
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/12 pp347–360
DOI: 10 .26599 /TST.2019 .9010077
V o l u m e 2 6, N u m b e r 3, J u n e 2 0 2 1

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

RBC: A Memory Architecture for Improved Performance
and Energy Efficiency

Wenjie Liu, Ke Zhou, Ping Huang, Tianming Yang, and Xubin He�

Abstract: DRAM-based memory suffers from increasing row buffer conflicts, which causes significant performance

degradation and power consumption. As memory capacity increases, the overheads of the row buffer conflict are

increasingly worse as increasing bitline length, which results in high row activation and precharge latencies. In this

work, we propose a practical approach called Row Buffer Cache (RBC) to mitigate row buffer conflict overheads

efficiently. At the core of our proposed RBC architecture, the rows with good spatial locality are cached and protected,

which are exempted from being interrupted by the accesses for rows with poor locality. Such an RBC architecture

significantly reduces the overheads of performance and energy caused by row activation and precharge, and thus

improves overall system performance and energy efficiency. We evaluate RBC architecture using SPEC CPU2006

on a DDR4 memory compared to a commodity baseline memory system. Results show that RBC improves the

overall performance by up to 2:24� (16:1% on average) and reduces the memory energy by up to 68:2% (23:6% on

average) for single-core simulations. For multi-core simulations, RBC increases the overall performance by up to

1:55� (17% on average) and reduces memory energy consumption by up to 35:4% (21:3% on average).

Key words: memory system; Dynamic Random Access Memory (DRAM); row buffer conflict

1 Introduction

The Dynamic Random Access Memory (DRAM)-based
memory system is a vital component of all computing
systems, ranging from small hand-held systems to large-
scale cloud platforms. As the memory system provides a
buffer to alleviate the huge gap between the performance
required by the processor and the relatively dormant
operations of the storage system, the memory system
performance is critical to the overall system performance.

�Wenjie Liu, Ping Huang, and Xubin He are with the Department
of Computer and Information Sciences, Temple University,
Philadelphia, PA 19122, USA. E-mail: wenjie.liu@temple.edu;
templestorager@temple.edu; xubin.he@temple.edu.
�Ke Zhou is with the Wuhan National Laboratory of

Optoelectronics (WNLO), Huazhong University of Science
and Technology, Wuhan 430074, China. E-mail: k.zhou@hust.
edu.cn.
� Tianming Yang is with Huanghuai University, Zhumadian

463000, China. E-mail: ytmzqyy@163.com.
�To whom correspondence should be addressed.

Manuscript received: 2019-12-09; accepted: 2019-12-19

With the scaling of data centers and web services,
applications are becoming increasingly memory hungry,
which makes the memory system have a significant
impact on the overall performance and energy efficiency
of the data centers. Due to the advancement of memory
technologies, DRAM capacity and bandwidth have been
dramatically improved across generations during the
past decades[1, 2]. However, memory latency remains
almost constant across generations[3], exacerbating
the performance gap between the memory system
and the processor, which is known as the “memory
wall” problem. Extensive recent researches have been
conducted on mitigating the “memory wall” problem
via reducing memory latency. Various factors can affect
the memory latencies, such as DRAM refresh[4–7],
row buffer overfetch[2, 8], and interference between
competing processes[9]. In fact, the increase in memory
capacity can hurt memory latency[3]. The primary
reason is that the bitlines connected to the row buffer
become longer as capacity grows, which leads to
dramatically increased associated parasitic capacitance,

348 Tsinghua Science and Technology, June 2021, 26(3): 347–360

and thus increases DRAM access latency[2, 3]. This paper
focuses on reducing the latencies caused by row buffer
overfetch[10, 11], which is one of the most performance
and energy inefficient DRAM operations in modern
multi-core systems.

DRAM access starts with locating data from
thousands of rows according to the row address, and
then sends the entire row to the row buffer via bitlines.
After the row buffer senses the charges stored in the cells,
64 bits are transferred from the row buffer to the data
bus according to the column address. Once the request is
completed, the data temporarily stored in the row buffer
is either waiting for next memory requests targeting
at the same row or written back to the corresponding
row according to the row buffer policy, which is known
as “open page” or “close page” row buffer policy[12],
respectively. The size of the row buffer is typically 4 KB
or 8 KB. However, a recent study[13] shows that less than
4% of the data in the row buffer is accessed before the
row buffer is closed in modern multi-core systems, which
implies the underutilization of the row buffer. The low
utilization of the row buffer can be attributed to the row
buffer conflict between consecutive memory requests
that target at different rows. The overheads of row
buffer conflict are expensive, as the row buffer conflict
introduces additional latencies and energy consumption
by invoking row precharge and activation operations.
With the scaling of DRAM[14], the overheads caused
by row buffer conflict are nontrivial, due to the almost
constant memory access latencies.

To improve the row buffer utilization, various
approaches have been proposed. Some works suggest
to maximize the utilization of the row buffer by
scheduling[2], or group the memory requests by the
targeting rows at the memory controller[8]. Other works
try to mitigate the latencies by taking advantage of
DRAM characteristics that accessing the rows near the
row buffer incurs less latencies[3]. Similarly, the half-
page[8] takes advantage of the new feature of DDR4[15]

to reduce the granularity of row activation and precharge,
resulting in more valuable data being kept the row buffer.

In this paper, we suggest a new row buffer conflict
mitigation architecture, i.e., a new Row Buffer Cache
architecture, called RBC. The central idea is motivated
by the critical observation on how row buffer conflict
affects memory performance. We propose to add an
SRAM-based cache in the memory controller to cache
the rows with good locality but frequently interrupted by
the requested rows with poor locality. RBC essentially
enables parallel access to both poor locality rows (in

the row buffer) and good locality rows (in the cache)
without the potential risk of row buffer conflict, leading
to significant performance improvement. Our evaluation
results have shown that RBC architecture significantly
alleviates the row buffer conflict overheads in modern
memory systems.

This paper makes the following contributions:
� We present a comprehensive analysis of the row

buffer interference problem from different angles. The
findings motivate the design of our proposed row buffer
conflict alleviation approach.
� We design a new RBC architecture, which caches

the contents of the row buffer into an SRAM cache
in the memory controller, such that the locality can
be preserved even in the case of a row buffer conflict
occurrence.
� We conduct extensive evaluations with benchmarks

from SPEC CPU2006. The results have shown that
our system successfully alleviates row buffer conflict
overheads, improving both performance and energy
efficiency relative to the baseline memory system.

2 Background and Motivation

In this section, we first discuss the basics of DRAM and
the role of row buffer in DRAM operations, followed
by the possible interference existing in modern DRAM
memory systems, as our work primarily relies on
the reduction of row buffer conflict to address the
interference problem.

