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Cross-Target Transfer Algorithm Based on the Volterra Model of
SSVEP-BCI
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Abstract: In general, a large amount of training data can effectively improve the classification performance of the

Steady-State Visually Evoked Potential (SSVEP)-based Brain-Computer Interface (BCI) system. However, it will

prolong the training time and considerably restrict the practicality of the system. This study proposed a SSVEP

nonlinear signal model based on the Volterra filter, which could reconstruct stable reference signals using relatively

small number of training targets by transfer learning, thereby reducing the training cost of SSVEP-BCI. Moreover,

this study designed a transfer-extended Canonical Correlation Analysis (t-eCCA) method based on the model

to achieve cross-target transfer. As a result, in a single-target SSVEP experiment with 16 stimulus frequencies,

t-eCCA obtained an average accuracy of 86.96%˙12.87% across 12 subjects using only half of the calibration time,

which exhibited no significant difference from the representative training classification algorithms, namely, extended

canonical correlation analysis (88.32%˙13.97%) and task-related component analysis (88.92%˙14.44%), and was

significantly higher than that of the classic non-training algorithms, namely, Canonical Correlation Analysis (CCA) as

well as filter-bank CCA. Results showed that the proposed cross-target transfer algorithm t-eCCA could fully utilize

the information about the targets and its stimulus frequencies and effectively reduce the training time of SSVEP-BCI.

Key words: Steady-State Visually Evoked Potential (SSVEP); Brain-Computer Interface (BCI); Volterra filter; cross-target

information; transfer learning

1 Introduction

Steady-State Visually Evoked Potential (SSVEP), one
of the dominant paradigms of the visual Brain
Computer Interface (BCI), has received considerable
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attention because of its noninvasiveness, short training
time, and relatively high performance[1–3]. In general,
SSVEP is a physiological response that mainly
occurs in the visual cortex of the brain’s occipital
lobe[4]. Specifically, when gazing at a periodic visual
flicker, an electroencephalogram (EEG) response
at certain fixed frequencies related to stimulus
frequencies will be elicited in the visual cortex,
such as harmonic frequencies under single-frequency
stimulation and intermodulation frequencies under dual-
frequency stimulation[5]. Therefore, signal detection
can be completed in SSVEP-BCI to identify the
visual stimulus that users gaze at using the stable
nonlinear characteristics of SSVEP response. In recent
years, signal decoding has been one of the research
hotspots in SSVEP-BCI, which is classified as training
decoding algorithm or non-training algorithm according
to whether additional calibration data are needed[6–8].
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Among different template-based classification methods,
the non-training algorithm primarily utilizes sine-cosine
reference signals to obtain a spatial filter, including
Canonical Correlation Analysis (CCA)[9], Filter-Bank
Canonical Correlation Analysis (FBCCA)[10], and
spatiotemporal equalization dynamic window[11]. By
contrast, the training decoding algorithm achieves a
high performance using subject-specific template from
additional calibration data, with novel representative
methods, such as extended Canonical Correlation
Analysis (eCCA)[12] and Task-Related Component
Analysis (TRCA)[13]. However, training classification
algorithm generally needs to average multiple trials data
of the same target because of the relatively week EEG
signals[14], resulting in the performance of the training
algorithm having a strong dependence on the number
of training trials. When the number of calibration trials
for each target is insufficient, the performance of the
BCI system will be degraded significantly[13]. The main
reason is that a small amount of training data leads to
inaccurate covariance matrix estimation in CCA-based
methods[15].

With the in-depth understanding of SSVEP features
and the improvement of neural signal detection, the
number of encoding targets in SSVEP-BCI increases
rapidly. Cheng and Gao[16] proposed the first practical
four-target cursor control system in 1999. In 2014,
Nakanishi et al.[17] designed a high-speed spelling
system with 32 characters. Chen et al.[12] realized the
classic 40-target SSVEP-BCI system using the joint
frequency-phase modulation method. Recently, Xu et
al.[18] reported a 108-character hybrid BCI system using
concurrent P300 and SSVEP features, the largest number
of targets ever known. However, with the rapid increase
in the number of targets, the total training time also
increases considerably, resulting in the subject’s visual
fatigue and further degradation of the performance of
the BCI system[19]. Thus, how to reduce the calibration
time while maintaining the high decoding capability
of the BCI system has become an urgent problem for
researchers. A feasible approach to solve this issue is
cross-subject transfer learning, which hypothesizes that
the EEG data of different subjects have some shared
information that can be used to expand the training
data[20–22]. However, the lack of in-depth investigation on
the specific difference between subjects has considerably
limited the performance of the cross-subject transfer
learning algorithm.

During the training stage, users are required to gaze

at Ntrain random visual stimuli, with each target repeated
Ntrial times, and the stimulus time plus rest time of each
trial equals Ttrial. When the rest time between blocks
is ignored, the total training time can be expressed
as Ttrain D Ntrain � Ntrial � Ttrial

[22]. Evidently, if the
duration of each trial Ttrial is constant, the training
time Ttrain can be decreased by reducing the number
of training targets Ntrain or the number of training trials
of each target Ntrial. Wong et al.[23] used EEG data from
both target stimulus and other adjacent stimuli to learn
the reference signal, thereby effectively reducing the
number of training trials of each target Ntrial; however,
the number of training targets Ntrain was not decreased.
Zhang et al.[24] and Han et al.[25] proposed a dynamic
model that could effectively fit the SSVEP envelope,
and made a preliminary attempt to reduce the training
target Ntrain; however, the maximum average accuracy
was only 70% with 1 s data length, which could not meet
the requirements in actual application.

This study aims to realize effective cross-target
transfer learning in SSVEP-BCI, thereby reducing the
training time. The key concept of cross-target transfer
learning is to explore and exploit the correlation of
the characteristics of SSVEP signals between different
targets (and its stimulus frequencies). This study
mainly utilized the continuity of the frequency domain
characteristics of SSVEP response, with the phase of
SSVEP signals approximately linear[4, 26]. Based on
the nonlinear transfer function theory[27], the transfer
function was used to interpret the SSVEP response for
the first time. Specifically, the brain’s response under
the SSVEP stimulation paradigm could be modeled as
a Volterra filter. Based on the Volterra model, this
study proposed a novel cross-target transfer algorithm,
that is transfer-extended Canonical Correlation Analysis
(t-eCCA). The proposed transfer algorithm primarily
consisted of four steps: first, sampling all of the
stimulus frequencies with equal intervals to obtain
the training data; second, using Least Squares (LS)
to identify the parameters of the Volterra model;
third, utilizing polynomial interpolation to transfer the
frequency response of the Volterra model from the
training frequencies to all stimulus frequencies and
further reconstruct the SSVEP templates; and fourth,
using the reconstructed SSVEP reference signals as the
template of the eCCA method. The results showed that
the proposed cross-target transfer algorithm t-eCCA,
which saved half of the training time, achieved similar
classification performance to the representative training
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algorithms eCCA and TRCA, and significantly higher
classification performance than the classic non-training
algorithms CCA and FBCCA.

