
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 04/15 pp426–439
DOI: 10 .26599 /TST.2019 .9010080
Volume 26, Number 4, August 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Modeling and Analyzing the Performance of High-Speed Packet I/O

Xuesong Li�, Fengyuan Ren, and Bailong Yang

Abstract: Recently, 10 Gbps or higher speed links are being widely deployed in data centers. Novel high-speed

packet I/O frameworks have emerged to keep pace with such high-speed links. These frameworks mainly use

techniques, such as memory preallocation, busy polling, zero copy, and batch processing, to replace costly operations

(e.g., interrupts, packet copy, and system call) in native OS kernel stack. For high-speed packet I/O frameworks,

costs per packet, saturation throughput, and latency are performance metrics that are of utmost concern, and various

factors have an effect on these metrics. To acquire a comprehensive understanding of high-speed packet I/O, we

propose an analytical model to formulate its packet forwarding (receiving–processing–sending) flow. Our model takes

the four main techniques adopted by the frameworks into consideration, and the concerned performance metrics are

derived from it. The validity and correctness of our model are verified by real system experiments. Moreover, we

explore how each factor impacts the three metrics through a model analysis and then provide several useful insights

and suggestions for performance tuning.

Key words: high-speed packet I/O; costs per packet; saturation throughput; latency; modeling

1 Introduction

In recent years, the capacities of network links in data
centers have witnessed numerous upgrades to fulfill
the ever-increasing bandwidth demand of data-intensive
applications. Nowadays, high-speed links of multiple
10 Gbps have been widely deployed. However, due to
overheads imposed by several costly operations (e.g.,
interrupts, packet copy, and system calls), keeping pace
with such high-speed links is a demanding task for the
native OS kernel network stack[1, 2].

To achieve line-rate packet processing even for small
size packets, novel high-speed packet I/O frameworks,

�Xuesong Li is with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China, and
also with Xi’an Research Institute of Hi-Tech, Xi’an 710025,
China. E-mail: lixs16@mails.tsinghua.edu.cn.
� Fengguan Ren is with the Department of Computer Science

and Technology, Tsinghua University, Beijing 100084, China.
E-mail: renfy@tsinghua.edu.cn.
�Bailong Yang is with Xi’an Research Institute of Hi-Tech, Xi’an

710025, China. E-mail: xa 403@163.com.
�To whom correspondence should be addressed.

Manuscript received: 2019-11-15; accepted: 2019-12-31

such as netmap[1], Intel DPDK[3], and PF RING ZC[4],
are proposed. These frameworks bypass the kernel
network stack and exploit techniques, such as memory
preallocation, busy polling, zero copy, and batch
processing, to accelerate packet I/O. Because high-speed
packet I/O frameworks could attain high throughput and
low latency, they are expected an extensive application
in data centers. Specifically, they can be used as the
fast packet processing engine of software routers[5, 6],
switches[7, 8], and middleboxes[9, 10].

In general, costs per packet, saturation throughput, and
latency are the most concerned performance metrics for
high-speed packet I/O, and these metrics are potentially
affected by various factors, including traffic pattern,
service capability, and batch processing size. Though
rare, the impacts of some factors have been studied in
previous work, those studies are mainly carried out by
measurements, and only partial factors and performance
metrics are covered. Moreover, the interaction among
factors remains unknown. What we expect to acquire
is a comprehensive understanding of high-speed packet
I/O.

In this paper, we concentrate on the modeling

Xuesong Li et al.: Modeling and Analyzing the Performance of High-Speed Packet I/O 427

and performance evaluation of high-speed packet
I/O. To address the limitations of measurements,
we propose an analytical model to formulate the
packet forwarding flow of high-speed packet I/O
frameworks. Our analytical model takes the four main
techniques (i.e., memory preallocation, busy polling,
zero copy, and batch processing) commonly used in the
frameworks into consideration, and it is abstracted as
an MX=GB=1=.RC B/ queue with multiple vacations.
Given that it is not a common queuing model, we first
derive its queue length distribution at steady state. Then,
on the basis of the model, we deduce the algebraic
formulas of the concerned metrics. The validity and
correctness of our model are verified by real system
experiments based on Intel DPDK. Moreover, we
conduct a series of quantitative analysis to demonstrate
how each factor impacts the three performance metrics.
The insights and suggestions summarized from model
analysis are threefold.

(1) In most cases, batch processing is crucial to
improve the concerned performance metrics. However,
the max batch processing size does not follow the
principle of “the bigger, the better”. A max batch
processing size greater than 32 does not result
in significant gain in either costs per packet or
saturation throughput, but increases latency. In addition,
dynamically adjusting the max batch processing size is
not necessary, because a size of 32 can well balance all
three metrics.

(2) The latency reaches a cliff point when the system
utilization reaches about 80%. To achieve low latency,
we suggest controlling system utilization under this
threshold. Simultaneously, we find that the normalized
latency-utilization characteristic curve will not be
affected by service capability and batch processing
setting. Traffic pattern is the only factor that exerts
differences on the curve.

(3) Batch processing is not always the best choice.
When high-speed packet I/O frameworks serve heavy
task applications, such as intrusion detection (in which
several hundreds of CPU cycles will be consumed
to process a received packet), batch processing can
hardly decrease the costs per packet and increase the
saturation throughput, but increase the latency by a few
microseconds.

The rest of this paper is structured as follows. In
Section 2, we introduce high-speed packet I/O and
review related work. In Section 3, we establish an
analytical model for high-speed packet I/O. We conduct

a detailed model derivation, and then the concerned
performance metrics are deduced from the model.
Subsequently, we present the validation of our model
in Section 4. In Section 5, we analyze the impact of
various factors on performance metrics in detail. Insights
and suggestions to improve the performance of high-
speed packet I/O frameworks are also summarized in
this section. Finally, we draw the conclusions in Section 6.

2 Background and Related Work

In this section, we first introduce high-speed packet I/O
and the main techniques that it adopts. Then, the packet
forwarding flow of high-speed packet I/O is described.
Related studies are also discussed in this section.