2.1 DRAM basics

Modern memory systems are commonly built with
DRAM technology. As shown in Fig. 1, DRAM-
based memory systems are constructed hierarchically:
channels, ranks, and banks from high to low levels. A
memory system consists of multiple channels, and each
channel is controlled by a separate memory controller.
Each channel can support multiple ranks, and a rank
is a collection of DRAM chips that work in concert to
either receive commands from memory controller or feed
data to the data bus. Inside the DRAM chips, multiple

Channel 0

Rank 0

 Channel L−1

Bank 0 Bank 1 Bank 2 Bank N−1Bank 3 Bank N−2

W
or

dl
in

es

Bitlines

Row buffer

Rank M−1...

...

...

Fig. 1 Overview of memory organization.

Wenjie Liu et al.: RBC: A Memory Architecture for Improved Performance and Energy Efficiency 349

banks are included, each of which is a two-dimensional
array of DRAM cells. The cells are connected both
vertically and horizontally through the bitline and
wordline, respectively. The wordline connects all cells
on the same row while cells on the same column are
connected through the bitline. As the DRAM cell
cannot be accessed directly, a sense amplifier is placed
at the end of each bitline to amplify the charges in
the corresponding DRAM cell through bitline, which
composes the row buffer.

DRAM access follows two steps. First, the decoded
row address is sent on the address bus, in the meanwhile,
an activation command (activation) is sent on the
command bus. In response, the data in the corresponding
row is transferred to the row buffer through bitlines,
which is the so-called row activation operation. Next,
the column address is sent on the address bus followed by
a column access command, i.e., a column-read (col-rd)
command, and the data in the corresponding column can
be accessed. After the column access command, the row
buffer policy determines whether the data cached in the
row buffer should be written back to the corresponding
row or kept for the subsequent memory requests. The
following access that requests data from an already
opened row results in a row buffer hit and escapes the
overheads introduced by additional row activation and
precharge operations results in better performance. On
the contrary, if the subsequent request targets a different
row, the row buffer conflict happens, which increases
the access latency of the latter request. Apparently,
workloads with good locality could significantly benefit
from the “open page” policy, while workloads with poor
locality prefer the “close page” policy.

2.2 Role of the row buffer

Since the DRAM cells cannot be accessed directly,
the row buffers are employed as the front-end of the
DRAM-based memory system. All DRAM operations
are related to the row buffer, which can be classified into
the following three categories. First, data transmission
between cells and the row buffer. Both activation
and precharge operations are required to access the
designated data, since the row activation operation
brings data to the row buffer for data access while the
precharge operation closes the row and writes the data
back to the corresponding row. Second, data access from
the data bus. As the row buffer caches the requested
data, the column-read and column-write operations are
used to get/put data from/to the row buffer. Third, the
DRAM refresh operation needs the row buffer. Typically,

the DRAM refresh operates at row granularity, which
brings the data into the row buffer with an activation
operation and writes the data back with a precharge
operation. During the refresh, the row buffer is occupied
by the refresh operation, and no memory access is
allowed, which increases the memory services latency
dramatically.

Due to the critical role of the row buffer, the
row buffer utilization determines the memory system
performance. An important problem that affects the
row buffer utilization is the row buffer conflict. A
row buffer conflict happens when two consecutive
memory requests target at different rows, then the
row which served for the prior request should be
written back and brings the requested row into the
row buffer. As a result, the latter request suffers from
additional latency of both precharge and activation
operations caused by the row buffer conflict. Moreover,
the precharge and activation operations triggered by
the row buffer conflict increase energy consumption. A
variety of techniques[8, 9, 16–18] have been proposed to
address the row buffer conflict problem by improving
the row buffer utilization. Shao and Davis[16] proposed
to group the requests targeting the same rows to increase
row buffer hit rate and utilization. A page migration
method is proposed to collocate frequently accessed
data in the same row buffers to increase row buffer
hit rate[17]. Similarly, Seshadri et al.[18] enabled the
memory controller to access multiple values that belong
to a stridden pattern using a single read/write command.
The TCM addressed this problem by grouping the
applications by its characteristics of memory access, and
the spatial locality is preserved[9]. Also, to reduce the
granularity of memory operations, Half Page is leveraged
to enable the row buffer to contain data from two rows[8].

2.3 Row buffer interference

As the row buffer is on the critical path of many DRAM
operations, the memory system performance depends
on the row buffer utilization. However, the row buffer
interference leads to low row buffer utilization. The
row buffer interference occurs when two consecutive
memory requests target at different rows, which results
in additional row precharge and activation commands.
Due to the extra row precharge and activation commands,
the latter memory request suffers from increased access
latency and consumes more energy during this process.
Besides, as the tFAW timing constrain defined by the DDR
specification[15] limiting only four activation commands

350 Tsinghua Science and Technology, June 2021, 26(3): 347–360

can be issued during tFAW memory cycles, the additional
row activations caused by row buffer conflict may
introduce extra damage to the system performance. With
the scaling of DRAM and the more memory-hungry
applications, the overheads of the row buffer interference
are not trivial and become unbearable to the entire
system.

The row buffer interference is not rare in today’s
applications as the structure of today’s applications
becomes increasingly complicated, which consists of a
lot of loops or jump statements. From the view of the row
buffer, the loop statement behaves as repeated accesses
to several rows, which results in frequent row buffer
conflict, while the jump statement changes the flow of
execution and hurts the locality of the row buffer. Figure
2a shows a slice of the consecutive memory requests

0 50 100 150 200
n-th memory requests

145 800

119 000

122 000

122 300

R
ow

 a
dd

re
ss

…

(a) lbm

(b) WL1

Fig. 2 A snapshot of memory requests for lbm and WL1,
which are benchmarks, details are introduced in Section
4. (a) lbm shows strong row buffer interference within
the benchmark and (b) four kinds of dots represent four
benchmarks in WL1. Due to the varying characteristics
of benchmarks, WL1 suffers from severe row buffer
interference.

from lbm. As shown, memory request of lbm shows a
loop pattern which is always interrupted by the jump
statements, as the requests jump from row 122 173 to
row 118 926. As a result, the row buffer suffers from the
interference during runtime. To better demonstrate the
characteristic of the rows during runtime, Fig. 3 shows
the percentage of the rows with different characteristics.
As shown, all rows are classified as three groups:
interference-free, interference-victim, and interference,
based on the spatial locality and row buffer conflict of
each row. Rows with poor locality usually lead to row
buffer conflict and are labeled as interference. For rows
with good locality, the interference-free rows are rows
seldom interfered by the row buffer conflict, while the
interference-victim rows are severely impacted by the
row buffer confliction. According to Fig. 3, only 12:8%
of rows accessed can avoid the row buffer conflict, while
29:2% of them are identified as interference-victim due
to the severe row buffer interference.

The situation is getting worse in the scenario of
multiprogramming workloads, as the applications not
only suffer from their intra-interference but also from
the interference caused by other applications. As
a result, the application with good spatial locality
could be interrupted by another application with poor
locality, which results in severe aggregated row buffer
interference. Besides, the application with few memory
requests is delayed by the memory requests issued
by applications with good locality, which leads to
additional queuing latency. To demonstrate the row
buffer interference in the scenario of multi-programmed
workloads, Fig. 2b shows a slice of consecutive memory
requests during the execution of WL1. As shown,
the intermingled memory requests queue seems chaos
due to the existence of row buffer interference. The
memory requests of both gcc and GemsFDTD are

Fig. 3 Row characteristic breakdown for various
benchmarks (details of benchmarks are shown in Section 4).