The remainder of this paper is organized as follows:
Section 2 describes the SSVEP data model, the specific
flow of the proposed transfer algorithm, and the
single-target experimental design. Section 3 shows
the identification results of the Volterra model, the
evaluation of the transferred SSVEP template, and
the classification performance of the proposed transfer
algorithm. Section 4 discusses the Volterra model in
terms of the comparison of different signal models,
physical interpretations, model complexities, multi-
target experiments, and percentage of training stimulus
frequencies and identifies several directions for further
investigation. Section 5 concludes the study.

2 Material and Method

2.1 Data model

In general, the EEG data model of any channel c is
represented as an additive model, which is a single-
input/single-output system,
xc.n/ D sc.n/C wc.n/; n D 0; 1; : : : ; L � 1 (1)

where xc.n/ denotes the EEG data of channel c at time n,
sc.n/ represents the SSVEP data of channel c at time n,
wc.n/ is the background noise, and L is the data length.

Given that the frequency response characteristics of
the Volterra filter[28] are consistent with the nonlinear
characteristics of SSVEP signals, the Volterra system
was selected as the SSVEP signal model. The Voltterra
model is defined as follows:

sc.n/ D

PX
pD0

sc
p.n/; n D 0; 1; : : : ; L � 1 (2)

where P denotes the order of the Volterra model and

sc
p.n/ is the p-th-order response, which can be expressed

as follows:

sc
p.n/ D

Np�1X
m1D0

Np�1X
m2D0

� � �

Np�1X
mpD0

hc
p.m1; m2; : : : ; mp/�

u.n �m1/u.n �m2/ � � �u.n �mp/ (3)
where Np denotes the memory span of the p-th-order
response, hc

p.m1; m2; : : : ; mp/ represents the p-th-order
Volterra kernel, and u.n/ is the stimulus signal.
Equation (3) is a p-dimensional discrete convolution.

2.2 Framework of the transfer algorithm

Different from other transfer algorithms[20, 23], the
proposed cross-target transfer algorithm aimed to
transfer the information of one subject during an
experiment, from signals at some stimulus frequencies
to signals at other stimulus frequencies, which would
reduce the training cost per subject. To transfer
information, the Volterra model described in Section 2.1,
which represents the characteristics of SSVEP in the
frequency domain, was employed. Figure 1 illustrates
the framework of the proposed cross-target transfer
algorithm.

The cross-target transfer algorithm included four steps,
of which the first three steps were classified as the
training stage and the last step was classified as the
testing stage. First, a sample training strategy was used
to acquire the SSVEP training data. Second, the LS
Volterra model was applied to fit the SSVEP signals
quantitatively and the frequency response of the Volterra
model at the training frequencies was determined.
Third, polynomial interpolation was employed to obtain
information about the frequency domain at all stimulus
frequencies, so that the SSVEP template signals could
be completely reconstructed. Fourth, the efficacy of the
proposed transfer algorithm was tested by comparing the

Fig. 1 Flowchart of the proposed transfer algorithm.
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classification performance of different template-based
SSVEP-BCI methods.
2.2.1 Step 1: Sample training
For an SSVEP-BCI system with N targets flickering
at different frequencies, Ntrain stimulus frequencies
(targets) are equidistantly sampled to train, with the
remaining N � Ntrain stimulus frequencies not being
presented during the training stage. To obtain the
SSVEP component sc.n/, first, the EEG signals xc.n/

of different trials with the same stimulus frequency f
are averaged, with Nxc.n/ derived as follows:

Nxc.n/ D
1

Ntrial

X
xc.n/ (4)

where Ntrial denotes the number of one target’s training
trials.

After calculating the Fourier Transform (FT) of the
averaged EEG data Nxc.n/, we finally derive the SSVEP
signal sc.n/ as follows:

sc.n/ D

KX
kD1

j NXc.ejw/j cos.kwnC arg. NXc.ejw/// (5)

where K denotes the number of harmonics of the
SSVEP signals, w D 2 f represents the digital angular
frequency, j � j is the amplitude of a complex number,
arg.�/ is the phase of a complex number, and NXc.ejw/ is
the FT of Nxc.n/, which is derived as follows:

NXc.ejw/ D

L�1X
nD0

Nxc.n/e�jwn (6)

In the single-target offline experiment, the total
number of BCI targets N was 16 ([8 : 0.5 : 15.5] Hz)
and the number of training targets Ntrain was 8 ([8 : 15]
Hz).
2.2.2 Step 2: Parameter identification
After obtaining the training SSVEP signal sc.n/ (see
Eq. (5)), the next step is to identify the parameters of the
Volterra model, as follows:

(1) To establish the observed signal vector sc: The
cascading SSVEP data of channel c in ascending order
of stimulus frequencies are derived as follows:

sc
D Œ.sc

1/
T; : : : ; .sc

ntrain
/T; : : : ; .sc

Ntrain
/T�T (7)

where sc
ntrain

denotes the SSVEP signal of target ntrain at
channel c, which is defined as follows:

sc
ntrain
DŒsc.0/; sc.1/; : : : ; sc.L � 1/�;

ntrain D 1; 2; : : : ; Ntrain (8)

(2) To establish data matrix A:
A D ŒAT

1;A
T
2; : : : ;A

T
Ntrain

�T (9)

where the n-th row of Antrain is expressed as follows:

Antrain Œn; W� D Œ1; u.n/; : : : ; u.n �N1 C 1/; : : : ;

u.n/ � � �u.n/„ ƒ‚ …
P times

; : : : ; u.n �Np C 1/ � � �u.n �Np C 1/„ ƒ‚ …
P times

�;

ntrain D 1; 2; : : : ; Ntrain (10)

(3) To establish parameter vector ���c :
���c
DŒh0; h1.0/; : : : ; h1.N1 � 1/; : : : ; hp .0; : : : ; 0/„ ƒ‚ …

P times

;

: : : ; hp .Np � 1; : : : ; Np � 1/„ ƒ‚ …
P times

�T (11)

(4) To construct the linear equation:
sc
D A���c (12)

(5) To get the LS solution O���c :
O���c D .ATA/�1ATsc (13)

After obtaining the LS solution O���c of the parameter
���c , each order impulse response of the Volterra
model hc

p.m1; : : : ; mp/ is determined. To intuitively
understand the physical meaning of the Volterra
model, each order frequency response of the system
H c

p .k1; : : : ; kp/ is calculated using the Np points Fast
Fourier Transform (FFT) as follows:

H c
p .k1; : : : ; kp/ D

Np�1X
m1D0

� � �

Np�1X
mpD0

hc
p.m1; : : : ; mp/�

e�j 2 
Np m1k1 � � � e�j 2 

Np mpkp ;

ki D 0; : : : ; Np � 1; i D 1; : : : ; p (14)

