Effect of the number of cellular users Nc on the sum
rate.

and cellular devices to achieve communications. The
performance of our scheme is similar to the socially-
blind selection scheme in the aspect of the sum rate.
This finding illustrates that our scheme can also achieve
good performance considering social relationships.

We set the numbers of cellular devices and D2D
gadgets to be 5 and 20. The maximum transmission
power of D2D gadgets is set as 20 dBm. Figure 6
illustrates that the sum of social-physical utility first
increases and then decreases with the increasing
transmission power of cellular devices. This finding is
attributed to the selection of D2D gadgets with good
channel conditions and high transmission power by
cellular devices to satisfy the performance requirements.
Given the limitations of the maximum transmission
power, the role of D2D gadgets to achieve cooperative
jamming is limited when the transmission power of
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Fig. 6 Effect of the power of cellular users pc on the sum
utility.

cellular devices increases to a definite value. In addition,
our proposed scheme achieves better performance than
other schemes because spectrum resources are assigned
to D2D gadgets optimally.

In Fig. 7, we show the sum rate of the overall network
including cooperative cellular devices and D2D gadgets.
Increasing the transmission power of cellular devices
first increases sum rate and decreases it after exceeding
to a certain value. The influence of D2D gadgets also
increases initially before decreasing. Moreover, our
proposed scheme and the socially-blind scheme achieve
similar performances.

6 Conclusion

In this paper, we studied the secure transmission rate
in a heterogeneous IoT system with underlaying D2D
communications. A cross-layer cooperative jamming
scheme was developed by using social relationship
mapping from the physical entities to the application
layer. In the scheme, we first analyzed the intimacy
degree based on the contact history between devices
and presented a Prophet model-based prediction
method to study probable social relationships in
future. Second, we exploited the intimacy to screen
and filter potential cooperative devices. Finally, we
formulated a maximization problem for the social-
physical utility and designed a KM algorithm to find
the optimal D2D gadget as a cooperative jammer. In
the future, we will investigate how to achieve a feasible
secure communication range when considering social
relationship in the application layer for the scenario of
known statistical CSI in the physical layer.
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Fig. 7 Effect of the power of cellular users pc on the sum
rate.
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Appendix

A Proof of Lemma 1

Under the matching result of Ci and Dj , the derivation of
Eq. (7) is given by the following:

@Ric

@p
j

d

D
Ap

j2
d
C 2Bpj

d
C C

pic jh
j
dbj
2jh

j
dej
2I1I2I3I4

(22)

where I1 D p
j

d
jh
j
dbj
2Cpic jh

i
cbj
2C�2, I2 D p

j

d
jh
j
dbj
2C�2,

I3 D p
j

d
jh
j
dej
2 C pic jh

i
cej
2 C �2, and I4 D p

j

d
jh
j
dej
2 C

�2. To find the extreme point of Eq. (22), let
@Ric

@p
j

d

D 0,

i.e., Apj2
d
C 2Bpj

d
C C D 0. When A ¤ 0, the related

discriminant is � D 4.B2 � AC/ and the solutions are as
follows:

p1 D
�B �

p
B2 � AC

A
; p2 D

�B C
p
B2 � AC

A
:

Given the constraints of C1 and C5, the value
of p

j

d
is limited to Œpmin; pmax�. Here, pmin D

.2Rdth � 1/.pic jhcdj
2 C �2/=jhddj

2 is the minimum
transmission power to guarantee the rate requirement of
D2D links. According to the above analysis, we will
discuss different cases as follows:
� Case 1: A D 0 and B > 0, or A > 0 and � 6 0, the

cooperation of Ci and Dj will result in a negative secrecy
rate Ric < 0. Therefore, ˛ij D 0 and pj�

d
D 0.

� Case 2: A < 0 and � > 0, Ric is a unimodal function
with a maximum value. Considering the feasible range of
p
j

d
, we obtain the following:

p
j�

d
D

8̂<̂
:
pmin; when 0 < p1 6 pminI

p1; when pmin < p1 6 pmaxI

pmax; when p1 > pmax:

� Other cases: we can obtain pj�
d
D pmin combined

with function trends. Thus, the optimal value is R�c D
maxj Ri�c .

This completes the proof of Lemma 1.

B Proof of Lemma 2

Intuitively, Eq. (8) monotonically increases with regard to
p
j

d
. Without loss of generality, we discuss by the following

different cases.
� No solution is available in Case 1. The constraint C4

cannot be satisfied. Thus, pj�
d
D 0.

� One solution (pa) exists in Case 2. The derivation of
Eq. (22) is less than zero. It requires pj

d
< pmax. Thus

p
j�

d
D min.pmax; pa/.
� Two solutions (pa > pb) exist in Case 3. This

condition corresponds to the situation in which Ric is a
unimodal function. When pa 6 pmax, both solutions
are less than pmax. We consider the large-value pj�

d
D

pa. When pa > pmax, it does not meet the restrictive
conditions, and thus pj�

d
D 0. When pb < pmax < pa,

p
j�

d
D pmax. Accordingly, the optimal value is R�

d
D

maxi R
j�

d
.

This completes the proof of Lemma 2.
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