Wenjie Liu et al.: RBC: A Memory Architecture for Improved Performance and Energy Efficiency 351

continuously accessing the same row, which exhibits
good locality. However, such locality can be easily
interfered by the memory requests issued by lbm and
bwaves, as either lbm or bwaves accesses multiple
rows and shows poor locality during run-time. The
row buffer interference jeopardizes the performance
and energy efficiency improvements brought by the
spatial locality via introducing additional activation
and precharge operations, which lead to in-negligible
degradation of performance and energy efficiency.

2.4 Motivation

Due to the critical role of the row buffer, we propose
to alleviate the row buffer conflict and protect the
rows with good locality by caching them into an
SRAM-based RBC. By doing so, the requests of rows
with good locality are served with the low latency
RBC and escape from the row buffer confliction. To
motivate our approach, experiments are conducted to
investigate the impact of RBC capacity on the system
performance (in terms of Instructions-Per-Cycle (IPC))
and energy efficiency. Figure 4 shows the trends of
both performance and energy efficiency when the RBC
capacity increases. As shown, both system performance
and energy efficiency are significantly improved with
the increase of the RBC capacity. The improvement is
attributed to the reduction of row buffer conflict, as the
RBC reduces the additional activation and precharge
operations introduced by the row buffer conflict via
caching DRAM pages with good locality. With the
increasing of RBC capacity, both performance and
energy efficiency improvement trends can be divided
into three segments, as shown in Fig. 4. In Segment I,
both performance and energy efficiency are significantly
improved by the newly added RBC, which shows
significant relaxation of the row buffer confliction.
However, the improvement pace slows down in Segment

4 8 16 32 64 128 256 512 1024 2048

RBC capacity (KB)

0.55

0.60

0.65

0.70

0.75

0.80

IP
C

Segment I Segment II Segment III

60

70

80

90

100

N
or

m
al

iz
ed

 e
n

er
gy

 c
on

su
m

p
ti

on
 (%
)

IPC Normalized energy

Fig. 4 Improvement trends of the performance and energy
efficiency when the RBC capacity increases.

II and almost stays constant in Segment III. The main
reason for this can be attributed to the limited work-set
size during run-time, as the application does not require
to access all the rows at the same time. For Segment I,
the added RBC significantly improves both performance
and energy efficiency by reducing row buffer conflict
and accommodating more DRAM pages. As the size
of work-set changes during run-time, improvements can
still be observed with the increasing of RBC capacity,
as shown in Segment II. For Segment III, the RBC
capacity is larger than the work-set of the running
application, which implies the improvement up-bound
for both performance and energy efficiency. Based on the
trends of improvement, the RBC architecture leverages
the benefits enabled by the added RBC to protect the
locality and reduce row buffer conflict to achieve the
improvement of both system performance and energy
efficiency.

3 Design of RBC

In this section, we present the detailed design of the
proposed RBC architecture. To maximize the benefits,
several key components are introduced, and their
interplay is demonstrated.

3.1 Overall architecture

Figure 5 shows a simplified schematic view of our
proposed RBC architecture. As shown in Fig. 5, an
RBC is added in the memory controller to hold the data
with severe row buffer interference. The size of the
RBC is determined by the size of a DRAM page and
the number of banks in the memory systems. To better
exploit the potential benefits enabled by the RBC, several
key components are added to guide the execution of the
proposed RBC architecture. To identify the interference-
victim, the row buffer interference detector is designed
to quantify the severity of row buffer interference
of each row. Also, the quantified row interference
is referenced by the row buffer locality predictor to

Processor

Row buffer
interference detector

Row buffer
locality predictor

Row buffer
cache

Request
queue

Request
scheduler

Fainess
controller

Bank 0

Bank 0

Rank 0

Rank 1

Fig. 5 Simplified architectural view of RBC.

352 Tsinghua Science and Technology, June 2021, 26(3): 347–360

evaluate the potential performance gain for each RBC
swap-in candidate. By doing so, the rows initially
profoundly affected by the row buffer interference can
preserve their spatial locality and therefore improve the
memory system performance. Additionally, the fairness
allocator is added to ensure a fair allocation of the RBC,
which improves the fairness in the multi-programming
scenario.

3.2 Row buffer interference detector

The row buffer interference detector detects the row
buffer interference for the running applications by
using a sliding observation window, which records
the row address of the last N memory requests. To
accurately detect the row buffer interference, the row
buffer interference detector monitors the frequently
accessed DRAM rows in the observation window and
uses two metrics: row buffer access rate and access
count, to quantify the severity of row buffer interference.
According to Section 2, each memory request can access
the data until the requested data is transferred to the row
buffer via an activation operation. Thus, the number of
memory requests served by a single activation operation
can effectively monitor the row buffer interference, as
an additional activation operation is issued when the
row buffer conflict happens. Based on this, the row
buffer access rate is defined as the ratio between the
number of memory requests served and the number of
activation operations. The minimum value of the row
buffer access rate is 1, as each memory request needs at
most one activation operation. By comparing the row
buffer access rate of the frequently accessed rows with
the average row buffer access rate of the corresponding
application, the rows can be clearly divided into two
categories: interference-free (with higher row buffer
access rate) and possible interference-victim (with lower
row buffer access rate). Intuitively, the spatial locality of
the rows labeled as interference-free does not severely
impacted by the row buffer interference and can be
exempted from the candidate of the row buffer locality
predictor. However, the row buffer access rate is
insufficient to distinguish whether a row is interference-
victim or interference. To distinguish the rows with low
row buffer access rate, the access count is employed to
identify the row buffer interference-victim as the row
interfered by others that can be accessed for multiple
times. The access count identifies the interference-victim
based on the property that the interference-victim has
higher spatial locality and can be accessed for multiple

times. Thus, for the row labeled as interference-victim,
higher access count indicates more significant row buffer
interference it suffered. With both row buffer access
rate and access count, row buffer interference detector
quantifies the severity of row buffer interference for
each row, and classifies the row with high row buffer
access rate as interference-free. For the row with low
row buffer access rate, the product of row buffer access
rate and access count is used, and rows with higher
value are labeled as interference-victim while the rest as
interference.

3.3 RBC

The RBC is an SRAM-based cache within the memory
controller and lays at the core of the entire RBC
architecture, which provides a cache to protect the
spatial locality of the interference-victim, as shown in
Fig. 6. The RBC is set-associated, and the set size is
determined by the number of cache lines within a DRAM
page. To manage the cache, the RBC metadata uses
the row address as the tag along with a valid bit for
quick detection of whether a designated cache line is
cached or not. Also, the metadata includes the row buffer
interference statistics for each cached row. To maximize
the benefits enabled by the RBC, two major management
components: the row buffer locality predictor and the
fairness allocator, are proposed to manage the cache
replacement and cache allocation.