2.2.3 Step 3: Template reconstruction
Given that the responses of adjacent stimulus frequencies
have similar spatial distribution[29], this study assumed
that the amplitude of each harmonic of the SSVEP
signals changed continuously at adjacent stimulus
frequencies, which will be verified in Section 3.2.
Therefore, the amplitude of each harmonic of the
SSVEP signals at the stimulus frequencies can be
transferred to all stimulus frequencies by polynomial
interpolation. Furthermore, with the same initial phase
of the stimulus signals, each harmonic of the SSVEP
responses has an approximately linear phase. The phase
of each harmonic of the SSVEP data at the stimulus
frequencies can thereby be transferred to all stimulus
frequencies by linear interpolation. In Appendix, the
frequency response of the Volterra model is capable
of characterizing the amplitude and phase of the
SSVEP responses. As a result, we can perform linear
interpolation on the each-order frequency response of
the Volterra model. The energy of the SSVEP response
is mainly concentrated at the fundamental and second
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harmonics of the stimulus frequency, which play an
important role in SSVEP detection[9]. Therefore, the first-
and second-order frequency responses of the Volterra
model, which correspond to the fundamental and second
harmonics of the SSVEP signals, respectively, are taken
as examples to explain the transfer process in detail.

The first-order frequency response of the model
H c

1 .k1/ obtained in Step 2 has meaningful values at
the training frequencies. For the sake of simplicity,
the amplitude j OH c

1 .k1/j and the phase arg. OH c
1 .k1// at

other frequencies are obtained using linear interpolation,
resulting in the frequency response after interpolation
derived as follows:

OH c
1 .k1/ D j OH

c
1 .k1/jej arg. OH c

1
.k1// (15)

Next, the first-order impulse response Ohc
1.m1/ can

be obtained by employing the N1-point inverse FFT as
follows:

Ohc
1.m1/ D

1

N1

N1�1X
k1D0

OH c
1 .k1/e

j 2 
N1

m1k1 ;

m1 D 0; : : : ; N1 � 1 (16)

Finally, the reconstructed fundamental wave of the
SSVEP response Osc

1.n/ can be obtained by employing
the following convolution operation:

Osc
1.n/ D

N1�1X
m1D0

Ohc
1.m1/u.n �m1/ (17)

Similarly, the second-order frequency response of the
model H c

2 .k1; k2/ obtained in Step 2 has meaningful
values at the training frequencies. The amplitude
j OH c

2 .k1; k2/j and the phase arg. OH c
2 .k1; k2// at other

frequencies are obtained using linear interpolation,
resulting in the frequency response after interpolation
derived as follows:

OH c
2 .k1; k2/ D j OH

c
2 .k1; k2/jej arg. OH c

2
.k1;k2// (18)

Next, the second-order impulse response Ohc
2.m1; m2/

can be obtained by employing the N2-point two-
dimensional inverse FFT as follows:

Ohc
2.m1; m2/ D

1

.N2/2

N2�1X
k1D0

N2�1X
k2D0

OH c
2 .k1; k2/e

j 2 
N2

m1k1
�

ej 2 
N2

m2k2 ; mi D 0; : : : ; N2 � 1; i D 1; 2 (19)

Finally, the reconstructed second harmonic of the
SSVEP response Osc

2.n/ can be obtained by employing
the following two-dimensional convolution operation:

Osc
2.n/ D

N2�1X
m1D0

N2�1X
m2D0

Ohc
2.m1; m2/u.n �m1/u.n �m2/

(20)

After obtaining the reconstructed fundamental wave
and second harmonic of the SSVEP response, the
reconstructed SSVEP signals are also determined, that is

Osc.n/ D Osc
1.n/C Os

c
2.n/ (21)

2.2.4 Step 4: Performance evaluation
To evaluate the performance of the proposed transfer
algorithm, the transferred template signals were verified
by computing the correlation between reconstructed
Osc.n/ and observed sc.n/ SSVEP signals and comparing
their frequency spectrum.

The performance of the proposed transfer algorithm
was further evaluated in terms of its classification
accuracy by comparing the accuracy of different
template-based classification methods, including the
classic non-training algorithms CCA and FBCCA, and
the novel representative training algorithms eCCA and
TRCA. Table 1 lists the details of these methods.

To our knowledge, the M1 (eCCA) method uses both
the standard sine-cosine template and training EEG
template Nxc.n/ (see Eq. (4)). Compared with the M1
method, the M2 method, a variant of eCCA, replaced
the training EEG reference signal with the training
SSVEP template sc.n/ (see Eq. (5)). Similarly, the
proposed cross-target transfer algorithm M3 (t-eCCA)
replaced the training EEG reference signal with the
transferred SSVEP template Osc.n/ (see Eq. (21)). The
number of harmonics Nh of the sine-cosine template
was set to 2 in all methods. To verify the feasibility of
the SSVEP template, the M2 method was compared
with the M1, M4, and M5 methods on the basis of
classification accuracy. Moreover, to verify the efficacy
of the proposed transfer algorithm, the M3 method was
compared with the M1, M4, M5, and M6 methods on
the basis of classification accuracy.

The following method was used to calculate
the average classification accuracy: For the training
algorithm, one block of data was for training and five
blocks of data were for testing at a certain time, with

Table 1 Different templates used in different algorithms.
Method Algorithm Template

M1 eCCA Sine-cosine template +
training EEG template

M2 Variant of eCCA Sine-cosine template +
training SSVEP template

M3 t-eCCA Sine-cosine template +
transferred SSVEP template

M4 CCA Sine-cosine template
M5 FBCCA Sine-cosine template
M6 TRCA Training EEG template
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the final classification accuracy calculated by averaging
the accuracies of the six blocks. For the non-training
algorithm, all six blocks of data were for testing, with
the final classification accuracy calculated by averaging
the accuracies of the six blocks. All of the methods
described in Table 1 used all of the EEG data recorded
by nine electrodes in the experiment.

2.3 Experiment

To verify the efficacy of the proposed cross-target
transfer algorithm, the prerequisite was to design
an appropriate experiment. Given that Han et al.[25]

preliminarily explored the feasibility of reducing the
number of training targets in SSVEP-BCI, part of the
experimental design of this study used the same setup.
The specific experimental setup is described in the
subsequent section.

2.3.1 Experimental procedure
The single-target offline experiment consisted of six
blocks, with each block containing 80 trials (16 targets �
5 repetitions). All trials were conducted in random order.
Each trial lasted for 3 s. Specifically, each trial started
with a blank for 1 s and the subjects were only allowed
to blink for a break during this period. After the blank
offset, a sinusoidal stimulus appeared on the screen
which lasted 2 s, and the subjects were asked to pay
attention and gaze at the visual flash during this period.
The flowchart of the experiment is shown in Fig. 2.

2.3.2 Subject
A total of 12 healthy subjects (10 males and 2 females,
with the mean age of 25 years) with normal or corrected-
to-normal eyesight, participated in the experiment.
Each subject signed the informed consent before the
experiment and was paid for his/her participation. This
study was approved by the Research Ethics Committee
of Tsinghua University.

