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Improved Approximate Minimum Degree Ordering Method and Its
Application for Electrical Power Network Analysis and Computation
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Abstract: Electrical power network analysis and computation play an important role in the planning and operation

of the power grid, and they are modeled mathematically as differential equations and network algebraic equations.

The direct method based on Gaussian elimination theory can obtain analytical results. Two factors affect computing

efficiency: the number of nonzero element fillings and the length of elimination tree. This article constructs mapping

correspondence between eliminated tree nodes and quotient graph nodes through graph and quotient graph theories.

The Approximate Minimum Degree (AMD) of quotient graph nodes and the length of the elimination tree nodes are

composed to build an Approximate Minimum Degree and Minimum Length (AMDML) model. The quotient graph

node with the minimum degree, which is also the minimum length of elimination tree node, is selected as the next

ordering vector. Compared with AMD ordering method and other common methods, the proposed method further

reduces the length of elimination tree without increasing the number of nonzero fillings; the length was decreased by

about 10% compared with the AMD method. A testbed for experiment was built. The efficiency of the proposed

method was evaluated based on different sizes of coefficient matrices of power flow cases.

Key words: Approximate Minimum Degree and Minimum Length (AMDML); electrical power network analysis;

elimination tree; numerical solution; ordering method

1 Introduction

Nowadays, renewable energy resources, such as wind
and solar, account for increasing proportion of electricity
supply and they are gradually changing the traditional
transmission mode of energy[1], wherein prosumers
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(self-produced and consumed units) in local microgrids
play a significant role. With the deployment of large-
capacity energy storage devices and the application of
advanced information and communication technologies,
a prototype of layered multilevel Energy Internet (EI)
has formed[2–4]. The operation of EI will cause more
energy flow within source-grid-load-storage, and the
operating scenarios in practice are becoming more
complicated. This issue requires a fine-grained modeling
of various components. On the one hand, planning and
operation shall be guided by improving the observability
and controllability of the power grid[5]. On the other
hand, the current operation status of the power grid
needs to be obtained in real time, and weak sections
should be identified accurately[6]. All the aforementioned
requirements need real-time calculations of various
power system online analysis applications such as power
flow, transient stability, state estimation, and Dynamic
Stability Analysis (DSA).



Jian Guo et al.: Improved Approximate Minimum Degree Ordering Method and Its Application for : : : 465

Research achievements have been made in terms of
improving the calculation performance of the power
system online analysis[7]. One way to improve the
calculation performance is to apply computer science
and network communication technologies to achieve
high-performance calculation. The idea of this method
is that the power grid is divided into small blocks
on the basis of link relationship, which could run in
parallel and interact data with each other on the boundary
area. Theoretically, a large number of calculation
tasks can be decomposed into small tasks, which can
be distributed into several processors and calculated
simultaneously. Necessary boundary coordination data
should be exchanged synchronously, thereby reducing
the computation time under the premise of convergence
accuracy. Commonly used methods include specific
application-oriented block strategies and synchronous
coordination modes, as well as using more advanced
computing architectures and optimized storage structure
for parallelization.

From the perspective of numerical solution, problems
of electrical power network analysis are attributed to
solutions of sparse linear equations[8–10]. Two methods,
namely, iterative and direct methods, are used to
solve linear equations formed from electrical power
system analysis, and parallelization is used to speed
up computation[11]. The iterative method involves
only matrix-vector multiplication computation, which
has intrinsic parallelism. However, this method is
sensitive to the condition number and the eigenvalue
distribution of the coefficient matrix, which limited its
applications. The direct method relies on the principle
of Gaussian elimination, which forms a triangular factor
matrix and obtains results through forward/backward
operations. Non-zero fillings will be injected during
elimination, which requires additional storage space.
The ordering method determines the number of nonzero
fillings[12]. Adopting an optimized ordering approach
before elimination can reduce nonzero fillings, thereby
improving calculation efficiency.

The main contributions of this paper are summarized
as follows:

(1) Numerical solutions in power electrical network
analysis are discussed, including computing types,
process, and methods. Moreover, the role of the
elimination tree in numerical calculations and its effect
on improving the computing efficiency are extensively
studied.

(2) On the basis of graph theory and the modeling of

quotient graph theory, an Approximate Minimum Degree
Minimum Length (AMDML) computation model is
built, and AMDML method is proposed. Time and space
complexities of instance are discussed.

(3) Indices of fill ratio, length and average length
based on the elimination tree, which represent the
computation efficiency of matrix decomposition, are
built.