2.1 High-speed packet I/O

As the native OS kernel network stack is designed as a
general-purpose packet processing engine, it prioritizes
compatibility rather than performance. As a result, kernel
network stack does not perform well when required
to cooperate with 10 Gbps or higher speed network
links. Nowadays, high-speed packet I/O frameworks,
such as netmap, Intel DPDK, and PF RING ZC, fix
this issue by offering a stripped-down alternative to the
kernel network stack. These frameworks abandon time-
consuming operations (e.g., interrupt, packet copy, and
system calls) and mainly use the following techniques
to achieve high throughput and low latency:

(1) Memory preallocation. This technique allocates
all memory resources required to store packets before
starting packet reception or transmission. Two ring
buffers (Rx ring buffer for reception and Tx ring
buffer for transmission), each with a memory of R
packets, are allocated when the network driver is
loaded, and the memory will be recycled and reused
for subsequent packet I/O. With memory preallocation,
frequent memory allocation and deallocation could be
avoided.

(2) Busy polling. Busy polling is defined as the ability
to continuously poll the ring buffer without waiting for
interrupts from Network Interface Cards (NICs). The
New API (NAPI) mechanism of Linux kernel stack,
which is introduced in kernel version 2.6, also absorbs
the idea of polling. NAPI will switch to polling mode
under high traffic load to avoid interrupt handling. Busy
polling could mitigate the delay associated with the
interrupts, but will burn CPU cycles when there are no
packets to process.

(3) Zero copy. By mapping the Direct Memory

428 Tsinghua Science and Technology, August 2021, 26(4): 426–439

Access (DMA)-able region (i.e., ring buffer) for NICs
to user memory space, packet I/O frameworks could
avoid intermediate packet copy among the ring buffer,
kernel memory space, and user memory space. With the
use of this method, the user application could directly
access the memory region that was once restricted, thus
potentially entailing risks for the stability of the system.

(4) Batch processing. When enabling batch
processing, high-speed packet I/O frameworks will
retrieve a batch of packets per polling, then process and
send them in a group. Batch processing could amortize
the overhead of memory management over several
packets and improve instruction and data cache locality,
prefetching effectiveness, and prediction accuracy.

Furthermore, high-speed packet I/O can better support
packet processing on multicore systems by distributing
traffic across multiple cores and adopting run-to-
completion execution model at each core. In general, we
could depict the packet forwarding flow of high-speed
packet I/O at each core with Fig. 1. As shown, when
packets arrive at the NIC, they will be pushed to the Rx
ring buffer via DMA transfer. When the Rx ring buffer is
filled with packets, the following forwarding loop will be
executed: (a) retrieving a batch of packets via polling the
buffer; (b) processing each packet in the batch; and (c)
sending the processed packets to Tx ring buffer. When
the network link is idle and no packet presents in the
Rx ring buffer, the CPU core will still execute the busy
polling loop until a packet arrives, then it will again go
into the above forwarding loop. We point out where the
aforementioned four techniques are used in Fig. 1.

NIC

Kernel network stack

Hardware

Kernel space

User space polling driver

I/O library

Batch processing

Recv_Batch() Proc_Batch() Send_Batch()

User space

Tx ring bufferRx ring buffer

Busy
polling

Busy
polling

Memory
pre allocation

Zero copy

DMA transfer DMA transfer

R T

Fig. 1 Packet forwarding flow of high-speed packet I/O.

2.2 Related work

At present, research on high-speed packet I/O
mainly concentrates on the implementation
of frameworks[1, 3, 4, 11] and the development of
application[8, 10, 12–16]. As far as we know, few works
have focused on the modeling and performance
evaluation of high-speed packet I/O.

Gallenmüller et al.[17] compared the transmission
efficiency and latency of some main high-speed packet
I/O frameworks via measurements. The influences of
batch size on saturation throughput and latency were
also tested in their work. Similar measurements were
conducted on software switches in Refs. [18, 19].

Jarschel et al.[20] provided a performance model of the
OpenFlow system. They mainly focused on capturing the
delay experienced by packets that have to be processed
by the OpenFlow controller in contrast to that be
processed by the OpenFlow switch only. Bolla et al.[21]

proposed an analytical model to represent the impact of
power saving technologies on software routers, but they
did not consider the application of high-speed packet
I/O in their software routers. Su et al.[22] modeled the
process, in which one CPU core polls multiple Rx queues
of virtual switch. Unfortunately, batch processing, which
is one of the main features of high-speed packet I/O, is
not considered in their work. Also, the assumption that
packets arrival follows a Poisson process is outdated,
which does not characterize the bursty nature of packets
arrival in high-speed networks. Research on kernel stack
modeling can be found in Refs. [23, 24].

3 Queuing Model for High-Speed Packet
I/O

In this section, we establish an analytical model to
formulate the packet forwarding flow of high-speed
packet I/O. Our analytical model takes the four main
techniques described in Section 2.1 into consideration.
Based on our analytical model, we could obtain
expressions for costs per packet, saturation throughput,
and latency, all of which are crucial metrics for high-
speed packet I/O.

3.1 Model description

Traffic arrival process. We assume that packets arrive
at the system in batches according to a compound
Poisson process with the mean batch-arrival rate �. This
batch-arrival assumption lies in the bursty nature of

Xuesong Li et al.: Modeling and Analyzing the Performance of High-Speed Packet I/O 429

packet arrivals in real high-speed networks[25, 26], and can
effectively approximate the network traffic as presented
in Refs. [27,28]. Moreover, considering that statistical
characterization of packet interarrival time is well
known to have long-range dependency and multifractal
statistical features[29, 30], the distribution of the arriving-
batch size is assumed to follow Zipf’s law (which
can be regarded as the discrete version of a truncated
continuous Pareto distribution)[21]. In detail, the arriving-
batch size X is a random variable with Probability
Mass Function (PMF) P.X D j / D xj ; j D 1; 2; : : : ,
Probability Generating Function (PGF) X.z/ DP1
jD1 xj z

j , and expectation E.X/ D
P1
jD1 xj � j .

According to Zipf’s law, P.X/ is given by

P.X D j / D

8̂̂̂̂
<̂
ˆ̂̂:

1

j v
 X
lD1

1

lv

; j 6 I

0; j >

(1)

where is the truncated maximum arriving-batch size
and v is the burst degree. Both and v will influence
the distribution of batch arrival size.