2.3.3 Data acquisition
All of the EEG data were acquired using a SynAmps2
system (Neuroscan, Inc.) at a sampling rate of 1000 Hz.
The usable bandwidth was 1–100 Hz. Nine electrodes
(Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2)
under the international 10-10 system were used in the

Fig. 2 Flowchart of the single-target offline experiment.

experiment, with the reference electrode at Cz and the
ground electrode at Fz. Electrode impedances were
kept below 10 k� for all electrodes. During the EEG
recording, the subjects were seated on a comfortable
chair approximately 70 cm away from the screen in a
shielded room.

2.3.4 Stimulation presentation
Referring to part of the experimental design of a previous
study[25], the frequencies of 16 visual stimuli were
selected from 8 to 15.5 Hz with an interval of 0.5 Hz, and
the initial phase was 0 rad. The stimulus was rendered
within a 250 pixel � 250 pixel square at the center of the
screen. For each trial, Eq. (22) was used to generate the
luminance u.n/ of the stimulus with frequency f and
initial phase �, where n indicates the frame index in the
stimulus sequence.

u.n/ D
1

2

h
1C cos

�
2 f

� n

RefreshRate

�
C �

�i
(22)

The visual stimulus was presented on a 23.6-in screen
with a resolution of 1920 pixel� 1080 pixel and a refresh
rate of 60 Hz. The stimulation program was developed
using the Psychophysics Toolbox[30] in the MATLAB
software.

2.3.5 Data preprocessing
Data epochs were extracted on the basis of event triggers
marked by the stimulation program. On the basis of the
apparent latency of the visual system[4], the data with
a time window of [0.14, 2.14] s (time 0 represented the
SSVEP stimulus onset) was intercepted, downsampled to
250 Hz, and band-pass filtered from 7 to 32 Hz using the
Parks-McClellan optimal Finite Impulse Response (FIR)
filter. The filtfilt() method was employed to implement
the zero-phase FIR filter in MATLAB.

3 Result

3.1 Response of the Volterra model

To obtain an in-depth understanding of the Volterra
model, the SSVEP data of all targets (and its stimulus
frequencies = [8 : 0.5 : 15.5] Hz) were selected as the
response signals of different signal models, with 2 s data
length of each target (corresponding to 0.5 Hz interval at
adjacent stimulus frequencies).

Figure 3 shows the fitting results of Subject S4 to all
targets at the Oz channel in the time domain waveform
using the Volterra model. Obviously, the response of
the Volterra model could fit the SSVEP response of each
target well, with the fitting amplitude and phase close to
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Fig. 3 Fitting results of Subject S4 at the Oz channel in the time domain waveform for all visual stimuli at stimulus frequencies
of [8 : 0.5 : 15.5] Hz using the Volterra model.

the actual results.
Figure 4 illustrates the comparison results of

the frequency response of the Volterra model and
the frequency spectrum of the SSVEP signals of
Subject S4 at the Oz channel. Figure 4a shows
the comparison between the first-order amplitude
frequency characteristic curve of the Volterra system
and the amplitude of the fundamental wave of the
SSVEP. As shown in Fig. 4a, while maintaining
a high fitting accuracy, the Volterra model had
smooth amplitude frequency characteristic curve,
which meant that the model had good generalization
capability and partly reduced the effect of spontaneous
EEG activities. Similarly, the second-order amplitude
frequency characteristic of the model yielded analogical
results (see Fig. 4c). Figures 4b and 4d show the first-
order and second-order phase frequency characteristics
of the Volterra model, respectively. Notably, the phase
response of SSVEP was approximately linear, but
exhibited shifts in the phase response at 10.5 Hz (see
Fig. 4b) and 23 Hz (see Fig. 4d) because averaging
the EEG data could only reduce, not eliminate, the

effect of spontaneous EEG activities. Thus, sc.n/ (see
Eq. (5)) could only be an estimate of the true evoked
components of SSVEP. Obviously, the model could
describe the approximate linear phase characteristics
of each harmonic of the SSVEP response. The results
indicated that the system under the SSVEP paradigm
could be modeled as the Volterra model, so that the
nonlinear transfer function theory could be used to
analyze the SSVEP response.

The amplitude of the SSVEP response at adjacent
stimulus frequencies was continuously changing and
the phase was approximately linear (see Fig. 4), which
showed that the features of SSVEP response in the
frequency domain had a relatively strong correlation
at adjacent stimulus frequencies. The key concept of
the cross-target transfer algorithm is to exploit the
correlation of SSVEP signal characteristics between
different targets. Therefore, the SSVEP information
at other stimulus frequencies could be obtained using
interpolation by exploiting the SSVEP information at the
training frequencies, which achieved the reconstructed
SSVEP reference signals. In other words, it was feasible
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Fig. 4 Identification results of Subject S4 at the Oz channel using the Volterra model. (a) First-order amplitude frequency
response of the Volterra model. (b) First-order phase frequency response of the Volterra model. (c) Second-order amplitude
frequency response of the Volterra model, which only showed the amplitude of the diagonal component of Hc

2.ejw1 ; ejw2/ (see
Eq. (A8)). (d) Second-order phase frequency response of the Volterra model, which only showed the phase of the diagonal
component of Hc

2.ejw1 ; ejw2/ (see Eq. (A8)).

to transfer between different targets through only a
part of the stimulus frequencies (training targets). We
further analyzed the experimental data to test the efficacy
of transferred SSVEP signals and the identification
performance of the transfer algorithm.

3.2 Evaluation of the transferred SSVEP signal

To verify the efficacy of the transferred SSVEP signal,
the SSVEP data of eight targets (and its stimulus
frequencies = [8 : 15] Hz) were selected, with 1 s data
length of each target (corresponding to 1 Hz interval at
adjacent stimulus frequencies). The transferred SSVEP
template was obtained by following the steps presented
in Section 2.2. Figure 5 shows the comparison results
of the frequency domain characteristic of the transferred
and observed SSVEP signals of Subject S4 at the Oz
channel. As shown in Fig. 5, the reconstructed SSVEP
signal was highly similar to the original SSVEP response
in the frequency domain. The evoked component
sc.n/ (see Eq. (5)) obtained by averaging was only
an approximation of the true evoked EEG, which
also included part of spontaneous EEG activities. To
ensure that the Volterra model has good generalization
capability and reduce the influence of spontaneous EEG
activities, completely fitting the observed data was not
our purpose, which explained why the fitting result
was not exactly the same as the observation result (see
Fig. 5a (left)). If necessary, to ensure the fitting accuracy

of the model, we increased the memory span of the
Volterra model as the data length increased.