(4) A testbed for electrical power network
computation is built and coefficient matrices of
power flow cases are used to test the efficacy of our
proposed method. Compared with that of Minimum
Degree (MD), Minimum Degree Minimum Length
(MD-ML), and Approximate Minimum Degree (AMD)
ordering methods, the superiority of our method in
terms of time is verified.

2 Literature Review

2.1 Numerical methods for electrical power
network analysis

Applications for power electrical network analysis can be
classified as online and offline[13]. Offline applications
are used for system planning and operation, which
need a large amount of computation without real-
time requirements. Online applications are used for
online system operations and economic dispatch, which
need to obtain results in a timely manner[14]. Both
offline and online applications contain similar functions,
including power flow analysis, short circuit calculations,
N-1 contingency analysis, Optimal Power Flow (OPF)
analysis, and transient stability analysis[15–17]. The
offline and online methods differ in terms of their
computational efficiency and accuracy. On the basis
of the level of details of the underlying power system
models, power system computations include steady-
state analysis, DSA, and optimizations considering
generator/transmission constraints. Figure 1 shows a
diagram of power system computational analysis.

From the perspective of numerical computations, the
static Security Analysis (SA) and Short Circuit (SC)
analysis both involve the knowledge of graph theory
and matrix theory for processing topology changes in
power networks, because they are based on the state
estimation results and power flow calculations. These
problems can be viewed as the process of solving sparse
linear equations because of the characteristics of physical
power grids. Transient stability analysis involves the
modeling of generators, loads, and power electronics
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Fig. 1 Diagram of functional maxIterations.

devices. Thus, it can be viewed as the problem of
constructing differential equations and solving the linear
sparse equations by using iterative approaches. OPF
analysis forms constraint vectors/equations by using
generator/transmission operating conditions and solves
optimization problems, such as economic dispatch and
automatic generation control. Table 1 shows different
types for power system numerical computations.

On the basis of the above discussions, numerical
computations for power electrical networks consist
of three modules: the computational algorithm, the
data preparation, and the solution of sparse linear
equations by using direct methods. Figure 2 shows
three modules of power system numerical computations.
As for the module of the computational algorithm,
static applications, such as OPF, power flow analysis,
state estimation, SC analysis, and N-1 security
analysis, involve different adjustments after data
preparation/preprocessing and sparse linear equation
solutions. State estimation, OPF, and power flow analysis

Table 1 Numerical computing types of power system.
Application Type of numerical solutions

N-1 sercurity analysis Factorization/sparse linear equations
Short circuit Factorization/sparse linear equations

Transient computation Differential/sparse linear equations
Optimal power flow Sparse linear equations with constraints

Power flow Sparse linear equations
State estimation Sparse linear equations

need to adjust constraints/initial vectors. N-1 analysis
and SC analysis need to adjust parts of the network
admittance matrix. Transient stability analysis, involving
dynamic models of generators and load, requires
dynamic model parameters to be adjusted after each
computation step. The data preparation/preprocessing
module provides data for the module of a sparse linear
function solution and sends the adjusted results back to
the module of the computational algorithm for follow-
up computations. The data preparation/preprocessing
module is mainly responsible for data management
and maintenance during the computation process. The
module of solving sparse linear equations by using
direct methods contains triangular decomposition and
forward-backward substitution, and it consumes the most
computational time.

2.2 Elimination tree analysis in numerical
computation

The techniques for solving large-scale linear equations,
especially sparse linear equations, are critical for
many scientific and engineering applications[18]. The
methods for large-scale sparse linear equations include
iterative methods and direct methods for finding
solutions. Iterative methods have limited real-world
applications because of issues of numerical stability and
computational efficiency. Direct methods decompose
the sparse matrix by using LU, Cholesky, and
QR decompositions to form the upper and lower
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Fig. 2 Numerical solutions for electrical network analysis.

triangular matrices. After decomposition, direct methods
then apply forward/backward substitution and obtain
numerical and analytical solutions to the linear sparse
equations. These direct methods are more popular in real-
world applications. Direct methods for solving sparse
linear equations are based on the theory of Gaussian
elimination. These methods form the upper and lower
triangular matrices and obtain exact analytical solutions
by using forward-backward substitution. The direct
methods involve the following four steps:

(1) The sparse matrix is ordered through row/column
interchanges to reduce the number of non-zero matrix
blocks and ensure the matrix is diagonal dominant.

(2) Symbolic factorization is performed, the positions
for filling in the nonzero matrix elements are confirmed,

memories are preallocated, and the data storage
structures are created and initialized.