Polling and vacation. After the packets enter Rx ring
buffer, high-speed packet I/O frameworks retrieve them
via polling. Due to the use of busy polling, no packets
will be returned and processed after an empty polling
when the Rx ring buffer is empty. However, an empty
polling also consumes CPU cycles, so the framework can
only serve the incoming packets until the next polling
returns with some packets. From this perspective, an
empty polling can be viewed as a vacation during which
incoming packets will not be detected and processed.
Let F be the CPU frequency and Cv be CPU cycles
consumed by a single empty polling, then the single
vacation time V is given by

V D
Cv

F
(2)

Given that each empty polling always executes the
same function call, Cv is a fixed value. Correspondingly,
the distribution function of V and its Laplace-Stieltjes
transform are given by

V.t/ D

(
0; if t < V I

1; if t > V;

and

V �.z/ D

Z 1
0

e�ztdV.t/ D e�Vz (3)

respectively.
Batch service process. Recalling that high

performance packet I/O frameworks usually adopt batch

processing, it may retrieve and serve a batch of packets
in one polling loop. Generally, an upper bound B is
associated with the packet number of batch processing
(e.g., B is 32 in Intel DPDK), that is, the framework
will retrieve all packets to process when packets in
the Rx ring buffer are less than B . Otherwise, only B
packets will be served, and the remaining packets will
be retrieved in subsequent polling.

According to research in Ref. [1], the service time of
a batch of packets in high-speed packet I/O is mostly
dominated by packet number, and packet size exerts
minimal influence. This feature benefits from memory
preallocation and zero packet copy, and it is also
verified by our experiments. Let Cj be the random
variable for CPU cycles used to serve a batch packets of
size j .0 < j 6 B/ and Sj be the corresponding service
time. Then

Cj D j.CIO C Ctask/C Ccall (4)

Sj D
Cj

F
D
j.CIO C Ctask/C Ccall

F
(5)

where CIO is the per-packet I/O CPU cycles, Ctask is
the per-packet application processing CPU cycles, and
Ccall is the CPU cycles consumed by receiving and
sending function calls. Both CIO and Ccall are fixed
values for a specific framework, and Ctask is relevant to
the application manipulating the packets. Assuming the
probability mass function of Ctask is given by

P.Ctask D i/ D �i (6)

Let Sj .t/ be the probability distribution function of
Sj , then Sj .t/ and its Laplace-Stieltjes transform are
given by
Sj .t/ DP fSj 6 tg D

P

�
.j.CIO C Ctask/C Ccall/

F
6 t

�
D

P

�
Ctask 6 .t � F �.jCIOCCcall//

j

�
D

rX
iD0

�i

and

S�j .z/ D

Z 1
0

e�ztdSj .t/ (7)

where r D
�
.tF � .jCIO C Ccall//=j

˘
:

Buffer capacity. We assume that the Rx ring buffer
has finite capacity R, so that at most .RCB/ individual
packets can be held in the high-speed packet I/O
frameworks, where R packets are waiting for service
and B packets are being served.

Queuing model for packet forwarding. In summary,
we can outline that an MX=GB=1=.RCB/ queue with

430 Tsinghua Science and Technology, August 2021, 26(4): 426–439

multiple vacations could fit into the packet forwarding
flow of high-speed packet I/O. Here, MX stands for the
Poisson batch arrival traffic, GB represents batch packet
processing with an upper bound B and the batch service
time follows a general distribution, and R denotes the
capacity of the Rx ring buffer.

So far, we have constructed a queuing model for high-
speed packet I/O. We will demonstrate how to acquire
the concerned performance metrics in subsequent
subsections. As the first step, we need to obtain the
stationary distribution of the queue length (i.e., packet
number left in the Rx ring buffer).

The key notations used in our model description and
derivation are listed below.
� �: Packets batch-arrival rate.
� X : Random variable for arriving-batch size.
� Cv: CPU cycles consumed by a single empty

polling.
� CIO: Per-packet I/O CPU cycles.
� Ctask: Per-packet application processing CPU

cycles.
� Ccall: CPU cycles consumed by receiving and

sending function calls.
� Cj : Random variable for CPU cycles used to serve

a batch packets of size j .0 < j 6 B/.
� V : Random variable for single vacation time.
� V.t/: Distribution function of V .
� V �.�/: Laplace-Stieltjes transform of V.t/.
� Sj : Random variable for service time of a batch

packets of size j .0 < j 6 B/.
� Sj .t/: Distribution function of Sj .
� S�j .�/: Laplace-Stieltjes transform of Sj .t/.
� Gi : Random variable representing the packet

number arriving during the service period of a batch
packets of size i.0 < i 6 B/.
� gj ji : Probability of j packets arriving during the

service period of a batch packets of size i.0 < i 6
B/, gj ji D P.Gi D j /.
� Gi .z/: The probability generating function (p.g.f)

of Gi .
� H : Random variable representing the packets

number arriving during a single vacation period.
� hj : Probability of j packets arriving during a

vacation period, hj D P.H D j /.
� H.z/: The p.g.f of H .
� L.t/: Random variable representing the packets

number arriving during period t .
� l

.t/
j : Probability of j packets arriving during period t .

� L.t/.z/: The p.g.f of L.t/.

� P�i;j : Probability of i packets left in Rx ring buffer
and j packets to be processed at service/vacation
starting epoch.
� n�j : Probability of j packets to be processed at

service/ vacation starting epoch.
� Pi;j : Probability of i packets left in Rx ring buffer

and j packets being processed at arbitrary epoch.
� nj : Probability of j packets being processed at

arbitrary epoch.

3.2 Queue length distribution at service-
completion/vacation-termination epoch

As we cannot directly acquire the stationary distribution
of an MX=GB=1=.R C B/ queue with multiple
vacations, we will first derive its queue length
distribution at service-completion/vacation-termination
epoch.

Let QCn ; n 2 N denote the number of packets
in the Rx ring buffer just after the n-th service-
completion/vacation-termination epoch. Then, the
dynamics of QC D fQCn W n > 1g is given by the
recursion:

QCnC1D

8̂<̂
:

min.H;R/ ; if QCn D 0I
min.G

Q
C
n
; R/; if 0<QCn <BI

min.QCn �BCGB ; R/; if QCn >B

(8)

where H and Gi are random variables representing the
number of packets that arrive during a vacation period
and that arrive during the service period of a batch
packets of size i .0 < i 6 B/, respectively.