We further calculated the average correlation
coefficient matrix between transferred and original
SSVEP signals across all subjects at the Oz channel
(see Fig. 6). Evidently, the matrix showed the highest
correlation between transferred and original SSVEP
signals at the same stimulus frequency (correlation
coefficients >0.9), but transferred and original SSVEP
signals were nearly uncorrelated at different stimulus
frequencies. Furthermore, the average correlation
coefficients at the training frequencies of [8 : 15] Hz
were significantly higher than that at the transferred
frequencies of [8.5 : 15.5] Hz (0:996˙0:004 vs. 0:968˙
0:020, p < 0.05). In conclusion, the proposed transfer
algorithm was able to effectively transfer SSVEP
information at different stimulus frequencies.

3.3 Evaluation of the classification performance

3.3.1 Efficacy testing of the training SSVEP
template

Figure 7 shows the average classification accuracy
across 12 subjects. We calculated the classification
results for two kinds of training template-based eCCA
methods using different data lengths from 0.5 to 2 s
with an interval of 0.25 s. Section 2.2.4 described
the three kinds of template-based eCCA methods in
detail. Notably, with the increase in time window length,
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Fig. 5 Comparison results of (a) amplitude of the fundamental wave (left), phase of the fundamental wave (right) and (b)
amplitude of the second harmonic (left), phase of the second harmonic (right) of the transferred and observed SSVEP signals of
Subject S4 at the Oz channel using the Volterra model. The dot marker indicates the training frequencies ([8 : 15] Hz) and the
double frequencies ([16 : 2 : 30] Hz); the square marker indicates the transferred frequencies ([8.5 : 15.5] Hz) and the double
frequencies ([17 : 2 : 31] Hz)

Fig. 6 Average correlation matrix across all subjects at the
Oz channel between transferred and observed SSVEP signals
at different stimulus frequencies.

Fig. 7 Target identification accuracy calculated by eCCA
and the variant of eCCA using different data lengths from
0.5 to 1.0 s with an interval of 0.25 s. The numbers above
the horizontal bars represent the p values between different
methods, ns denotes not significant, and the error bars
indicate the standard errors.

the difference in classification accuracies between M2
(variant of eCCA) and M1 (standard eCCA) decreased
continually from 4.46% (M2 vs. M1 : 59:05%˙19:26%
vs. 63:51%˙ 22:08%) with 0.5 s data length to 0.75%
(M2 vs. M1: 95:40%˙4:62% vs. 96:15%˙5:16%) with
2 s data length. With the decrease in time window length
(less than 1 s), the classification performance of M2 was
slightly lower than that of M1 (p >0.01 but p <0.05). In
fact, the steady-state response of SSVEP mainly appears
after 0.5 s stimulus duration, before which the transient
response dominates[31, 32].

The M1 method used the EEG template, which
contains the transient response of the first 0.5 s, whereas
the M2 used the SSVEP template which does not
consider the transient process, explaining the finding
that the classification performance of M2 was slightly
lower than that of M1 with a short time window. To make
the BCI system suitable for most participants, the data
length used for target identification should not be short
(generally at least 1 s), so that the system can maintain a
relatively high accuracy (average accuracy higher than
90%). With 1 s data length, no significant difference
between the accuracies of M2 and M1 was observed
(M2 vs. M1 : 86:94%˙ 12:91% vs. 88:32%˙ 13:97%,
paired t-test: p >0.1). Similarly, with other data lengths
longer than 1 s ([1.25 : 0.25 : 1.75] s), no significant
difference between the accuracies of M2 and M1 was
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observed (p >0.1). Although the accuracies of these two
methods exhibited a significant difference (p = 0.03) with
2 s data length, the eCCA based on the training SSVEP
template was still effective, which will be explained
subsequently. Table 2 lists the classification accuracies
of each subject calculated by different template-based
eCCA methods with 2 s data length. With 2 s data length,
the difference in average accuracies between M2 and
M1 was only 0.75% (M2 vs. M1: 95:40%˙ 4:62% vs.
96:15%˙ 5:16%) and was merely 2.04% (for S2, M2
vs. M1 : 93.50% vs. 95.54%) in the worst case. More
importantly, compared with the non-training algorithms
M4 and M5 (for more details about M4 and M5, see
Fig. 8), the classification performance of M2 had been
considerably improved. The classification accuracy
of M1 was slightly higher than that of M2 and M3

Table 2 Detailed target identification accuracy of 12
subjects with 2 s data length calculated by different methods.

(%)
Subject M1 M2 M3 M6

S1 81.13 82.33 80.83 83.50
S2 95.54 93.50 93.63 96.67
S3 99.38 98.63 97.79 98.71
S4 94.83 93.50 94.08 93.71
S5 98.04 97.04 97.63 98.50
S6 99.50 97.88 97.92 98.88
S7 92.17 91.29 91.42 93.96
S8 99.83 98.33 98.88 99.29
S9 99.79 99.17 99.33 99.67
S10 99.75 98.50 98.67 98.96
S11 99.17 98.50 98.63 98.75
S12 94.71 96.08 94.92 93.88

Mean 96.15 95.40 95.31 96.20
Std 5.16 4.62 4.99 4.40

Fig. 8 Target identification accuracy as functions of data
length (from 0.5 s to 2 s with an interval of 0.25 s) calculated
by different methods. The asterisks and numbers above the
horizontal bars represent the p values between M3 and other
methods (*: p<0.05; **: p<0.005; ***: p<0.0005), ns denotes
not significant, and the error bars indicate the standard
errors.

because M1 used the EEG template signal Nxc.n/ (see
Eq. (4)), which contains not only evoked components
but also spontaneous EEG components, whereas M2
and M3 only used the evoked components. This meant
that spontaneous EEG components contributed to the
actual EEG signal detection, but the evoked components
dominated in the classification process. The results
showed that the SSVEP signal can be feasibly used as
template for eCCA in practical applications.

3.3.2 Efficacy testing of the transfer algorithm
Figure 8 illustrates the average classification accuracy
across all subjects. The classification results were
computed for five kinds of template-based methods
with different data lengths ([0.5 : 0.25 : 2] s). First, the
performance difference between M3 (t-eCCA) and M1
(standard eCCA) was analyzed. Evidently, with the
increase in data length, the difference in classification
performance between M3 and M1 decreased
continually from 4.47% (M3 vs. M1 : 59:04%˙ 18:52%
vs. 63:51%˙ 22:08%) with 0.5 s data length to 0.84%
(M3 vs. M1 : 95:31%˙ 4:99% vs. 96:15%˙ 5:16%)
with 2 s data length. With a short data length (less than
1 s), the classification accuracy of M3 was slightly lower
than that of M1 (p >0.01 but p <0.05).