(3) Numerical decomposition is performed to form the
upper triangular matrix and lower triangular matrix.

(4) On the basis of the matrices obtained in
Step 3, the right-hand-side terms are reordered through
Step 1, forward-backward substitution is performed, and
solution results are obtained.

In the above steps, Step 2 performs symbolic
factorization for the matrix indicating positions of non-
zero elements. During right-looking elimination, when
the i-th row of the matrix eliminates the nonzero element
in the j-th row of the matrix (i.e., the non-zero element
is located at the k-th column, where i < j; k > j ), if
A.i; k/ ¤ 0, U.j; k/ ¤ 0. Taking the matrix in Fig. 3a
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Fig. 3 Elimination tree diagram.

as an example, the matrix in Fig. 3b denotes the newly
filled nonzero elements after symbolic factorization.
Figure 3c shows the corresponding elimination tree.

The elimination tree can represent the column
elimination relationship during the triangular
decomposition. It also determines the computation
orders for the forward-backward substitution. To
improve the computational efficiency of the direct
methods, one needs to reduce the number of nonzero
element fillings induced by the decomposition on the
one hand, and reduce the length of the elimination tree
formed by the parameter matrix after the decomposition
on the other hand. A common approach for reducing
the number of nonzero element fillings is to re-order
matrix by the way of basic rank transformation[19].
Then heuristic algorithms with the concept of node
degree in graph theory for ordering the minimal degree
nodes were also proposed[20]. But minimal degree node
ordering problem is demonstrated to be an NP-hard
problem[21]. The above methods do not consider the
impact of node ordering methods on the length of the
elimination trees. Then the length of the elimination
tree is defined as an attribute, and the length calculation
method is proposed[22]. This method leads to the
ordered sequence with a minimal length. However,
the number of nonzero element fillings caused by
this method is significantly larger than that caused by
the MD method. The method has low computational
efficiency and practicality. With the corresponding
length of the elimination tree considered as a constraint,
this paper proposes the AMDML ordering model and
the computation algorithm. Numerical results show
that compared with the elimination-graph-based MD
ordering method and quotient-graph-based AMD
ordering method, the proposed method can further
reduce the number of nonzero element fillings, decrease

the length of the elimination tree, and increase numerical
computational efficiency, when it is applied to matrices
related to power system computational applications.

3 Definition
Definition 1 Let us define G as reduction graph:
G D .N;E/, where N represents the set of nodes
in graph G and E represents the set of edges in
graph G. From this, the subreduction graph of G,
G.C/ D .C;E.C //, where C � N , E.C/ Df.u; v/ 2
Eju; v 2 C g :

Definition 2 Let us define Q as quotient graph,
Q D .P;E.P //;

P D ffPigj
q

[
iD1

Pi D N;Pm \ Pn D ˚.m ¤ n/g;

E.P / D fPm \ adj.Pn/ ¤ ˚ jPm ¤ Png (1)

where Q represents a quotient graph, P represents the
set of reduction graph nodes within the quotient graph
node, E.P / represents the set of edges between nodes
in the quotient graph, and i; m; n 2 N.

Definition 3 Let us define X.S/ as the division of
N on S ,

NX.S/ D X.S/ [ ffxgjx … S; x 2 N g (2)

It is obtained from the cutset of the subset S derived
from the reduction graph G,
X.S/DfP�S jG.P / is connected in G.S/; S�Ng (3)

That is the remaining nodes that belong to the cutset of
S and the reduction graph G do not belong to S .

For example, graphG, as shown in Fig. 4a, ifX.S/ D
ffa; b; cg; fd; eg; fg; hgg, the obtained quotient graph is
Q D G=X.S/, as illustrated in Fig. 4b.

Factorization of the coefficient matrix on the
quotient graph requires the establishment of a quotient
graph model Qk D .N k; P k; Ek; E.P /k/, where k
represents the number of reduction steps, E � N �N;
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Fig. 4 Example of quotient graph.

E.P / � N � P . When k D 0;Q0 D G0; N 0 D

N;P 0 D ∅; E0 D E; and E.P /0 D ∅.
From this point of view, a reduction graph can be

regarded as a special case of a quotient graph, that
is, the elements of a quotient graph are the elements
of a reduction graph, when the number is 1. The
correspondence relationship between a reduction graph
and a quotient graph needs to be specified to realize
the elimination operation based on the quotient graph.
A quotient model Qk D .N k; P k; Ek; E.P /k/ needs
to be established to perform the ranking analysis on
the quotient graph, which includes both the set of
quotient graphs and the set of reduction graphs, where
k represents the number of elimination steps, E �
N�N;E.P / � N�P . When k D 0;Q0 D G0; N 0 D

N;P 0 D ∅; E0 D E;E.P /0 D ∅.