3.3.1 Row buffer locality predictor
After the row buffer interference detector quantifies
the interference severity of all the frequently accessed
rows during the sliding window, the row buffer locality
predictor begins to look for the candidate row to perform
cache replacement. For each opened row, the row buffer
locality predictor compares the interference severity
between the row temporarily buffered by the row buffer
and the least accessed row resides in the RBC belonging
to the same application. By comparing the row buffer
interference severity of the two rows, the row buffer

v-bit s-bitEntry 0 t-bit
Entry 1

Entry n−1

……

Tag Valid
Set
index

RBC
metadata

…
…

…

…

Set index 0

Set index 1

Set index m−1

…

Cached cache lines (64-byte each), indexed by in-page offset

RBC
organization

r-bit c-bit

Row buffer
access rate

Access
count

Fig. 6 Organization of RBC.

Wenjie Liu et al.: RBC: A Memory Architecture for Improved Performance and Energy Efficiency 353

locality predictor can determine if the opened row suffers
from more severe interference. The reason for doing this
lies in two observations. First, the rows with low row
buffer access rate and high access count are severely
impacted by the row buffer interference. By caching
such rows in the RBC, the row buffer interference can be
significantly reduced, which alleviates the overheads
caused by the row buffer confliction. Second, high
interference severity indicates the potential high row
buffer access rate when the spatial locality is well
preserved by RBC.

When the row buffer locality predictor finishes the
interference severity comparison, the RBC evicts the
cached row with less interference and brings in the
replacement candidate. Since the RBC architecture
proactively forwards write requests to DRAM, the
evicted row can be discarded. For the row that needs to be
swapped into the RBC, eight consecutive cache lines are
transferred to the RBC. The reason for transferring only
a portion of the row to the RBC lies in two aspects. First,
to bring the entire row into the RBC incurs significantly
increased column access operations. Existing research
has shown the access frequency of each cache line within
one page can be highly imbalanced[13], which suggests
the potential inefficiency of caching the entire row into
RBC. Second, transferring only eight consecutive cache
lines balances the overhead between caching the entire
row and RBC miss, as the row chosen by the row buffer
locality predictor can be accessed for multiple times.
Even for the worst case that each cache line in the page
frame needs to be accessed, the total transfer is only
eight times.

3.3.2 Fairness allocator
As the RBC protects row buffer locality from the
row buffer interference, the RBC hits significantly
improve performance and energy efficiency by reducing
unnecessary activation and precharge operations.
However, the benefits brought by the RBC could be
diminished in the multi-programmed workload scenarios,
as the RBC may not reasonably be allocated. Suppose a
workload contains two applications, A and B . If the RBC
is not reasonably allocated between A and B , the fairness
of execution can be harmed as the application with more
RBC allocated suffers from less row buffer interference.
To ensure a fair allocation of the RBC, the fairness
allocator is designed to manage RBC space allocation.
The fairness allocator divides the RBC into two parts: the
fairness-oriented section and the performance-oriented

section. For fairness, each application can be allocated
a mandatory quota in the fairness-oriented section to
ensure the severely interfered rows can be cached into
the RBC. As can be inferred from Fig. 4, the increasing
number of cached rows significantly improves both
performance and energy efficiency. Thus, the basic
quota allocated in the fairness-oriented section not only
ensures fairness but also improves system performance
and energy efficiency. Meanwhile, the performance-
oriented section is allocated to each application in a
round-robin manner, which maximizes the performance
and energy efficiency of the application by caching more
rows in the RBC. With the combination of the two RBC
allocation policies, the fairness allocator protects the
fairness and improves system throughput.

3.4 Read&write and overhead analysis

Due to the presence of the RBC, read and write
operations need to be changed accordingly. To serve
memory requests, the memory controller first checks if
the requested row is cached in the RBC by comparing
the row address with the tag of the RBC metadata. For
the requested row resides in the RBC, the corresponding
valid bits are checked to find out if the requested cache
line is cached or not. If the requested cache line is
invalid, the request is forwarded to DRAM, and the
requested cache line along with the eight consecutive
cache lines are transferred to the RBC to serve future
memory accesses. If the requested cache line is valid, an
RBC hit occurs, and the RBC handles the request. For
read requests, the data is directly served by the RBC
with low latency enabled by the characteristic of SRAM.
For write requests, the modified data is directly written
into the data entry in the RBC; also, the write request
is forwarded to DRAM to keep the data consistent.
Otherwise, if the requested row is not cached in the RBC,
the request is forwarded to the DRAM and proceeded
like a typical memory request.

Besides the potential run-time overhead, the RBC
architecture incurs the storage overhead caused by the
RBC. Suppose the DRAM page size is 4 KB for an RBC
architecture-based memory system. Then, the capacity
of an entry in the RBC is also 4 KB. According to Fig.
4, both performance and energy efficiency improve with
the increased RBC capacity, while the improvements
slow down when the row buffer capacity is larger than
four times of the DRAM page size. Then, the total
storage overhead of the RBC is 4 � 4 KB D 16 KB for

354 Tsinghua Science and Technology, June 2021, 26(3): 347–360

the single-core scenario. For the multi-core scenario,
assuming there are n cores within the system. As the
fairness allocator requires additional capacity for the
performance-oriented section, then the total storage
overhead of the RBC is .nC 1/ � 4 � 4 KB D 16�

.nC 1/ KB.

4 Evaluation

In this section, we conduct experiments to evaluate
the RBC architecture. We first introduce our evaluation
methodology, including experimental testbed, related
simulation parameters, and workloads. Then we present
and discuss the evaluation results of various metrics.

4.1 Experimental methodology

We implement the RBC architecture in the popular
DRAMSim2[19] simulator. We use the Zsim[20] simulator
to run benchmarks. The processor simulator is coupled
with the Pin[21] tool as the front-end. Benchmarks from
the SPEC CPU2006 suite are used for evaluations. The
benchmarks include both memory-intensive (marked
as bold) and non-intensive applications by using the
Misses Per Kilo-Instructions (MPKI) as the metric, as
shown in Table 1. We conduct both single-core and
multi-core evaluations. For single-core evaluations,
only one benchmark runs at a time. For multi-core
evaluations, four benchmarks run concurrently on a
2-rank memory. To ensure the diversity of workloads,
we use six benchmark combinations, which represent
a diverse mixture of the memory-intensive and non-
intensive benchmarks, as shown in Table 2. The

Table 1 Benchmark groundtruth (bold for memory-
intensive).