The classification accuracy of M1 was slightly higher
than that of M3 with a short data length because the
template signal of M1 includes the transient response,
whereas that of M3 only considers the steady-state
response. With 1 s data length, no significant difference
between the classification performance of M2 and
M1 was observed (M3 vs. M1 : 86:96% ˙ 12:87%
vs. 88:32% ˙ 13:97%, p>0.1). Similarly, with other
data lengths longer than 1 s ([1.25 : 0.25 : 1.75] s),
no significant difference between the classification
performance of M3 and M1 was observed (p >0.05).
Notably, although a significant difference between M3
and M1 with 2 s data length was observed (p <0.005),
the following interpretation showed that the proposed
cross-target transfer algorithm M3 was still effective. As
shown in Table 2, with 2 s data length, the difference
in average accuracies between M3 and M1 was merely
0.84% (M3 vs. M1 : 95:31% ˙ 4:99% vs. 96:15% ˙
5:6%) and was 1.91% (for S2, M3 vs. M1 : 93.63%
vs. 95.54%) in the worst case. In other words, with 2 s
data length, the actual performance of M3 was slightly
different from that of M1. Moreover, the method used
to analyze the classification performance of M3 and M6
(TRCA) at different data lengths was basically the same
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as that used to analyze the classification performance of
M1. The detailed classification results of M3 and M6
are shown in Fig. 8 and Table 2. The results proved that,
while saving half of the training time, M3 exhibited a
similar performance to M1 and M6. Thus, the proposed
cross-target transfer algorithm t-eCCA was effective.

Next, the performance difference between M3 and
the classic non-training algorithms M4 (CCA) and M5
(FBCCA) was analyzed. As shown in Fig. 8, with
all data lengths, the classification performance of M3
was significantly higher than that of M4 (i.e., with
1 s data length, M3 vs. M4 : 86:96% ˙ 12:87% vs.
63:82% ˙ 23:42%, p < 0.0005). With different data
lengths ([0.5 : 0.25 : 1.25] s), the performance of M3 was
significantly higher than that of M5 (i.e., with 1 s data
length, M3 vs. M5: 86:96% ˙ 12:87% vs. 74:05% ˙
23:08%, p < 0.005). The following would explain why
the overall performance of M3 was still better than
that of M5 although no significant difference between
them with data lengths from 1.5 to 2 s was observed
(p> 0.05). Table 3 lists in detail the classification
accuracy of each subject calculated by M3 and M5
with data lengths from 1.5 to 2 s. The data shown in
Table 3 could be divided into two categories: the first
category of data with classification accuracy of M5
higher than 98.33% (data in bold in Table 3) and the
second category of data with classification accuracy of
M5 lower than 98.33%. For the first category of data,
although the performance of M3 was slightly lower than
that of M5, the classification accuracies are both close

Table 3 Detailed target identification accuracy of 12
subjects as functions of data length (from 1.5 to 2 s with an
interval of 0.25 s) calculated by the M3 and M5 methods.

(%)
1.5 s 1.75 s 2 s

Subject M3 M5 M3 M5 M3 M5
S1 70.58 45.42 77.46 57.08 80.83 62.08
S2 90.92 71.88 93.33 82.08 93.63 84.79
S3 96.75 99.58 97.25 99.79 97.79 99.79
S4 92.63 89.58 94.33 93.13 94.08 92.29
S5 97.54 96.04 97.75 96.88 97.63 98.54
S6 96.71 96.25 97.67 98.33 97.92 98.75
S7 87.29 73.75 89.67 79.58 91.42 81.88
S8 98.38 98.13 98.75 99.17 98.88 99.58
S9 98.83 100.00 99.29 100.00 99.33 100.00
S10 98.21 99.79 98.54 100.00 98.67 100.00
S11 98.13 97.08 98.50 98.54 98.63 98.33
S12 92.17 81.04 95.17 86.04 94.92 88.75

Mean 93.18 87.38 94.81 90.89 95.31 92.07
Std 7.66 15.96 5.89 12.38 4.99 10.94

to 100% (for 1.5 s data length, M3 vs. M5: 97:93%˙
0:87% vs. 99:79% ˙ 0:17%; for 1.75 s data length,
M3 vs. M5: 98:47% ˙ 0:67% vs. 99:50% ˙ 0:57%;
and for 2 s data length, M3 vs. M5: 98:37% ˙ 0:63%
vs. 99:44%˙ 0:59%). For the second category of data,
with all of the three data lengths ([1.5 : 0.25 : 2] s),
the performance of M3 was always higher than that
of M5 (for 1.5 s data length, M3 vs. M5: 91:59% ˙
8:25% vs. 83:54% ˙ 16:47%; for 1.75 s data length,
M3 vs. M5: 92:20%˙ 6:54% vs. 84:73%˙ 13:11%;
and for 2 s data length, M3 vs. M5: 92:25% ˙ 5:54%
vs. 84:69% ˙ 11:40%, p >0.1). This meant that, for
several participants, when the classification performance
still had much room for improvement, the proposed
algorithm t-eCCA had a good improvement effect. The
results showed that the performance of the proposed
cross-target transfer algorithm was higher than that of
the classic non-training algorithms CCA and FBCCA.

On the basis of the analysis results, we determined
that when using only half of the training time, the
transfer algorithm t-eCCA exhibited a classification
performance that is close to that of the representative
training algorithms eCCA and TRCA, and significantly
higher than that of the classic non-training algorithms
CCA and FBCCA.

4 Discussion

4.1 Further understanding of the Volterra model

4.1.1 Comparison of different signal models
As discussed in Section 2.1, when the order of the
Volterra model P equals 1 (P D 1), it degenerates into
the Moving Average (MA) model as follows:

sc.n/ D

N1�1X
m1D0

hc
1.m1/u.n �m1/ (23)

When the order of the Volterra model P equals 2
(P D 2) and both memory spans equal 1 (N1 D N2 D

1), it degenerates into the Quadratic Polynomial (QP)
model as follows:

sc.n/ D hc
0 C h

c
1u.n/C h

c
2u

2.n/ (24)

The experimental results illustrate the rationality of
the Volterra model as the SSVEP signal model compared
with the MA and QP models. The SSVEP data of eight
targets (and its stimulus frequency range is 8–15 Hz)
were selected as the response signals of different
signal models, with 1 s data length of each target
(corresponding to 1 Hz interval at adjacent stimulus
frequencies).
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Figure 9 shows the results of different signal models
for a typical subject. The identification results in the time
domain waveform (see Fig. 9a) and amplitude spectrum
(see Fig. 9b) show that MA could only characterize the
fundamental component of the SSVEP response, not the
second harmonic. In addition, although the QP model
could simultaneously characterize the fundamental and
second harmonic of the SSVEP response, the fitting
accuracy was low (see Figs. 9c and 9d). Figures 9e
and 9f show that the Volterra model has relatively
high modeling capability to accurately describe the
fundamental and second harmonic of the SSVEP
response. Table 4 shows the Normalized Mean Square
Error (NMSE) results for the three different signal
models.

As shown in Table 4, the NMSE of the QP model
was the largest, that was 1; the NMSE of the MA model
reached 0.21; and the NMSE of the Volterra model was
the smallest, only 0.04. The results showed that the MA
and QP models could not be used as the SSVEP signal

Table 4 NMSE of fitting results of different signal models.
Model NMSE
MA 0.21
QP 1.00

Volterra 0.04

model and that the Volterra model could be reasonably
used as the SSVEP signal model because of its strong
fitting capability.