4 Improved AMD Ordering Method—
AMDML

4.1 Model

First, a calculation model AMDML D .A;M;L;H/

should be built to use the AMDML method on quotient
graph Q. This model is established to represent the
change of node connection and node length after each
elimination step. The definition of the model is as
follows:

Ai D fj j.i; j / 2 E; i 2 N g � N;

Mi D fej.i; e/ 2 E.P /; i 2 N g � P;

Le D adjQ.e/ D fi j.i; e/ 2 E.P /; e 2 P g � N;

adjQ.i/ D .Ai [Mi / � N [ P (4)

where Ai represents the set of nodes connected to node
i in the graph to be reduced, Mi represents the set of
nodes connected to node i in quotient graph, Le is the

set of nodes in the graph to be reduced connected to the
set of nodes e of quotient graph, and adjQ.i/ is the set
of nodes connected to node i in both quotient graph and
the graph to be reduced. The relation between the length
of nodes is as follows:

Hi D fH.i/jDFS.i; root of N/g;

adjG.i/ D .Ai [
e2Mi

Le/ n fig (5)

where Hi represents the length of the elimination tree of
node i , which is traversed by the depth function DFS.�/,
and adjG.i/ is the set of nodes connected to node i in
the graph to be reduced. Thus, during the elimination
process the sets Ak;M k; and Lk are derived as follows:

Ak D .A
k�1
n .Ls � Ls// [ .Nk �Nk/;

Mk D .M
k�1
n [

e2Ms

e/ [ fsg;

Lk D .L
k�1
n [

e2Ms

Le/ [ Ls (6)

After the computation model is constructed, the
calculation process of the AMDML method is shown in
Fig. 5.

Fig. 5 AMDML ordering process.
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Ls D .As [ [
e2Ms

Le/ n s (7)

Ai D .Ai n Ls/ n s (8)

Mi D .Mi nMs/ [ fsg (9)

Di D jAi n i j C j. [
e2Mi

Le/ n i j (10)

Hi D Max.H.s/C 1;H.adjG.s/// (11)
where D and H represent the correction functions of
the external value of the quotient graph node after
elimination and the length of elimination tree for nodes
from the reduction graph, respectively. When more than
one nodes satisfy the MD, the nodes with the minimum
length are selected in turn as the elimination nodes,
which is the selection criteria for generating the ordering
vector. When the Ls set is deleted, the feature free
relation is introduced, that is, nodes i and j satisfy the
following feature free relation in the sketch G:

adjG.i/ [ fig D adjG.j / [ fj g (12)
This finding indicates that the degree of nodes i and

j is equal and has a direct connection relation. Nodes
without a feature relation do not affect the ordering effect
on the set. Then, nodes with a feature relation in Ls are
treated as follows:

i D i [ j;

di D di � jj j;

N D N n fj g;

Aj D ∅;Mj D ∅ (13)

4.2 Case analysis

Unlike in the AMD method, a new memory space
sequence with size n is added to record the change of
the elimination tree length of each node during each
reduction step in our improved AMDML method. In
terms of time complexity, it increases the query time
of the minimum length in the list. In the worst case,
the time complexity of AMDML only increases O.n/
compared with the AMD method. Taking 10�10matrix
as an example (Fig. 6), the reduction process of the
quotient graph and reduction graph is shown in Figs. 7
and 8, respectively. The value changes of the external
approximation degree and length of each node of the
elimination tree in the AMDML ordering process are
shown in Table 2.

In the first two steps of reduction, because the
selected node is an isolated node in quotient Q, the
reduction process affects only the node length, while
the node degree does not change. From Q2 to Q3,
five nodes satisfy the MD of 3; two of them satisfy

Fig. 6 10��� 10 symbolic matrix.

Fig. 7 Quotient graph.

the minimum length, and then Node 3 is selected
randomly for reduction. Thus, A3 D L3 D 5; 6; 7, and
edge .5; 7/ is taken away from quotient A5 and A7 as
the redundant edge. Node 5 is selected from Q4 to Q5,
and A5 D M5 D 2; 3; L2 D 5; 6; 9, L3 D 5; 6; 7,
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Fig. 8 Reduction graph.