Note that the traffic arrival and packet processing
are mutually independent, then the process QC is an
embedded Markov chain. According to Eq. (8), the
transition probability matrix of QC can be given by

P D

266664
p00 p01 : : : p0R

p10 p11 : : : p1R
:::

:::
: : :

:::

pR0 pR1 : : : pRR

377775 ;
where

pijD

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

hj ; if i D 0 and j < RI
gj ji ; if 0 < i < B and j < RI
g.j�iCB/jB ; if i>B and i�B6j <RI

1�

R�1X
kD0

pik; if j D RI

0; other;

(9)

and
hj D P.H D j /;

gj ji D P.Gi D j / :

Xuesong Li et al.: Modeling and Analyzing the Performance of High-Speed Packet I/O 431

Let H.z/ and Gi .z/ be the p.g.f. of H and Gi , then
following the derivation in Ref. [31] and using Eqs. (3)
and (7), we obtain

H.z/D

1X
jD0

hj z
j
DV �.���X.z//De��V.1�X.z// (10)

Gi .z/ D

1X
jD0

gj jiz
j
D S�i .� � �X.z// (11)

Since hj and gj ji can be obtained by inverting H.z/
and Gi .z/, respectively, we can easily calculate the
transition probability matrix P by introducing hj and
gj ji into Eq. (9). Let ���C D Œ�C0 ; �

C
1 ; : : : ; �

C

R � be the
stationary probabilities of QC. Then,���C can be obtained
by solving the following equation:8̂<̂

:
���C D ���CPI
RX
iD0

�Ci D 1:

3.3 Queue length distribution at arbitrary epoch

To obtain the queue length distribution at arbitrary
epoch, we first develop the relationship between queue
length distribution at the service–completion/vacation–
termination epoch and the arbitrary epoch.

LetM� and N� be random variables for the numbers
of packets left in the Rx ring buffer and to be processed
at the service/vacation starting epoch, respectively. Then,
the joint distribution of .M�; N�/ can be represented
by

P�i;j DP.M
�
D i; N� D j / D8̂<̂

:
�Cj ; if i D 0; j 6 BI

�CiCj ; if 0<i6R�B; j DBI
0; other

(12)

Also, we can represent the distribution of N� as

n�j D P.N
�
D j / D

RX
iD0

P�i;j (13)

Then, we have

nj D
n�j Sj

BX
kD0

n�k Sk

(14)

where nj is the probability of j packets being processed
by the framework at the arbitrary epoch.

Let M and N be the random variables denoting
the numbers of packets left in the Rx ring buffer and
being processed at the arbitrary epoch, respectively, and

Pi;j D P.M D i; N D j /. Then,

Pi;j DP.N D j / � P.M D i jN D j / D

njP.M D i jN D j /:

For i < R,

Pi;j Dnj

� iX
kD0

P.M� D kjN� D j /ge
i�kjj

�
D

nj

iX
kD0

P�
k;j

n�j
ge
i�kjj (15)

For i D R,

PR;j Dnj

� RX
kD0

P.M�DkjN�Dj /

1X
xDR�k

ge
xjj

�
D

nj

RX
kD0

P�
k;j

n�j

1X
xDR�k

ge
xjj (16)

where ge
i jj

is defined as the stationary probability that
i packets arrive during an elapsed service time of j
packets. According to Ref. [32], ge

i jj
is given as follows

(for brevity, we let S0 D V , then ge
i j0

represents the
stationary probability that i packets arrive during an
elapsed vacation time):

ge
i jj D

Z 1
0

l
.t/
i

P.Sj > t /

E.Sj /
dt (17)

where l .t/i is the probability of i packets arriving during
period t . In a similar way with that we get hj and gj ji ,
we can obtain l .t/i by inverting

L.t/.z/ D

1X
iD0

l
.t/
i zi D e��t.1�X.z//:

3.4 Concerned performance metrics

For high-speed packet I/O, costs per packet, saturation
throughput, and latency are the performance metrics that
are of utmost concern. We derive these metrics with
the model description in Section 3.1 and the stationary
probabilities obtained in Section 3.3.

(1) Costs Per Packets (CPPs). It is defined as
average CPU cycles used to forward (including receiving,
processing, and transmitting) a packet. Since batch
processing with different batch sizes brings about
different overheads, CPPs will change with traffic
pattern, traffic load, and max batch processing size.

Realizing that n�j .0 6 j 6 B/ is exactly the
distribution of batch processing size, then the CPP is
given by

432 Tsinghua Science and Technology, August 2021, 26(4): 426–439

CPP D

BX
jD1

n�j E.Cj /

BX
jD1

j � n�j

D

BX
jD1

�
j.CIO CE.Ctask//C Ccall

�
n�j

BX
jD1

j � n�j

D

CIO CE.Ctask/C
Ccall

b
(18)

where b D
�XB

jD1
j � n�j

�ı�XB

jD1
n�j

�
is the

average batch processing size.
(2) Saturation Throughput (ST). It is a metric

defined as the maximum packet processing rate achieved
by the frameworks when the CPU core is saturated.

“Saturation” means that the Rx ring buffer is always
filled with a mass of packets. Then, B packets will be
returned from every polling. Accordingly, saturation
throughput is denoted by

ST D
B

E.CB/=F
D

F

CIO CE.Ctask/C Ccall=B
(19)

(3) Latency. It is the queuing and processing delay
experienced by a packet.

Let NL be the average number of packets in the queuing
system (including the ones left in the Rx ring buffer and
being processed by the framework). Then, from the
definition of average queue length we know that

NL D

RX
iD0

BX
jD0

.i C j /Pi;j (20)

Substituting Eqs. (15) and (16) into Eq. (20), after
simplification we obtain

NL D

BX
jD0

nj

�
j C

Z 1
0

P.Sj > t /

E.Sj /
�E.X/t dt

�
C

nB

RX
iD0

iP�i;B

n�B
(21)

Let NW be the average waiting time of a packet, namely,
latency. Then, by using Little’s law, we have

NW D
NL

��
(22)

where �� is the effective packet arrival rate and equal to
the packet processing rate, i.e.,

�� D

BX
jD0

jn�j

BX
jD0

E.Sj /n
�
j

(23)

4 Model Validation

In this section, experiments are conducted to validate our
analytical model. We compare the three performance
metrics obtained from our model with the results from
a real high-speed packet I/O framework—Intel DPDK.
Intel DPDK is chosen as it is an open-source software
and supports numerous commodity NICs.

4.1 Experiment setup

Our DPDK experiment testbed consists of two servers:
one traffic generator and one forwarder, and both servers
are equipped with a dual-port Intel X520-SR2 network
interface card (Intel 82599ES 10 Gb Ethernet Controller).
The generator and the forwarder are connected via a 10 Gb
Ethernet link. The generator runs on Intel Core i7-6700
CPU @ 3.40 GHz and has 8 GB DDR4–2133 MHz memory.
The forwarder runs on a dual socket Intel Xeon E5-2620
v3 CPU and has 64 GB DDR4–1866 MHz memory. The
available CPU core frequencies of the forwarder are
1.2 GHz to 2.4 GHz with 0.1 GHz step. Hyper-threading
and turbo boost of the forwarder are disabled to make the
measurements consistent and repeatable.