4.1.2 Physical interpretation of the Volterra model
As indicated by the p-th-order response of the Volterra
model sc

p.n/ (see Eq. (3)), the system can effectively
characterize the response of the human brain under the
SSVEP paradigm as follows:

(1) Nonlinear: the output sc.n/ is expressed as the sum
of the products of the input signal u.n/ delays, which is
a nonlinear process.

(2) Not memoryless: the p-th-order response sc.n/ is
an .Np � 1/-th-order Markov chain, that is, past stimuli
also contribute to the current response.

Fig. 9 Comparison of the fitting results of different signal models in the time domain waveform and amplitude spectrum: (a)
fitting result of the MA model in the time domain waveform; (b) fitting result of the MA model in the amplitude spectrum; (c)
fitting result of the QP model in the time domain waveform; (d) fitting result of the QP model in the amplitude spectrum; (e)
fitting result of the Volterra model in the time domain waveform; and (f) fitting result of the Volterra model in the amplitude
spectrum.
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(3) Causal: the lower limit of convolution starts from
0, indicating that the model is a causal system.

To intuitively understand the physical meaning of
the Volterra model, the steady-state response of the
model was investigated in the frequency domain[28].
When the stimulus signal is the sum of two sinusoidal
signals (stimulus frequencies: f1 and f2), the first-order
response of the Volterra model sc

1.n/ (see Eq. (A2))
contains only the f1 and f2 frequencies. The first-
order response of a sinusoidal signal with frequency
fi is also a sinusoidal signal of the same frequency,
which has amplitude weighting (the value jH c

1 .e
jwi /j

of the first-order amplitude frequency response at fi )
and phase shift (the value arg.H c

1 .e
jwi // of the first-

order phase frequency response at fi ). The second-order
response of the Volterra model sc

2.n/ (see Eq. (A4))
contains not only the second-frequency components
2f1 and 2f2, but also the second-order intermodulation
f1 ˙ f2, which also have amplitude weighting and
phase shift with the values of the second-order frequency
response at corresponding frequencies. Obviously, with
dual-frequency input, the response of the Volterra
model was completely consistent with the nonlinear
characteristic of SSVEP response, that is, harmonic and
intermodulation.

Specifically, when the stimulus signal is a single
sinusoidal signal (digital angular frequency: w), the first-
order response of the Volterra model sc

1.n/ (see Eq. (A7))
generates the fundamental component of SSVEP, which
has amplitude weighting (the value jH c

1 .e
jw/j of the first-

order amplitude frequency response at w) and phase
shift (the value arg.H c

1 .e
jw// of the first-order phase

frequency response at w). The second-order response
of the Volterra model sc

2.n/ (see Eq. (A8)) produces
the second harmonic component, which has amplitude
weighting (the value jH c

2 .e
jw ; ejw/j=2 of the second-

order amplitude frequency response at w) and phase
shift (the value arg.H c

2 .e
jw ; ejw/ of the second-order

phase frequency response at w).
In general, the p-th-order response of the Volterra

model includes all of the frequency components
of jaf1 ˙ bf2j; aC b D p; a; b 2 N. Therefore, the
P -th-order Volterra system can characterize the highest
P -th-order harmonic and P -th-order intermodulation.

From the previous presented analysis, the Volterra
model can characterize the SSVEP response, whose
frequency response can describe the frequency features
of SSVEP. Given that the Volterra model is a typical
representative of the nonlinear transfer function, the

transfer function can be used to explain the SSVEP
response.

4.1.3 Complexity of the Volterra model
In general, the complexity of the p-th-order kernel of the
Volterra model is exponential (O..Np/

p/), which means
that the number of parameters in the Volterra model
increases rapidly with the order of the nonlinearity P
and the length of the system memory NP . The large
number of coefficients of the Volterra model will limit
its application in real-life environments. Specifically,
when the order of nonlinearity is large, the model
has high complexity and can easily overfit[27]. The
energy of SSVEP response is mainly concentrated at
the fundamental and second harmonics of the stimulus
frequency, which play an important role in SSVEP
detection[9]. For most subjects, the data length used
for signal detection is short because of the increasing
performance of SSVEP classification algorithms[13],
which means that the data used to identify the parameters
are limited. On the basis of these considerations, this
study initially investigated a simple second-order system,
that is, the order of the Volterra model is equal to 2
(P D 2) and considers only the fundamental and second
harmonics of the SSVEP signals.

However, higher harmonic information in SSVEP
response can improve the performance of BCI
systems[10, 33]. To improve the performance of the
proposed transfer algorithm, further study is required
to increase the order of the Volterra system. Moreover,
to avoid overlearning of the model, we can simplify
the complexity of the model using the symmetry of
Volterra series expansion[34] and several regularization
techniques[35].

4.2 Multi-target experiment

This study further introduced a classic benchmark
dataset[36] of SSVEP-BCI to test the universality of the
proposed transfer algorithm in multi-target experiments.
The dataset contained data from 35 subjects, with
each subject having six blocks of data and each block
including 40 trials (targets). Each trial comprised 6 s
recording, including 0.5 s cue time in the beginning, 5 s
visual stimulus, and 0.5 s rest time after the stimulation
(for more details see Ref. [36]). A total of 20 targets
(and its stimulus frequencies = [8 : 0.4 : 15.8] Hz) were
selected for training, and the data length of each target
was 2.5 s (corresponding to 0.4 Hz interval at adjacent
stimulus frequencies) in multi-target experiments. This
sixfold cross-validation method was used to calculate
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the classification accuracy, that is, five blocks of data
used for training and one block for testing.

Figure 10 shows the average classification accuracies
across all subjects calculated using different template-
based methods at different data lengths ([0.5 : 0.25 : 2.5]
s). With all of the data lengths, the performance of M3
was significantly higher than that of M4 (p < 0.01). As
the data length increased, the performance improvement
of M3 relative to M5 continuously decreased from
18.86% (M3 vs. M5: 63:88%˙ 17:43% vs. 45:02%˙
18:43%, p < 0.0001) with 1 s data length to 0.67% (M3
vs. M5: 86:04%˙ 10:33% vs. 86:71%˙ 15:96%, p >
0.05) with 2.5 s data length. Similarly, with the increase
in data length, although the difference between M3 and
M1 continuously decreased from 16.37% (M3 vs. M1 :
63:88%˙ 17:43% vs. 80:25%˙ 21:06%, p < 0.0001)
with 1 s data length to 6.19% (M3 vs. M1 : 86:04%˙
10:33% vs. 92:23%˙ 16:65%, p < 0.05) with 2.5 s data
length, the performance of M3 was still significantly
lower than that of M1. In multi-target experiments,
different targets have different spatial positions, and
other targets are usually located around the stimulus
target. Furthermore, the difference in the spatial location
of visual stimuli and the stimulation of the peripheral
vision will affect the response of the central visual
field[37–39]. However, the influence of spatial information
was not included in the signal model, so that the
transferred SSVEP template could not accurately contain
the response under multi-target stimulation, which
decreased the performance of the proposed transfer
algorithm. Therefore, further investigations are required
to explore the effect of peripheral visual stimuli on the
SSVEP response. A feasible approach is to quantitatively

