
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 09/12 pp335–346
DOI: 10 .26599 /TST.2019 .9010057
V o l u m e 2 6, N u m b e r 3, J u n e 2 0 2 1

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Helmholtz Solving and Performance Optimization
in Global/Regional Assimilation and Prediction System

Jianqiang Huang, Wei Xue, Haodong Bian, Wenxin Yan, Xiaoying Wang, and Wenguang Chen�

Abstract: Despite efficient parallelism in the solution of physical parameterization in the Global/Regional Assimilation

and Prediction System (GRAPES), the Helmholtz equation in the dynamic core, with the increase of resolution, can

hardly achieve sufficient parallelism in the solving process due to a large amount of communication and irregular

access. In this paper, optimizing the Helmholtz equation solution for better performance and higher efficiency has

been an urgent task. An optimization scheme for the parallel solution of the Helmholtz equation is proposed in

this paper. Specifically, the geometrical multigrid optimization strategy is designed by taking advantage of the data

anisotropy of grid points near the pole and the isotropy of those near memory equator in the Helmholtz equation,

and the Incomplete LU (ILU) decomposition preconditioner is adopted to speed up the convergence of the improved

Generalized Conjugate Residual (GCR), which effectively reduces the number of iterations and the computation time.

The overall solving performance of the Helmholtz equation is improved by thread-level parallelism, vectorization, and

reuse of data in the cache. The experimental results show that the proposed optimization scheme can effectively

eliminate the bottleneck of the Helmholtz equation as regards the solving speed. Considering the test results on

a 10-node two-way server, the solution of the Helmholtz equation, compared with the original serial version, is

accelerated by 100�, with one-third of iterations reduced.

Key words: Global/Regional Assimilation and Prediction System (GRAPES); Helmholtz equation; Generalized Conjugate

Residual (GCR); performance optimization; Incomplete LU (ILU)

1 Introduction

It is the mainstream for atmospheric scientific research
and numerical weather prediction model to establish a
high-resolution fine numerical weather prediction model.
The Global/Regional Assimilation and Prediction

� Jianqiang Huang, Wei Xue, and Wenguang Chen are
with Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail:
hjq16@mails.tsinghua.edu.cn; xuewei@tsinghua.edu.cn; cwg@
tsinghua.edu.cn.
� Jianqiang Huang, Haodong Bian, Wenxin Yan, and Xiaoying

Wang are with Department of Computer Technology
and Applications, Qinghai University, Xining 810016,
China. E-mail: hpc bhd@163.com; yanwenxin1@126.com;
xy.wang@foxmai.com.
�To whom correspondence should be addressed.

Manuscript received: 2019-10-10; accepted: 2019-10-17

System (GRAPES) is a new-generation numerical
weather prediction system independently developed
by China. This model adopts internationally advanced
numerical forecasting technology and is embedded with
an extremely complicated communication model and
computation process with its codes reaching up to
hundreds of thousands of lines.

The GRAPES global model uses the 2D horizontal
domain partition, and each decomposed subdomain is
handled by a Message Passing Interface (MPI) process.
Figure 1 is a computation flow chart of the GRAPES
global model that shows how the GRAPES global
model integrates into a time step. Firstly, the linear
and nonlinear terms are computed and the water vapor
equation is solved by the piecewise rational method
based on the piecewise rational function[1]. Secondly,
the position and interpolation of the departure point are

336 Tsinghua Science and Technology, June 2021, 26(3): 335–346

G
R

A
P

E
S

Initialize

Integrate

Post-process

Compute linear and nonlinear items

Compute scalar advection

Calculate the departure point’s position

Departure point’s interpolation

Solve the Helmholtz equation

Update diagnostic variables

Physical parameterization

Feedback to the dynamic core

Fig. 1 Computation flowchart of GRAPES global model.

calculated by the semi-Lagrangian method. Next, the
GRAPES global model solves the Helmholtz equation
and updates other prognostic variables. At this point, the
calculation of the dynamic core ends. Finally, the model
calculates a series of physical parameterization schemes
and sends the results to the dynamic core.

As the center of the GRAPES global model, the
dynamic core consumes over half of the computing
time of the whole model (as shown in Fig. 2). The
communication of the dynamic core mainly relies on the
boundary exchange of neighbors and the global protocol
communication Allreduce in the Helmholtz equation
solver. Before the calculation by the grid points of
the boundary area, the specified weather parameters
should be used to exchange the boundary data. If Q
represents the number of grid points in the GRAPES
global model, the time complexity of the algorithm for
most modules including the semi-Lagrangian departure
point calculation is O.Q2/, and that of the algorithm
for solving the Helmholtz equation is O.Q3/. The
GRAPES global model, like the currently advanced
numerical weather prediction models in other countries

80

60

40

20

0

Microphysics

Radiation

Helmholtz

Semi_lag_interp

Pr
op

or
tio

n
of

 ti
m

e
co

ns
um

ed
 (%

)

64 128 256
Number of processes

Fig. 2 Proportion of time consumed by all hotspots in
GRAPES.

and institutions, is moving toward higher resolution
and more complex physical parameterization solutions.
As planned, by 2020, a commercial operation with a
horizontal resolution of 0.1 degree will be achieved, with
the forecasting timeliness remaining unchanged, which
poses extremely high requirements for the calculation
speed of the model.