At the beginning of each experiment, we initialize a
DPDK instance, which is pinned to a dedicated core,
on the forwarder. Then, with the help of MoonGen
(a software packet generator)[33], the generator starts to
send packets to the forwarder. When packets arrive at the
forwarder, the following receiving–processing–sending
loop will be executed:
� A batch of packets is retrieved from the Rx ring

buffer (B packets will be retrieved at most);
� The source and destination MAC address of each

packet are updated, and a certain number of CPU
cycles (i.e., Ctask) of processing are executed;
� All processed packets are sent in batch to the traffic

generator via the same link.
MoonGen is also used to measure the packet latency

by sending extra timestamped packets periodically
(about 104 timestamped packets per second). The
latency measurement utility of MoonGen employs
the hard timestamping features of commodity Intel
NICs. To send Poisson batch arrival traffic, we

Xuesong Li et al.: Modeling and Analyzing the Performance of High-Speed Packet I/O 433

modify the codebase of MoonGen to add the
corresponding functionality. The modified source files
of MoonGen and the sample application code of
DPDK instance can be found in our GitHub repository
(https://github.com/bigstone09/MAPHSPIO).

The values of some important parameters used in our
model are listed in Table 1. Among these parameters,
the values of CIO, Ccall, and Cv are obtained through
measures based on Intel DPDK; the Rx ring buffer size
R remains the default value of DPDK, i.e., 512; the
values of and v are acquired from a CAIDA 10 Gbps
link trace[34] using least-squares fitting. The Cumulative
Distribution Function (CDF) of burst size distribution of
the traffic trace is shown in Fig. 2. We can find Zipf’s law
with D 20 and v D 0:701 can fit the trace statistics
well. Also, we fix the packet size to 64 bytes. Thus, a
10 Gbps link could carry up to 14.88 Mpps (100%) of
packet rate.

4.2 Validation result

To make the validation more convincing, we conduct
Table 1 Values of some used parameters.

Parameter Value Parameter Value
CIO 45 cycles R 512 packets
Ccall 43 cycles 20
Cv 24 cycles v 0.701

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 2 4 6 8 10 12 14 16 18 20

CD
F

Arriving-batch size

CAIDA trace

Zipf's law

Fig. 2 CDF of batch size distribution.

experiments under two different settings: Setting-A,
where BD8, CtaskD100CPU cycles, and F D2:0GHz;
and Setting-B, where B D 32, Ctask D 200CPU cycles,
and F D 2:4GHz. We vary the traffic load from 1%
to 99% and then compare the CPP and latency, under
different loads, the results are depicted in Figs. 3a and 3c,
respectively. We vary the CPU frequency from 1.2 GHz
to 2.4 GHz, then compare the saturation throughput (in
this case, we ignore the frequency constraint in Setting-A
and Setting-B), the results are depicted in Fig. 3b.

4.2.1 CPP
As shown in Fig. 3a, the CPP deduced from our model
coincide with that from experiments in both settings.

 140

 160

 180

 200

 220

 240

 260

 0 10 20 30 40 50 60 70 80 90 100

CP
P

(c
yc

le
s)

Traffic load (%)

Model, Setting-A
Expt., Setting-A
Model, Setting-B
Expt., Setting-B

(a)

0

0.2

0.4

0.6

0.8

1.0

1.2 1.4 1.6 1.8 2.0 2.2 2.4

N
or

m
al

iz
ed

 S
T

Frequency (GHz)

Model, Setting-A
Expt., Setting-A
Model, Setting-B
Expt., Setting-B

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(u
s)

Traffic load (%)

Model, Setting-A
Expt., Setting-A
Model, Setting-B
Expt., Setting-B

(c)

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 10 20 30 40 50 60 70

La
te

nc
y

(u
s)

Traffic load (%)

M/G/1
Model (ψ=1, B=1)

(d)

Fig. 3 Validation of analytical model (“Model” for results of analytical model, “Expt.” for results of DPDK experiment).

434 Tsinghua Science and Technology, August 2021, 26(4): 426–439

We can also find that the CPP just slightly decrease as
the traffic load grows. This is mainly due to the batch
arrival characteristics of traffic, which allows the shared
overhead to be amortized by several packets even under
low traffic loads.

4.2.2 ST
Figure 3b shows that ST measured in DPDK exactly
matches that given by our model. For simplicity and
clarity, we normalize the throughput with the link
capacity (14.88 Mpps). It is noteworthy that even if the
model could give a normalized throughput higher than
1 (due to higher service capability), measures from
the DPDK are always bounded by link capacity (i.e.,
6 1). This is why the ST given by our model and the
experiments at Setting-A is deviated when frequency is
greater than 2.2 GHz.

4.2.3 Latency
As depicted in Fig. 3c, latencies derived from the
model are generally consistent with those from DPDK
measurements under low loads. Although a difference
exists under high loads, the latency evolution from both
sources shows a similar trend. Actually, we cannot
accurately measure the latency experienced by packets
in DPDK. Our approach is to first measure the round-trip
time between the generator and forwarder under different
traffic loads, and then subtract a base round-trip time
(round-trip time of a single packet when Ctask D 0) to
get the latency that packets experience. Considering the
possible measurement errors, the latency approximation
given by our model is still satisfactory. We also found
that our model tends to underestimate the latency. The
additional latency in real system experiments mainly
comes from memory access overhead, which is not
considered in our model.

When and B are both equal to 1 (Poisson
traffic and non-batch processing), our analytical
model approximately degenerates to an M/G/1 queue.
Therefore, we also compare the latency deduced from
our degenerated model with that from the M/G/1 queue
in Fig. 3d. The results also confirm that our model
derivation is correct and credible.

In summary, our model can well formulate the
packet forwarding flow of high-speed packet I/O. When
compared with the results from real system experiments,
our model can provide very close CPP and ST. Although
errors exist with regard to latency, latencies derived
from our model show similar evolution trends with that
from system experiments, which is also valuable in
performance analysis.

5 Performance Analysis

In this section, we will demonstrate how different
factors impact the performance of high-speed packet
I/O. Several insights and suggestions gained from our
model analysis are also provided.