Benchmark MPKI Benchmark MPKI Benchmark MPKI
mcf 57.69 xalancbmk 9.88 sjeng 4.11

GemsFDTD 54.99 soplex 8.59 hmmer 3.86
lbm 39.24 sphinx3 8.43 gobmk 3.39

leslie3d 36.13 calculix 8.01 astar 3.27
zeusmp 35.47 perlbench 7.60 dealII 2.99
bwaves 34.92 bzip2 7.37 h264ref 2.91

libquantum 32.25 wrf 7.15 gamess 2.12
milc 24.04 namd 6.47 tonto 1.34
gcc 22.87 omnetpp 6.39 povray 1.10

cactusADM 11.72 gromacs 5.60

Table 2 Multi-core workloads configuration.
Workload Benchmark

WL1 GemsFDTD, lbm, bwaves, gcc
WL2 bwaves, gcc, libquantum, cactusADM
WL3 libquantum, cactusADM, wrf, bzip2
WL4 bwaves, gcc, perlbench, astar
WL5 wrf, bzip2, perlbench, astar
WL6 perlbench, astar, omnetpp, gobmk

system parameters are given in Table 3, with the
RBC parameters obtained by using the CACTI 5.3
tool[22]. Micro power calculator[23] is used to estimate
memory power consumption. As inferred from Fig. 4,
the performance improvements are slowing down when
the row buffer number is larger than 4. Thus, the capacity
of the RBC is set to 4 entries (each entry of the RBC
is the same size as the DRAM page, which is typically
4 KB) for single-core and 20 for multi-program. Unless
otherwise noted, the size of the Last Level Catch (LLC)
is set to 2 MB. For each benchmark, we fast-forward
1 billion instructions for cache warm-up and run 1
billion instructions for comparison. For comparison,
we compare our proposed RBC architecture with the
state-of-the-art method, DICE[24], which focuses on
improving the row buffer utilization. In addition, we
also compare the RBC architecture with the state-of-the-
art Bingo prefetcher[25].

4.2 Single-core experimental result

4.2.1 Performance improvement
Figure 7 compares the performance improvement in
the single-core configuration using IPC as the metric.
As shown, the proposed RBC architecture achieves a
performance improvement of up to 2:24� (16:1% on
average) which outperforms the state-of-the-art methods
(the DICE improves performance up to 1:49� with
7:5% on average and the Bingo improves performance
up to 2:33� with 10:5% on average). The reason that
RBC architecture outperforms the two state-of-the-art
methods is the RBC utilizes the spatial locality of the
catched catch lines to alleviate the row buffer confliction,
while two existing approaches depend on either cache
line compressibility or memory access patterns. Also,
as the DICE is based on cache line compression, we

Table 3 Simulation parameter.
Processor Memory controller DRAM RBC

Single core/four cores
64/64-entry read/write request queue,

writes are scheduled in batches

DDR4,
1 channel, 2 ranks per channel,

DRAM page size is 4 KB

RBC read/write energy=0.0152 nJ,
RBC access latency=5 cycles,

Capacity=4 entries

Wenjie Liu et al.: RBC: A Memory Architecture for Improved Performance and Energy Efficiency 355

m
cf

G
em

sF
DTD

lb
m

les
lie

3d

ze
us

m
p

bw
av

es

lib
qu

an
tu

m
m

ilc gc
c

ca
ct

us
ADM

xa
la

nc
bm

k

so
pl

ex

sp
hi

nx
3

ca
lcu

lix

per
lb

en
ch

bz
ip

2
wrf

na
m

d

om
ne

tp
p

gr
om

ac
s

sje
ng

hm
m

er

go
bm

k
as

ta
r

de
al

II

h2
64

re
f

ga
m

es
s

to
nt

o

pov
ra

y

G
eo

M
ea

n

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

IP
C Memory-

intensive
Memory non-
intensive

Baseline DICE Bingo RBC DICE+RBC

Fig. 7 Performance comparison in singe-core scenario. Values are normalized to the baseline.

integrate DICE with the RBC architecture and achieve up
to 2:42� (21:5% on average) performance improvement,
which shows our proposed RBC architecture can be
used with other methods targeting the row buffer
utilization problem. Additional, two conclusions can
be drawn from Fig. 7. First, the benchmarks with
more memory requests benefit a lot from the RBC
architecture. To demonstrate the relationship between
the memory intensity and performance improvement,
the benchmarks in Fig. 7 are sorted by the memory
intensity. For the memory-intensive benchmarks, the
performance has improved up to 2:24� (44:4% on
average). For those memory non-intensive benchmarks,
the performance improvements are less significant, only
up to 9:8% (3:5% on average). The reason behind this
is the memory-intensive workloads suffer from greater
row buffer interference, according to Section 2. Also,
more memory access results in higher access count in
the row buffer interference detector, which enables more
performance improvements from the RBC. Second, the
performance improvement comes from the RBC hit, as
accessing the RBC incurs less access latency. Second,
the RBC hits contribute a lot to the system performance
improvements, as those benchmarks with higher RBC
hit rates achieve better performance, as shown in Fig. 8.

Figures 8 and 9 have shown RBC hit rate and the
average memory access latency comparison. As shown
in Fig. 8, the RBC architecture delivers an RBC hit
rate of up to 66:1% with 38% on average, which

Fig. 8 Average hit rate of the RBC in single-core scenario.

indicates the row buffer interference detector is able
to identify the interference severity of the accessed rows
and the row buffer locality predictor is able to cache
the most benefitial rows into the RBC. As the RBC
servers 38% of the memory requests on average, the
average memory access latency is significantly reduced
by the RBC architecture by up to 84% with 50:8% on
average, as shown in Fig. 9. The reason for the reduced
memory access latency is due to the hits of RBC, which
serves memory requests with the low latency SRAM-
based RBC and avoids additional DRAM activate and
precharge operations caused by row buffer conflict.
Additional, the memory request latency of the RBC
architecture is more stable as the standard variations
drop up to 64:1% (22:3% on average), which provides
more predictable performance.

m
cf

Gem
sF

DTD
lb

m

les
lie

3d

ze
usm

p

bw
av

es

lib
quan

tu
m

m
ilc gcc

ca
ct

usA
DM

xa
lan

cb
m

k

so
plex

sp
hin

x3

ca
lcu

lix

per
lb

en
ch

bzip
2

wrf

nam
d

om
net

pp

gro
m

ac
s

sje
ng

hm
m

er

gobm
k

as
ta

r

dea
lII

h264re
f

gam
es

s

to
nto

povr
ay

Geo
m

ea
n

−20

0

20

40

60

80

100

A
vg

.
m

em
or

y
ac

ce
ss

 la
te

nc
y

(c
yc

le
s)

Baseline RBC

Fig. 9 Memory access latency comparison in singe-core scenario.

356 Tsinghua Science and Technology, June 2021, 26(3): 347–360

4.2.2 Energy consumption
Figure 10 shows the memory system energy comparison.
As shown, the RBC architecture reduces the total
amount of memory energy consumption relative
to the baseline memory system. Similar to the
performance improvements, the memory-intensive
benchmarks reduce more energy than those non-
intensive benchmarks, as up to 68.2% (42.2% on
average). The saved energy consumption comes from
two aspects. First, the energy reduction comes from
the reduced row buffer conflict overheads. Due to the
protection of spatial locality offered by the RBC, the row
buffer interference is significantly reduced, which avoids
unnecessary DRAM activate and precharge operations
caused by the row buffer confliction. Second, the energy
reduction comes from the reduced dynamic energy, as
the RBC architecture improves the system performance
and reduces the overall running time.