Fig. 10 Target identification accuracy as a function of data
length (from 1 to 2.5 s with an interval of 0.25 s) calculated
by different methods. The asterisks above the horizontal
bars represent the p values between M3 and other methods
(*: p< 0.05; **: p< 0.005; ***: p< 0.0005), ns indicates not
significant, and the error bars indicate the standard errors.

compensate the effect of the peripheral stimuli of
each target according to the target arrangement of the
actual stimulus paradigm to improve the SSVEP signal
model, which will further improve the classification
performance of the proposed transfer algorithm. In
addition, as discussed in Section 3.3, the performance of
the proposed transfer algorithm with a short data length
still had much room for improvement. Therefore, we
consider adding the transient response to the SSVEP
signal model to further improve the modeling process.
Moreover, the use of the proposed transfer algorithm in
practical systems requires further investigation to design
an online multi-target experiment to test its efficacy.

4.3 Percentage of training stimulus frequencies

In the single-target SSVEP experiment with 16 stimulus
frequencies, eight stimulus frequencies were used
to train the model to obtain the proposed transfer
algorithm t-eCCA, with the percentage of training
stimulus frequencies of 50%. On the basis of the
results presented in Section 3.3.2, with half of the
training time, the proposed transfer algorithm t-eCCA
achieved a classification accuracy that is close to that
of the representative training algorithms eCCA and
TRCA. The sampling rate of stimulus frequencies
played an important role in the transfer paradigm.
Quantitatively evaluating the percentage of training
stimulus frequencies could provide a clear guide for
collecting training data.

Figure 11 illustrates the classification accuracy of t-
eCCA at different sampling rates of stimulus frequencies.
Specifically, four different sampling rates (i.e., 25%,
37.5%, 50%, and 62.5%) were compared, corresponding
to the number of sampling frequencies 4, 6, 8, and

Fig. 11 Target identification accuracy as functions of data
length (from 0.5 to 2 s with an interval of 0.25 s) calculated
by the proposed transfer algorithm t-eCCA at different
sampling rates (i.e., 25%, 37.5%, 50%, and 62.5%). The
error bars indicate the standard errors.
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10. Obviously, as the sampling rate decreased, the
classification performance of the proposed transfer
algorithm also decreased as a whole. As the sampling
rate decreased, but not less than 50%, the classification
accuracy of the transfer algorithm remained stable as
a whole, close to that of the representative training
algorithm eCCA. When the sampling rate was less
than 50%, the classification performance of the transfer
algorithm decreased sharply because as the sampling
rate decreased, the available information also decreased,
resulting in insufficient accuracy of the reconstructed
template. On the basis of the assumption that the evoked
components of SSVEP were relatively stable, a possible
solution was to adopt subject-specific interpolation,
which was expected to improve the accuracy of the
transferred template with a small amount of training
data. Considering the training time and classification
accuracy, the best sampling rate of stimulus frequencies
for the single-target experiment was 50%.

5 Conclusion

This study proposed an effective cross-target transfer
algorithm for the SSVEP-BCI system. On the basis
of the nonlinear transfer function theory, the SSVEP
response was modeled as a Volterra filter by taking full
advantage of the nonlinear characteristics of SSVEP
signals. In addition, the cross-target transfer algorithm
based on the Volterra model could effectively reduce
the training time of the BCI system by utilizing the
correlation of the frequency domain features of SSVEP
signals. As a result, in a single-target SSVEP experiment
with 16 stimulus frequencies, the proposed transfer
algorithm t-eCCA obtained an average accuracy of
86:96% ˙ 12:87% across 12 subjects using only half
of the calibration time, which exhibited no significant
difference from the representative training classification
algorithms, namely, eCCA (88:32% ˙ 13:97%) and
TRCA (88:92%˙14:44%), and was significantly higher
than that of the classic non-training algorithms, namely,
CCA and FBCCA. The results showed that the proposed
cross-target transfer algorithm t-eCCA can fully utilize
the information about the targets and its stimulus
frequencies and effectively reduce the training time of
SSVEP-BCI.

Appendix
The stimulus signal u.n/ is assumed to be the sum of
two sinusoidal signals (stimulus frequencies: f1 and f2),
which can be expressed as follows:

u.n/ D A1 cos.w1n/C A2 cos.w2n/;

w1 > w2; n D 0; 1; : : : ; L � 1 (A1)

where Ai denotes the amplitude of the sinusoidal signal
and wi D 2 fi represents the digital angular frequency
(i D 1 and 2).

The first-order response of the Volterra model sc
1.n/

is defined as follows:
sc

1.n/ D A1jH
c
1 .e

jw1/j cos.w1nC arg.H c
1 .e

jw1///C

A2jH
c
1 .e

jw2/j cos.w2nC arg.H c
1 .e

jw2/// (A2)

where j � j denotes the amplitude of a complex number
and arg./ represents the phase of a complex number.
H c

1 .e
jw1/ is the first-order frequency response of the

Volterra system, which can be expressed as follows:

H c
1 .e

jw1/ D

C1X
m1D�1

hc
1.m1/e�jw1m1 (A3)

The second-order response of Volterra model sc
2.n/ is

defined as follows:

sc
2.n/ D

A2
1

2
jH c

2 .e
jw1 ; ejw1/j�

cos.2w1nC arg.H c
2 .e

jw1 ; ejw1///C

A2
2

2
jH c

2 .e
jw2 ; ejw2/j�

cos.2w2nC arg.H c
2 .e

jw2 ; ejw2///C

A1A2jH
c
2 .e

jw1 ; ejw2/j�

cos..w1 C w2/nC arg.H c
2 .e

jw1 ; ejw2///C

A1A2jH
c
2 .e

jw1 ; e�jw2/j�

cos..w1 � w2/nC arg.H c
2 .e

jw1 ; e�jw2/// (A4)

where H c
2 .e

jw1 ; ejw2/ denotes the second-order
frequency response of the system,

H c
2 .e

jw1 ; ejw2/ D

C1X
m1D�1

C1X
m2D�1

hc
2.m1; m2/�

e�jw1m1e�jw2m2 (A5)

In particular, suppose A1DA2D1=2, w1 D w2 D w,
and u.n/ the stimulus signal becomes single-frequency,

u.n/ D cos.wn/; n D 0; 1; : : : ; L � 1 (A6)

The first-order response of the single-frequency signal
sc

1.n/ is derived as follows:
sc

1.n/ D jH
c
1 .e

jw/j cos.wnC arg.H c
1 .e

jw/// (A7)

The second-order response of the single-frequency
signal sc

2.n/ is derived as follows:

sc
2.n/ D

1

2
jH c

2 .e
jw ; ejw/j�

cos.2wnC arg.H c
2 .e

jw ; ejw/// (A8)
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