5.1 Impacts of various factors

In general, configurable factors that may have an
impact on performance include traffic pattern (truncated
maximum arriving-batch size and bursty degree v),
service capability (CPU frequency F and per-packet
processing load Ctask), and maximum batch processing
size B . The default parameter settings for our analysis
are D 20, v D 0:7, F D 1:6GHz, Ctask D 100CPU
cycles, and B D 32. When one factor is discussed,
others maintain the default values.

5.1.1 Impacts of traffic pattern
As traffic pattern determines the batch size of packet
arrival, it will also influence the distribution of batch
processing size. Then according to Eqs. (18) – (22),
traffic pattern may impact both CPP and latency, but
has no impact on ST. We analyze the evolution of CPP
and latency when D 1 (Poisson traffic and non-batch
arrival), 10; 20; 30 and v D 0:2; 0:7; 1:2. The results are
shown in Figs. 4 and 5, respectively.

When the traffic load is not particular high, the CPP
will decline with the increase of and decrease of v,
because a higher or lower v implies more bursty
incoming traffic and consequently results in a larger
batch processing size. Then, the shared overheads could
be amortized by more packets, and fewer CPU cycles
will be consumed in an average sense. When traffic
overloads, traffic pattern hardly affects the CPP because
the batch processing size has reached its limit when
overloading.

With respect to latency, it suffers an increase when we
enlarge or shrink v under low and medium traffic loads.
The latency increases because more bursty traffic leads
to a longer queuing time, and a larger batch processing
size increases the processing time. The impact of traffic
pattern on latency under overloads is opposite to that
under low loads, because more bursty traffic will increase
the packet loss rate, and thereby decrease the queuing
time.

From Fig. 4a, we also find that whether the traffic is
batch arrival or not has a significant impact on the CPP.
Because the CPP under low loads when D 1 is much
higher than that when > 1. From Fig. 5, we can also

Xuesong Li et al.: Modeling and Analyzing the Performance of High-Speed Packet I/O 435

 145
 150
 155
 160
 165
 170
 175
 180
 185
 190

 0 10 20 30 40 50 60 70 80 90 100

CP
P

(c
yc

le
s)

Traffic load (%)

ψ=1
ψ=10
ψ=20
ψ=30

(a) Impact of on costs per packet

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(u
s)

Traffic load (%)

ψ=1
ψ=10
ψ=20
ψ=30

(b) Impact of on latency

Fig. 4 Impact of max arriving-batch size .

 146

 148

 150

 152

 154

 156

 158

 0 10 20 30 40 50 60 70 80 90 100

CP
P

(c
yc

le
s)

Traffic load (%)

v=0.2
v=0.7
v=1.2

(a) Impact of v on costs per packet

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(u
s)

Traffic load (%)

v=0.2
v=0.7
v=1.2

(b) Impact of v on latency

Fig. 5 Impact of bursty degree v.

find that the CPP and latency are less sensitive to bursty
degree v.

5.1.2 Impacts of service capability
CPU frequency F and per-packet processing load Ctask

together determine the service capability. According
to Eqs. (18) – (23), the impacts of Ctask on all three
performance metrics are obvious, i.e., the larger the
Ctask, the higher (lower/higher, respectively) the CPP
(saturation throughput/latency, respetively). Since these
impacts are easy to understand, we do not show them in
figures.

The impacts of F on ST and latency are also apparent,
because its role is exactly the opposite of that of Ctask.
However, it is not the case when it comes to CPP. As
revealed in Fig. 6, the increase in frequency also leads
to an increase in the CPP, and this phenomenon is
particularly evident under a moderate traffic load. The
underlying reason is that a large frequency (high service
capability) will reduce the probability of a long queue
length, which results in the decrease of average batch
processing size (i.e., b in Eq. (18)), and then the increase

 144

 146

 148

 150

 152

 0 10 20 30 40 50 60 70 80 90 100

CP
P

(c
yc

le
s)

Traffic load (%)

F=1.2 GHz
F=1.6 GHz
F=2.2 GHz

Fig. 6 Impact of frequency F on CPP.

of CPP.

5.1.3 Impacts of max batch processing size
We depict the evolution of costs per packet and
latency under different traffic loads with B D 1 (non-
batch processing), 8; 32; and 128 in Figs. 7a and 7b,
respectively. The saturation throughput with different B
and Ctask is demonstrated in Fig. 7c.

As can be seen, batch processing is crucial for high-
speed packet I/O, because all three performance metrics

436 Tsinghua Science and Technology, August 2021, 26(4): 426–439

 140

 150

 160

 170

 180

 190

 200

 0 10 20 30 40 50 60 70 80 90 100

CP
P

(c
yc

le
s)

Traffic load (%)

B=1
B=8

B=32
B=128

(a) Impact of B on costs per packet

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(u
s)

Traffic load (%)

B=1
B=8
B=32
B=128

(b) Impact of B on latency

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000

ST
 (

M
pp

s)

Ctask (CPU cycles)

B=1
B=8
B=32
B=128

(c) Impact of B on saturation throughput

Fig. 7 Impact of max batch processing size.

are the worst when B D 1. Meanwhile, we should
also note that the marginal benefit of batch processing
declines with the increase of max batch processing size
B . When B > 32, continuing to increase B will hardly
bring about a reduction in CPP or an augmentation in ST,
but increase the latency. In addition, Fig. 7c also shows
that the impact of B on ST is fading with the increase of
Ctask.

We also claim that there is no need to dynamically
adjust the max batch processing size and B D 32 is
recommended, because it could well balance the CPP, ST,
and latency. B D 32 is the default setting of Intel DPDK
as well as an empirical value, which is now proven to be
reasonable by our model.

5.2 Insights and suggestions

(1) Cliff point of latency. If we look back at Figs. 4b,
5b, and 7b, we may find that the latency increases gently
when traffic load is low, but increases sharply when
traffic load is higher than a specific value (this value
varies with , v, F , Ctask, and B), i.e., there exists a
cliff point. Intuitively, we believe that the cliff point
is more relevant to the system utilization. According
to queuing theory, the utilization, denoted by �, is the
probability that CPU is busy handling incoming packets.
Thus, we can write

� D

BX
jD1

nj D 1 � n0 (24)

After obtaining the expression of utilization, we replot
the evolution of latency with utilization under various
configurations in Figs. 8 – 11. It is noteworthy that
directly comparing the latency evolution at different
Ctask, F , or B is not that fair, for the maximum latency
under different conditions is varying. So we normalize
the latency with the maximum value on each condition
in Figs. 10 and 11.