4.3 Multi-core experimental result

4.3.1 Weighted speedup
To evaluate the effectiveness of our proposal, the
Weighted Speedup (WS) is employed to measure the
performance improvement in the multi-core scenario.
Figure 11 compares the normalized WSs of the five
systems. As shown, the RBC architecture improves
the performance for all workloads by a maximum of
1:55� with an average of 16:7%, comparing with the
baseline memory system. By comparing with the state-
of-the-art approaches, the RBC architecture outperforms
the DICE and Bingo by the maximum of 33% (with
an average of 10:1%) and 60:4% (with an average of
4:7%), respectively. The reason behind this is the RBC
is allocated to each running application enabled by the
fairness allocator, so that the RBC architecture results
in much fair performance improvements for all the
running applications. Same as the single-core results,
the memory-intensive workloads get more performance
improvements than the non-intensive workloads. The

WL1 WL2 WL3 WL4 WL5 WL6 GeoMean
0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 w
ei

gh
te

d
 s

p
ee

d
u

p Baseline
DICE

Bingo
RBC

DICE with RBC

Fig. 11 Normalized weighted speedups of multi-
programming workloads. The RBC architecture achieves
an average of 16.7% speedup improvement relative to the
baseline memory system.

memory-intensive benchmarks suffer the row buffer
interference severely and benefit more from the RBC
architecture, which can be inferred from the average
memory access latency given in Fig. 12. As shown, the
RBC architecture reduces the memory request latency
by up to 49:1% with an average of 29:2%. Similar to
the single-core configuration, the reduced latency comes
from the RBC hits, which alleviate unnecessary activate
and precharge operations caused by row buffer conflict.
Also, the memory request latency becomes more stable
and predictable, as the standard variation of the memory
request latency drops up to 30:9% (5:2% on average).

4.3.2 Energy consumption
Figure 13 compares the normalized energy consumption

WL1 WL2 WL3 WL4 WL5 WL6
−50

−25

0

25

50

75

100

125

150

A
vg

.
m

em
or

y
ac

ce
ss

 la
te

nc
y

(c
yc

le
s)

Baseline RBC

Fig. 12 Memory access latency comparison in multi-core
scenario.

Fig. 10 Comparison of the memory system energy consumption in the single-core scenario. Values are normalized to the
baseline. The RBC architecture saves energy consumption by up to 68.2% and 23.6% on average.

Wenjie Liu et al.: RBC: A Memory Architecture for Improved Performance and Energy Efficiency 357

WL1 WL2 WL3 WL4 WL5 WL6 GeoMean
0

20

40

60

80

100

N
o
rm

a
li
ze

d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
) Baseline RBC

Fig. 13 Normalized energy consumption of the multi-
programming scenario.

of the proposed RBC architecture against the baseline
memory system. As shown, the RBC architecture
reduces energy consumption by up to 35.4% (WL1) and
with a geometric mean of 21.3% across all the workloads.
Similar to the performance improvements, the more
memory-intensive benchmarks a workload contains, the
more energy-saving can be achieved. The reduced row
activation and precharge commands are credited for
the energy consumption reduction. Besides, the energy
reduction can be attributed to the reduced background
energy, due to the faster execution enabled by the RBC
architecture.

4.3.3 Sensitive study on LLC size

The LLC within the processor impacts the volume of
memory system traffic and affects the spatial locality
presented at the memory level. To investigate the impacts
that LLC may impose to the row buffer interference, Figs.
14a – 14c have shown the performance improvement,
energy consumption, and RBC hit rate with various
LLC sizes (ranging from 1 MB to 32 MB), respectively.
Two main conclusions are in order from Fig. 14. First,
the row buffer interference cannot be eliminated by the
increasing LLC size, which provides opportunities for
the proposed RBC architecture. As shown, the RBC
architecture can improve performance by up to 1.69�
for WL1 with 1 MB LLC (with a geometric mean of
15% across all the workloads in all LLC sizes) and

reduce energy consumption by up to 42% for WL1 with
1 MB LLC (with a geometric mean of 19.9% across
all the workloads in all LLC sizes) comparing to the
baseline memory system. With larger LLC capacity,
more cache lines can be cached within the LLC, which
decreases the off-chip memory traffic and also changes
the pattern of memory requests. Thus, the improvement
of both performance and energy efficiency drops with
the larger LLC capacity, as shown in Figs. 14a and 14b,
respectively. Also, the enlarged LLC can not escape
from the row buffer interference, as the spatial locality of
the memory requests still exist, which can be harmed by
both intra- and inter-application row buffer interference.
Based on this, the RBC architecture protects the spatial
locality and makes further performance improvements
and energy efficiency. Second, depending on the memory
request intensity, the trends of the row buffer hit ratio
varies with the increase of the LLC size among all
workloads. As the increased LLC size reduces both
the memory requests volume and the spatial locality,
the RBC hit rate increases with the increasing of the
LLC size for the workloads with less memory traffic
(e.g., WL6), which can be attributed to the enlarged
LLC filtering out the memory requests with less locality.
However, for the memory-intensive workloads (e.g.,
WL1 and WL2), the filtration effect is less significant
as the memory requests of such workload can diminish
the improvements brought by the enlarged LLC capacity.
It is noteworthy that, with the increase of LLC capacity,
the RBC hit rate increases while the overall normalized
weighted speedup is decreasing. The reason behind
this is larger LLC capacity leads to less memory
accesses which potentially increases the chance that a
memory request can be served by the RBC, however,
the performance improvement brought by the RBC
decreases due to the less intensive memory accesses.
Overall, the RBC architecture brings both performance
improvement and energy efficiency under various LLC
capacity, as the increased LLC can not eliminates the
row buffer interference.

WL1 WL2 WL3 WL4 WL5 WL6 GeoMean
0

0.5

1.0

1.5

N
or

m
al

iz
ed

 w
ei

gh
te

d
 s

p
ee

d
u

p 1 MB LLC
2 MB LLC

4 MB LLC
8 MB LLC

16 MB LLC
32 MB LLC

(a)

WL1 WL2 WL3 WL4 WL5 WL6 GeoMean
0

20

40

60

80

100

N
or

m
al

iz
ed

 e
n

er
gy

 c
on

su
m

p
ti

on
 (%

) 1 MB LLC
2 MB LLC

4 MB LLC
8 MB LLC

16 MB LLC
32 MB LLC

(b)

WL1 WL2 WL3 WL4 WL5 WL6 GeoMean
0

20

40

60

80

100

A
v
e
ra

g
e
 R

B
C

 h
it

 r
at

e
(%
)

1 MB LLC
2 MB LLC

4 MB LLC
8 MB LLC

16 MB LLC
32 MB LLC

(c)

Fig. 14 Sensitive study on the impact of different LLC sizes to the effectiveness of the RBC architecture.