Table 2 Value changes of properties in the AMDML-based elimination process.
Step Approximate minimum degrees of quotient graph nodes (1–10) Length of graph nodes (1–10) Selected node

1 f2, 3, 3, 3, 4, 3, 6, 4, 5, 3g f0, 0, 0, 0, 0, 0, 0, 0, 0, 0g 1
2 f2, 3, 3, 3, 4, 3, 6, 4, 5, 3g f0, 0, 0, 1, 0, 1, 0, 0, 0, 0g 10
3 f2, 3, 3, 3, 4, 3, 5, 3, 4, 3g f0, 0, 0, 1, 0, 1, 1, 1, 1, 0g 3
4 f2, 3, 3, 3, 4, 4, 5, 3, 4, 3g f0, 0, 0, 1, 1, 1, 1, 1, 1, 0g 2
5 f2, 3, 3, 3, 3, 4, 5, 3, 4, 3g f0, 0, 0, 1, 1, 1, 1, 1, 1, 0g 5
6 f2, 3, 3, 3, 3, 3, 4, 3, 3, 3g f0, 0, 0, 1, 1, 2, 2, 1, 2, 0g 4
7 f2, 3, 3, 3, 3, 3, 3, 3, 3, 3g f0, 0, 0, 1, 1, 2, 2, 2, 2, 0g 7

L5 D .A5 [L2 [L3/; L5 D 6; 7; 9 are calculated, and
the redundant edge .7; 9/ is deleted. When the reduction
process moves to the seventh iteration, Nodes 6, 8, and
9 satisfy the feature free relation in the quotient graph,
that the filling matrices formed by arbitrary ordering
combination are the same, and they are added to the end
of the ordering vector. Then, the ordering vector [1, 10,
3, 2, 5, 4, 7, 6, 8, 9] is derived.

5 Testbed for Experimental Result
Comparison

5.1 Symbolic analysis of coefficient matrix

The construction of the preordering calculation
verification procedure in the stage of symbol analysis is
illustrated in Fig. 9.

The following definitions are made:
(1) Fill ratio Fr D NonZero (factor matrix) / NonZero

(coefficient matrix);
(2) Length Len DMaxLength (Etree (factor matrix)),

where Etree (�) is the factor matrix for the elimination
tree, which can be obtained through Ref. [19];

(3) Average length ALD Sum.Length .Ni in Etree
(factor matrix))) / number of nodes.

Matpower is used on a computer with an Intel Core
i5 2.6 GHz processor and 4 GB memory, and the node
name, branch number, and dimension of the Jacobian
sparse matrix are selected as example nodes, as shown
in Table 3.

Dynamic MD method[13], MD-ML method[22], AMD
method[23], and the proposed AMDML method are
used to perform ordering computation in the symbolic
analysis phase, and their coefficient matrices come from
power flow cases. Then, the fill ratio Fr, length value
Len, and average length value AL are computed based on
the elimination tree and symbolic factor matrices. The

Table 3 Information of test cases.
Case name Number of branches Jacobian matrix
Case 300 411 530�530
Case 1354 1991 2447�2447
Case 3120 3693 5991�5991
Case 9241 16 049 17 036�17 036

Case 13 659 20 467 23 225�23 225

Fig. 9 Comparison of ordering methods in symbolic analysis phase.
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times using different ordering methods for symbolic
analysis are recorded T as for short. Results are shown
in Table 4.

The above calculation results show that both the MD-
ML and AMDML methods, which take the length of
the eliminating tree as a vector selection constraint, can
further reduce the length of the elimination tree and the
average length without significantly increasing the filling
degree of the factor matrix. Compared with AMD, the
AMDML method reduces the length of eliminating tree
and the average length by 10% and 5%, respectively. The
time for symbolic analysis using the AMDML method
is longer than that of the AMD method, because of the
node length update computation of the elimination tree
(see Eq. (11)). Finally, the calculation speed of back
substitution is improved.

The MD-ML method based on the reduction graph
obtains the shortest length of elimination tree, because
when the length of the elimination tree is used as
the node selection attribute in the reduction graph,
the MD-ML method determines a single row/column
node, while the operation on the quotient graph can
determine only the row/column node set. In accordance
with the filling degree value of the factor matrix,
the filling degree of AMD and AMDML methods
based on quotient graph is generally smaller than that
of the MD and MD-ML methods on the basis of
the reduction graph. The decomposition time of the
triangular factor is much longer than that of the back
substitution in the serial calculation mode relative to
the length of eliminating tree and the average length.
Therefore a small filling degree corresponds to a more
obvious improvement of calculation efficiency. The
time required to complete the above ordering methods
satisfies MD-ML>MD>AMDML>AMD. Thus, we
can conclude that compared with the common ordering
methods, the proposed AMDML method is better in
ordering performance evaluation index.