Two insights could be summarized from the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(u
s)

Utilization (%)

ψ=10
ψ=20
ψ=30

Fig. 8 Evolution of latency with utilization when =10,
20, and 30.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(u
s)

Utilization (%)

v=0.2
v=0.7
v=1.2

Fig. 9 Evolution of latency with utilization when v=0.2,
0.7, and 1.2.

 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 la
te

nc
y

Utilization (%)

Ctask=0/100/500/1000
F=1.2/1.6/2.0/2.4 GHz

Fig. 10 Evolution of normalized latency with
utilization when service capabilities varying.

Xuesong Li et al.: Modeling and Analyzing the Performance of High-Speed Packet I/O 437

 0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 la
te

nc
y

Utilization (%)

B=1/8/32/128

Fig. 11 Evolution of normalized latency with
utilization when B=1, 8, 32, and 128.

evolution:
� In general, the latency is always increasing sharply

when the utilization exceeds about 80%. This cliff value
is of great significance, because it provides guidance
for balancing the utilization and latency. In light of
this, we could consolidate traffic processed by multiple
underloaded cores into one core, thus saving equipment
investment and energy consumption without incurring a
large latency increase.
� Given different per-packet processing loads, CPU

frequency, or max batch processing size, the normalized
latency-utilization characteristic curve remains the same.
The only factor that affects the curve is traffic pattern.

(2) Is batch processing always good choice? As
illustrated in Fig. 7, batch processing could achieve
better CPP, latency, and ST. Although the comparative
advantage is always true for transmission efficiency and
ST, it is not always the case when it comes to latency.

We draw the latency versus traffic load when B D1, 8,
32, 128 and Ctask D 0; 100; 1000 in Fig. 12 (only parts
with utilization below 80% are shown.). It can be seen
that with the increase of Ctask, the comparative advantage
of batch processing on latency is gradually lost. When
the processing load is up to 1000 cycles, non-batch

processing even possesses a few microseconds of
advantage over batch processing. The reasons are
twofold. When Ctask is small, the relative CPP of
batch processing are much higher than those of non-
batch processing. Thus, the queuing delay of non-batch
processing is larger. However, their processing time is
not very different, and then batch processing has an
advantage. Conversely when Ctask is large, batch and
non-batch processing have similar CPP and then similar
queuing delays. But batch processing will lead to an
obviously longer processing time, thus highlighting the
advantage of non-batch processing.

In summary, when high-speed packet I/O
frameworks serve light task applications (e.g., software
switch/router), batch processing is preferred. When
heavy task applications, such as intrusion detection,
are service recipients, non-batch processing deserves a
recommendation.

6 Conclusion
This paper concentrates on the modeling and
performance evaluation of high-speed packet I/O. To
acquire a comprehensive understanding of high-speed
packet I/O frameworks, we develop an analytical model
to characterize their packet forwarding flow. Our model
takes the four main techniques adopted by high-speed
packet I/O frameworks into consideration, and our
concerned performance metrics, i.e., CPP, ST, and
latency, are deduced from this model. The validity and
correctness of our model are verified by real system
experiments. We also quantify the impacts of various
factors on the three metrics by model analysis. Insights
and suggestions could be briefly summarized as follows:

(1) An excessively large max batch processing
size (e.g., B > 32) is detrimental. Also, dynamically
adjusting the max batch processing size is not necessary,
because B D 32 could well balance the CPP, ST, and

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(u
s)

Traffic Load (%)

B=1
B=8
B=32
B=128

(a) Ctask D 0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 10 20 30 40 50

La
te

nc
y

(u
s)

Traffic Load (%)

B=1
B=8
B=32
B=128

(b) Ctask D 100

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12

La
te

nc
y

(u
s)

Traffic Load (%)

B=1
B=8
B=32
B=128

(c) Ctask D 1000

Fig. 12 Interaction of B and Ctask on latency.

438 Tsinghua Science and Technology, August 2021, 26(4): 426–439

latency.
(2) The latency reaches a cliff point when the system

utilization reaches about 80%. And only the traffic
pattern will influence the cliff value.

(3) Non-batch processing is recommended when the
high-speed packet I/O framework serves heavy task
applications, that consume more than several hundreds
of CPU cycles to process one packet.

Acknowledgment

The authors gratefully acknowledge the anonymous
reviewers for their constructive comments. This work
was supported in part by the National Key Research and
Development Program of China (No. 2018YFB1700103),
and the National Natural Science Foundation of China (No.
61872208).

References

[1] L. Rizzo, Netmap: A novel framework for fast packet I/O,
in Proceedings of USENIX Annual Technical Conference,
Boston, MA, USA, 2012, pp. 101–112.

[2] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park, mTCP: A highly scalable user-
level TCP stack for multicore systems, in Proceedings of
USENIX Symposium on Networked Systems Design and
Implementation, Seattle, WA, USA, 2014, pp. 489–502.

[3] Intel, Intel Data Plane Development Kit (DPDK),
http://dpdk.org, 2012.

[4] ntop, PF RING ZC (Zero Copy), http://www.ntop.org/
products/packet-capture/pf ring/pf ring-zc-zero-copy/,
2014.

[5] S. Han, K. Jang, K. Park, and S. Moon, Packetshader:
A GPU-accelerated software router, in Proc. of ACM
SIGCOMM Computer Communication Review, vol. 40, no.
4, pp. 195–206, 2010.

[6] S. Gallenmüller, P. Emmerich, R. Schönberger, D. Raumer,
and G. Carle, Building fast but flexible software routers, in
Proceedings of ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, Beijing, China,
2017, pp. 101–102.

[7] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J.
Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, et
al., The design and implementation of open vSwitch, in
Proceedings of USENIX Symposium on Networked Systems
Design and Implementation, Oakland, CA, USA, 2015, pp.
117–130.

[8] Nicira, Open vSwitch with DPDK, http://docs.openvswitch.
org/en/latest/intro/install/dpdk/2018, 2018.

[9] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M.
Honda, R. Bifulco, and F. Huici, Clickos and the art
of network function virtualization, in Proceedings of
USENIX Symposium on Networked Systems Design and
Implementation, Seattle, WA, USA, 2014, pp. 459–473.

[10] J. Hwang, K. Ramakrishnan, and T. Wood, Netvm: High
performance and flexible networking using virtualization

on commodity platforms, IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 34–47, 2015.

[11] P. Steve and R. David, Introduction to OpenOnload-building
application transparency and protocol conformance into
application acceleration middleware, http://www.moderntech.
com.hk/sites/default/files/whitepaper/SF-105918-CD-1
Introduction to OpenOnload White Paper.pdf, 2011.