358 Tsinghua Science and Technology, June 2021, 26(3): 347–360

5 Related Work

To address the “memory wall” problem, various
solutions have been suggested. DRAM refresh slows
down memory performance and has notably received
a lot of research interest. Refresh pausing[5] suggests
interruptible refreshes and temporarily suspends on-
going refresh to give way to regular memory requests.
Parallelizing refresh and memory requests[26, 27] in
different memory sources can also decrease refresh
performance impacts. CAR[7] reduces the rows needed
to refresh by compressing the data stored in the DRAM.
As the refresh blocks the process of memory requests,
ROP[6] alleviates the refresh overheads by prefetching
data into an SRAM buffer and using the data in the buffer
to serve the memory requests arriving during the refresh
period.

Researchers have also conducted studies and taken
advantage of the rich internal parallelism of the DRAM.
Kim et al.[28] proposed a memory architecture with
subarray level parallelism and explored several ways
to leverage the parallelism to improve performance.
Jeong et al.[29] employed bank partitioning to assign
separate banks to distinct applications, so that accesses
to the same bank may have better row buffer locality.
Tiered latency DRAM[3] splits bitlines to near and far
segments via adding isolation transistors on the bitlines,
so that near-segment has shorter wire length and less
parasitic capacitance. Therefore, accesses in the near-
segment have shorter latency. In order to improve the
system performance, LAMS[30] take advantage of the
TLDRAM architecture and schedule the requests in
the near-segment with a higher priority. Seshadri et
al.[1] proposed a row clone memory architecture, in
which a row can be moved to another row efficiently
via row buffer. Also, the half-DRAM[31] re-routed
wordlines to select two different rows simultaneously,
which increases the utilization of the row buffer. Half
Page[8] exploits half-page access granularity to reduce
row buffer overfetch cost. To better exploit the benefits
of Phase Change Memory (PCM), Row Buffer Locality-
Aware (RBLA) caching mechanism[32] was proposed
to take advantage of the lower row buffer miss latency
by placing the rows with poor locality to the DRAM
while leaving the rows with good locality in the PCM.
Substantially, our proposed RBC architecture also
benefits from the increased utilization of the row buffer,
which is enabled by caching the rows with good spatial
locality in the RBC. The RBC architecture distinguishes
from others in the following aspects. First, the RBC

architecture does not rely on the modification of the
organization of cells on the DRAM chips. Second,
no matter how fine-grained the accessing granularity
is, the row buffer interference still exists; thus, the
proposed RBC architecture can mitigate the row buffer
interference with the evolution of the DRAM.

6 Conclusion

The overheads of DRAM row buffer interference become
more critical as the scaling of DRAM. In this paper,
we propose a new row buffer interference mitigation
approach RBC, which effectively alleviates row buffer
interference overheads. The RBC protects the spatial
locality by caching the rows with good locality in the
RBC. To better exploit the RBC, row buffer interference
detector and row buffer locality predictor are used
to accurately identify interference venerable data and
maximize the benefits brought by the RBC. In addition,
the fairness controller is used to ensure fair allocation of
the RBC for all interference-sensitive applications. Our
extensive evaluations in both single-core and multi-core
systems have demonstrated that the RBC successfully
alleviates the row buffer interference overheads under
various workloads. By comparing RBC with the state-
of-the-art methods, RBC outperforms both DICE and
Bingo.

Acknowledgment

This work was supported by the US National Science
Foundation (Nos. CCF-1717660 and CNS-1828363).

References

[1] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, et al., Rowclone: Fast and energy-efficient in-
dram bulk data copy and initialization, in Proceedings of
the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, Davis, CA, USA, 2013, pp. 185–197.

[2] O. Seongil, Y. H. Son, N. S. Kim, and J. H. Ahn, Row-buffer
decoupling: A case for low-latency dram microarchitecture,
in Proceedings of ACM/IEEE 41st International Symposium
on Computer Architecture , Minneapolis, MN, USA, 2014,
pp. 337–348.

[3] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian,
and O. Mutlu, Tiered-latency dram: A low latency and
low cost dram architecture, in Proceedings of IEEE 19th
International Symposium on High Performance Computer
Architecture , Shenzhen, China, 2013, pp. 615–626.

[4] J. Stuecheli, D. Kaseridis, H. C Hunter, and L. K. John,
Elastic refresh: Techniques to mitigate refresh penalties in
high density memory, in Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture,
Atlanta, GA, USA, 2010, pp. 375–384.

Wenjie Liu et al.: RBC: A Memory Architecture for Improved Performance and Energy Efficiency 359

[5] P. Nair, C.-C. Chou, and M. K. Qureshi, A case for refresh
pausing in DRAM memory systems, in Proceedings of
IEEE 19th International Symposium on High Performance
Computer Architecture, Shenzhen, China, 2013, pp. 627–
638.

[6] P. Huang, W. Liu, K. Tang, X. He, and K. Zhou,
Rop: Alleviating refresh overheads via reviving the
memory system in frozen cycles, in Proceedings of
45th International Conference on Parallel Processing,
Philadelphia, PA, USA, 2016, pp. 169–178.

[7] W. Liu, P. Huang, K. Tang, K. Zhou, and X. He, CAR: A
compression-aware refresh approach to improve memory
performance and energy efficiency, ACM SIGMETRICS
Performance Evaluation Review, vol. 44, no. 1, pp. 373–374,
2016.

[8] H. Ha, A. Pedram, S. Richardson, S. Kvatinsky, and
M. Horowitz, Improving energy efficiency of DRAM
by exploiting half page row access, in Proceedings of
49th Annual IEEE/ACM International Symposium on
Microarchitecture , Taipei, China, 2016, pp. 1–12.

[9] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-
Balter, Thread cluster memory scheduling: Exploiting
differences in memory access behavior, in Proceedings of
the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, Atlanta, GA, USA, 2010, pp. 65–76.

[10] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and
R. S. Schreiber, Improving system energy efficiency with
memory rank subsetting, ACM Transactions on Architecture
and Code Optimization , vol. 9, no. 1, p. 4, 2012.

[11] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi,
Multicore DIMM: An energy efficient memory module
with independently controlled DRAMs, IEEE Computer
Architecture Letters, vol. 8, no. 1, pp. 5–8, 2008.

[12] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens, Memory access scheduling, in Proceedings of
ACM/IEEE 27th International Symposium on Computer
Architecture, Vancouver, Canada, 2000, pp. 128–138.

[13] D. Kaseridis, J. Stuecheli, and L. K. John, Minimalist
open-page: A DRAM page-mode scheduling policy for the
many-core era, in Proceedings of 44th Annual IEEE/ACM
International Symposium on Microarchitecture, Porto
Alegre, Brazil, 2011, pp. 24–35.

[14] O. Mutlu, Memory scaling: A systems architecture
perspective, in Proceedings of 5th IEEE International
Memory Workshop, Monterey, CA, USA, pp. 21–25.

[15] DDR4 SDRAM standard, http://www.jedec.org/standards-
documents/results/jesd79-4%20ddr4, 2012.