5.2 Time analysis for power flow computation

The computing environment is Win 7 + MATPOWER

5.0[24]. Symbol analysis is performed on Jacobian
matrix formed by each node of the above example
by nonordering (NaN), MD-ML, AMD, and AMDML
methods. Complete power flow calculations were
executed subsequently. The calculation times of the
Newton method and the P-Q decomposition method are
shown in Tables 5 and 6, respectively.

When the node scale is small, preconditioning analysis
has little effect on the convergence time of power
flow calculation. While the dimension of the sparse
matrix is large (the dimension is more than 5000 in this
paper), the performance can be improved by ordering
preconditioning analysis. A large matrix dimension of
matrix corresponds to a more obvious performance
improvement. The nonzero element filling degree of
AMDML is lower than that of MD-ML, thereby resulting
in a more efficient factor decomposition and a shorter
computation time.

Compared with the AMD method in symbolic analysis
for power flow calculation, the AMDML method can
reduce the power flow convergence time further, and
improve the calculation efficiency by more than 10%,
thereby verifying the feasibility and effectiveness of the
proposed method.

Table 5 Comparison of Newton-Raphson power flow
computation time.

Case name Iteration NaN
(ms)

MD-ML
(ms)

AMD
(ms)

AMDML
(ms)

Case 300 5 13 30 20 12
Case 1354 4 56 45 31 30
Case 3120 6 600 127 107 100
Case 9241 6 7900 454 390 340

Case 13 659 5 19 820 694 430 370

Table 6 Comparison of P-Q power flow computation time.

Case name Iteration NaN
(ms)

MD-ML
(ms)

AMD
(ms)

AMDML
(ms)

Case 300 9 4 5 4 3
Case 1354 8 13 10 8 7
Case 3120 13 64 34 26 21
Case 9241 14 530 155 80 70

Case 13 659 14 1050 237 110 92

Table 4 Characteristic parameter of the elimination tree under different ordering methods.

Method
MD MD-ML AMD AMDML

Len AL Fr T (ms) Len AL Fr T (ms) Len AL Fr T (ms) Len AL Fr T (ms)
Case 300 54 29.3 1.48 0.14 48 30.4 1.49 0.21 58 31.3 1.49 0.10 54 29.8 1.46 0.1

Case 1354 93 48.7 1.40 1.40 73 44.9 1.41 1.80 83 48.3 1.39 0.90 67 41.6 1.38 1.0
Case 3120 160 100.0 1.72 3.00 110 80.2 1.72 4.00 143 85.8 1.68 1.30 126 85.8 1.69 1.2
Case 9241 300 183.6 1.73 8.00 234 166.1 1.74 10.00 286 197.0 1.68 4.00 260 184.3 1.66 4.3

Case 13 659 279 181.5 1.67 10.00 220 149.3 1.64 13.50 301 202.6 1.64 5.00 286 198.4 1.64 5.2
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6 Conclusion

A numerical solution for electrical network analysis
involves a continuous solution to sparse linear equations.
The structure of coefficient matrix affects the calculation
performance. Direct method is used to solve the
problem, which will obtain factor matrix after LU
decomposition. The fill ratio, length, and average length
of the elimination tree are characteristic features of
computing performance. Ordering method is used to
perform elementary row/column transformation in the
symbolic analysis stage. This step reduces the property
values of attributes, thereby improving the calculation
speed.

On the basis of graph analysis and quotient graph
theory, this paper built an ordering model, and
proposed the AMDML ordering method. Compared
with commonly used ordering methods, the method
can further reduce the length and average length of the
elimination tree without increasing the fill ratio of the
factor matrices. Different sizes of matrices of power
flow cases verify the efficacy of the proposed method.
Further studies can be conducted as follows:

(1) Decomposition of the coefficient matrix is a
basic process used in the direct method to solve sparse
linear equations. Efficient ordering methods are also
applicable to various power electrical network analyses
and computing applications, such as state estimation,
transient stability, and OPF.

(2) The length of the elimination tree influences the
dependencies of computations between nodes, which
also affects the solution vector. Multithreaded/multicore
architecture-based sparse vector technology can further
reduce computing time. Additional attention needs to be
paid to elimination tree-based parallelization.
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