[12] Snabb Switch: Fast open source packet processing,
https://github.com/SnabbCo/snabbswitch, 2020.

[13] L. Rizzo and G. Lettieri, Vale, a switched ethernet for
virtual machines, in Proceedings of the 8th International
Conference on Emerging Networking Experiments and
Technologies, Nice, France, 2012, pp. 61–72.

[14] Fd.io, https://fd.io/, 2018.
[15] Cisco, Trex: Realistic traffic generator, https://trex-tgn.

cisco.com/, 2015.
[16] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, MICA:

A holistic approach to fast in-memory key-value storage, in
Proceedings of USENIX Symposium on Networked Systems
Design and Implementation, Seattle, WA, USA, 2014, pp.
429–444.

[17] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and
G. Carle, Comparison of frameworks for high-performance
packet IO, in Proceedings of ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
Oakland, CA, USA, 2015, pp. 29–38.

[18] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle,
Assessing soft-and hardware bottlenecks in PC-based
packet forwarding systems, in Proceedings of the 14th
International Conference on Networks, Barcelona, Spain,
2015, pp. 78–83.

[19] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and
G. Carle, Throughput and latency of virtual switching with
open vswitch: A quantitative analysis, Journal of Network
and Systems Management, vol. 26, no. 2, pp. 314–338,
2018.

[20] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll,
and P. TranGia, Modeling and performance evaluation
of an openflow architecture, in Proceedings of the 23rd
International Teletraffic Congress, San Francisco, CA, USA,
2011, pp. 1–7.

[21] R. Bolla, R. Bruschi, A. Carrega, and F. Davoli, Green
networking with packet processing engines: Modeling and
optimization, IEEE/ACM Transactions on Networking, vol.
22, no. 1, pp. 110–123, 2014.

[22] Z. Su, B. Baynat, and T. Begin, A new model for DPDK-
based virtual switches, in Proceedings of 2017 IEEE
Conference on Network Softwarization, Bologna, Italy,
2017, pp. 1–5.

[23] L. Zabala, A. Ferro, and A. Pineda, Modelling packet
capturing in a traffic monitoring system based on linux,
in Proceedings of 2012 International Symposium on
Performance Evaluation of Computer & Telecommunication
Systems, Genoa, Italy, 2012, pp. 1–6.

[24] K. Salah, K. El-Badawi, and F. Haidari, Performance
analysis and comparison of interrupt-handling schemes in
gigabit networks, Computer Communications, vol. 30, no.
17, pp. 3425–3441, 2007.

Xuesong Li et al.: Modeling and Analyzing the Performance of High-Speed Packet I/O 439

[25] F. Uyeda, L. Foschini, F. Baker, S. Suri, and G. Varghese,
Efficiently measuring bandwidth at all time scales, in
Proceedings of USENIX Symposium on Networked Systems
Design and Implementation, Boston, MA, USA, 2011, pp.
71–84.

[26] T. Benson, A. Anand, A. Akella, and M. Zhang,
Understanding data center traffic characteristics, ACM
SIGCOMM Computer Communication Review, vol. 40, no.
1, pp. 92–99, 2010.

[27] P. Salvador, A. Pacheco, and R. Valadas, Modeling IP traffic:
Joint characterization of packet arrivals and packet sizes
using BMAPs, Computer Networks, vol. 44, no. 3, pp. 335–
352, 2004.

[28] A. Klemm, C. Lindemann, and M. Lohmann, Modeling
IP traffic using the batch Markovian arrival process,
Performance Evaluation, vol. 54, no. 2, pp. 149–173, 2003.

[29] A. Erramilli, O. Narayan, and W. Willinger, Experimental
queueing analysis with long-range dependent packet traffic,
IEEE/ACM Transactions on Networking, vol. 4, no. 2, pp.

209–223, 1996.
[30] W. Willinger, V. Paxson, and M. Taqqu, Self-similarity

and heavy tails: Structural modeling of network traffic, A
Practical Guide to Heavy Tails: Statistical Techniques and
Applications, vol. 23, pp. 27–53, 1998.

[31] M. Chaudhry and J. G. Templeton, A First Course in Bulk
Queues. New York, NY, USA: Wiley, 1983.

[32] R. Nelson, Probability, Stochastic Processes, and
QueueingTheory: The Mathematics of Computer
Performance Modeling. Berlin, Germany: Springer Science
& Business Media, 2013.

[33] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart,
and G. Carle, MoonGen: A scriptable high-speed packet
generator, in Proceedings of the 2015 Internet Measurement
Conference, Tokyo, Japan, 2015, pp. 275–287.

[34] CAIDA, The CAIDA Anonymized Internet Traces
2016 Dataset-20160406, http://www.caida.org/data/passive/
passive 2016 dataset.xml, 2016.

Xuesong Li received the BEng degree
from Tsinghua University in 2013, and the
MS degree from Xi’an Research Institute
of Hi-Tech in 2015. He currently is a
PhD candidate jointly trained by Xi’an
Research Institute of Hi-Tech and Tsinghua
University, under the advising of Prof.
Bailong Yang and Prof. Fengyuan Ren. His

research interests include high-speed packet I/O and energy-aware
data center network.

Fengyuan Ren received the BS and MS
degrees from Northwestern Polytechnic
University, Xi’an, China in 1993 and 1996,
respectively. In Dec. 1999, he obtained the
PhD degree from Northwestern Polytechnic
University. He is now a professor at
the Department of Computer Science and
Technology, Tsinghua University, Beijing,

China. From 2000 to 2001, he worked at the Electronic

Engineering Department of Tsinghua University as a post
doctoral researcher. In Jan. 2002, he moved to the Computer
Science and Technology Department of Tsinghua University. His
research interests include network traffic management and control,
control in/over computer networks, and wireless networks and
wireless sensor networks. He authored / co-authored more than
80 international journal and conference papers. He is a member
of the IEEE, and has served as a technical program committee
member and local arrangement chair for various IEEE and ACM
international conferences.

Bailong Yang received the BS and MS
degrees from Xi’an Research Institute of
Hi-Tech, Xi’an, China in 1990 and 1993,
respectively. He received the PhD degree
from Xi’an Research Institute of Hi-Tech,
Xi’an, China in 2001. He is currently
a professor of Xi’an Research Institute
of Hi-Tech. His research interests include

complex network and computer simulation.