[16] J. Shao and B. T. Davis, A burst scheduling access
reordering mechanism, in Proceedings of IEEE 13th
International Symposium on High Performance Computer
Architecture, Phoenix, AZ, USA, 2007, pp. 285–294.

[17] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi,
R. Balasubramonian, and A. Davis, Micro-pages:
Increasing DRAM efficiency with locality-aware data
placement, in Proceedings of the 15th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Pittsburgh, PA, USA,
2010, pp. 219–230.

[18] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B.
Gibbons, M. A. Kozuch, and T. C. Mowry, Gather-scatter
dram: In-DRAM address translation to improve the spatial
locality of non-unit strided accesses, in Proceedings of
the 48th International Symposium on Microarchitecture,
Waikiki, HI, USA, 2015, pp. 267–280.

[19] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, DRAMSim2:
A cycle accurate memory system simulator, IEEE Computer
Architecture Letters, vol. 10, no. 1, pp. 16–19, 2011.

[20] D. Sanchez and C. Kozyrakis, Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,
ACM SIGARCH Computer Architecture News, vol. 41, no. 3,
pp. 475–486, 2013.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
Pin: Building customized program analysis tools with
dynamic instrumentation, in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Chicago, IL, USA, 2005, pp. 190–200.

[22] P. Shivakumar and N. P. Jouppi, Cacti 3.0: An integrated
cache timing, power, and area model, Report, WRL, 2001.

[23] Micron system power calculator, http://www.micron.
com/support/power-calc, 2019.

[24] V. Young, P. J. Nair, and M. K. Qureshi, Dice: Compressing
dram caches for bandwidth and capacity, in Proceedings
of ACM/IEEE 44th Annual International Symposium on
Computer Architecture, Toronto, Canada, 2017, pp. 627–
638.

[25] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran,
and H. Sarbazi-Azad, Bingo spatial data prefetcher, in
Proceedings of IEEE International Symposium on High
Performance Computer Architecture, Washington, DC,
USA, 2019, pp. 399–411.

[26] K. K.-W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen,
C. Wilkerson, Y. Kim, and O. Mutlu, Improving DRAM
performance by parallelizing refreshes with accesses, in
Proceedings of IEEE 20th International Symposium on High
Performance Computer Architecture, Orlando, FL, USA,
2014, pp. 356–367.

[27] T. Zhang, M. Poremba, C. Xu, G. Sun, and Y. Xie, CREAM:
A concurrent-refresh-aware DRAM memory architecture,
in Proceedings of IEEE 20th International Symposium on
High Performance Computer Architecture, Orlando, FL,
USA, 2014, pp. 368–379.

[28] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, A case
for exploiting subarray-level parallelism in DRAM, ACM
SIGARCH Computer Architecture News, vol. 40, no. 3, pp.
368–379, 2012.

[29] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan,
I. Lee, and M. Erez, Balancing DRAM locality and
parallelism in shared memory cmp systems, in Proceedings
of IEEE International Symposium on High-Performance
Comp Architecture, New Orleans, LA, USA, 2012, pp. 1–
12.

[30] W. Liu, P. Huang, T. Kun, T. Lu, K. Zhou, C. Li, and
X. He, LAMS: A latency-aware memory scheduling policy
for modern dram systems, in Proceedings of IEEE 35th

360 Tsinghua Science and Technology, June 2021, 26(3): 347–360

International Performance Computing and Communications
Conference, Las Vegas, NV, USA, 2016, pp. 1–8.

[31] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie,
Half-DRAM: A high-bandwidth and low-power DRAM
architecture from the rethinking of fine-grained activation,
in Proceedings of the 41st International Symposium on
Computer Architecture, Minneapolis, MN, USA, 2014, pp.

349–360.
[32] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding,

and O. Mutlu, Row buffer locality aware caching policies
for hybrid memories, in Proceedings of IEEE 30th
International Conference on Computer Design , Montreal,
Canada, 2012, pp. 337–344.

Wenjie Liu received the MS degree from
Huazhong University of Science and
Technology, Wuhan, China in 2018. He
is currently working toward the PhD
degree in the Department of Computer and
Information Sciences, Temple University,
Philadelphia, PA, USA. His main reserach
interest includes DRAM, distributed

systems, and nonvolatile memory. He has published papers
in various international conferences and journals, including
MASCOTS, ICPP, IPCCC, Sigmetrics, IEEE Transactions on
Parallel and Distributed Systems (TPDS), etc. He is a student
member of the IEEE.

Ke Zhou received the BEng, MEng, and
PhD degrees from Huazhong University
of Science and Technology (HUST),
Wuhan, China in 1996, 1999, and 2003,
respectively. He is a professor of Wuhan
National Laboratory for Optoelectronics
and the School of Computer Science
and Technology, Huazhong University of

Science and Technology. His main research interests include
computer architecture, cloud storage, parallel I/O, and storage
security. He has more than 50 publications in journals
and international conferences, including TPDS, PEVA, FAST,
USENIX ATC, MSST, ACM MM, INFOCOM, SYSTOR,
MASCOTS, ICC, etc. He is a member of the IEEE and a member
of the USENIX.

Ping Huang received the PhD degree
from Huazhong University of Science
and Technology, Wuhan, China in 2013.
He is currently working toward the PhD
degree in the Department of Computer and
Information Sciences, Temple University,
Philadelphia, PA, USA. His main research
interests include nonvolatile memory,

operating system, distributed systems, DRAM, GPU, and key-
value systems. He has published papers in various international
conferences and journals, including SYSTOR, NAS, MSST,
USENIX ATC, Eurosys, IFIP Performance, INFOCOM, SRDS,
MASCOTS, ICCD, Journal of Systems Architecture (JSA),
PEVA, the Sigmetrics, ICPP, IEEE Transactions on Parallel and
Distributed Systems (TPDS), ACM Transactions on Storage, etc.

Tianming Yang received the BS degree
from the Department of Computer Science,
Zhengzhou Institute of Technology,
Zhengzhou, China in 1991, and the PhD
degree from Huazhong University of
Science and Technology, Wuhan, China in
2010. Currently, he is an associate professor
with the Department of Information

Engineering, Huanghuai University, China. His current
interests include data backup, networking storage, parallel file
systems, disk array, and solid state disk. He has more than 20
publications in international conferences and journals, including
IPDPS, GRID, NAS, ICCD, IPCCC, ICS, Journal of Zhejiang
University-SCIENCE C, etc.

Xubin He received the BS and MS degrees
in computer science from Huazhong
University of Science and Technology,
China, in 1995 and 1997, respectively, and
the PhD degree in electrical engineering
from the University of Rhode Island,
Kingston, Rhode Island, USA in 2002. He
is currently a professor with the Department

of Computer and Information Sciences, Temple University,
Philadelphia, Pennsylvania, USA. His research interests include
computer architecture, data storage systems, virtualization, and
high availability computing. He received the Ralph E. Powe
Junior Faculty Enhancement Award in 2004 and the Sigma Xi
Research Awards (TTU Chapter) in 2005 and 2010. He is a
senior member of the IEEE and a member of the IEEE Computer
Society and USENIX.