As high-performance computers see increasingly
enhanced computing power and expanded scale, it is
an urgent task for the GRAPES model to fully utilize
the computing power provided by the high-performance
computing system to optimize its computational
performance, realize scalability under massively parallel
tasks, and solve huge scientific problems and massive
data processing to meet the time limit in actual numerical
forecasting. In this paper, we analyze in-depth the
main factors affecting the parallel computing efficiency
of the GRAPES model, focus on the efficient solving
algorithm of the Helmholtz equation that performs
key computation in the GRAPES model (with its
time consumption accounting for 30% of that of the
dynamic core), and adopt 19-diagonal incomplete LU
factorization with zero fill-in (ILU(0)) preconditioner
to accelerate convergence. Additionally, a parallel
computing scheme for the Helmholtz equation is
presented, together with an optimized scheme for the
key impediments to the computational efficiency, which
includes the following three challenges:
� The data storage is excessively large in scale. The

coefficient matrix of the Helmholtz equation is an
extra-large-scale matrix with extremely high sparsity,
with each row containing a maximum of 19 non-zero
elements, which causes great storage waste. Therefore,
the compressed sparse row data storage format is used in
this paper to store the coefficient matrix so as to reduce
redundant memory access during the computational
process.
� In the traditional Generalized Conjugate Residual

(GCR) algorithm, each loop iteration requires two
global communications. When the algorithm is extended
to a larger scale, the proportion of communications
will increase sharply. To this end, we design an
optimization strategy for communications, which mainly
includes communication avoidance, reduction in global
communications, and overlapping of calculation and
communications, ultimately reducing communication
overhead and improving scalability.
� The multiple-iteration calculation in the GCR

algorithm mainly includes the coefficient matrix-vector

Jianqiang Huang et al.: Helmholtz Solving and Performance Optimization in Global/Regional Assimilation and : : : 337

multiplication and the sparse triangle algorithm that
can be parallelized. In this paper, through multi-core
technologies, such as OpenMP and MPI, parallelism is
realized and further optimized, improving the overall
solving efficiency of the Helmholtz equation.

The experimental results show that the optimized
solving module of the Helmholtz equation achieves a
speedup by 100� on both data scales of 360 � 180 � 38
and 720 � 360 � 38.

2 Background
Numerical weather prediction is closely related to high-
performance parallel computers. With the development
of the latter, parallel computing has become an integral
part of numerical weather prediction systems[2–7]. Table
1 lists the business numerical forecasting systems of
main meteorological departments that adopt parallel
computing.

The Weather Research and Forecasting (WRF)[8]

model is a mesoscale model and assimilation
system jointly developed by scientists from various
meteorological research departments and universities
in USA and it adopts the regional grid pattern. In
terms of parallel computing, the grid point pattern is
much simpler than the spectral pattern, for the physical
parameterization of the grid point pattern mainly
calculates the vertical correlation. The WRF model
uses horizontal two-dimensional data partitioning for
parallel computing. That is, all computational variables
are divided according to a given number of processors
in both warp and latitude directions, and each processor
only calculates the data in a sub-region designated
to itself. Considering the data-dependence infinite
difference and horizontal interpolation calculations, the
storage area of each processor usually adds a certain-
width boundary to the calculation area, called the

halo area. The data in the halo area are computed by
adjacent calculation processors, and the data should be
synchronized for each step.

The ultimate goal of parallel computing for numerical
weather prediction is to meet the real-time nature of
business operations. Faced with the huge computing
resources from high-performance computers, how to
effectively use these resources has become a challenge
in the research on parallel computing for numerical
forecasting. The scalability of parallel computing
is the goal pursued by high-performance computers
and parallel algorithms[9] as well as the numerical
weather prediction systems in parallel computation.
The load balance in parallel computing is the key
to parallel scalability and the bottleneck of parallel
computing in numerical weather prediction[10–12]. Due
to the complexity of atmospheric motion, the physical
phenomena in different regions are different. Regarding
the model computing, the difference in regions and
physical phenomena and changes with the movement of
the atmosphere result in different calculation amounts of
the model. Additionally, the study of efficient methods
for core computing is also an important aspect of
ensuring real-time numerical weather prediction services
and parallel computing scalability[13, 14]. Even from an
economic viewpoint, studies on efficient computational
methods are essential. Michalakes and Vachharajani[15]

firstly studied the migration of WRF from the traditional
parallel cluster to GPU, concluding that the running
speed on NVIDIA 8800GTX is 20 times that based on
CPU operation[16], due to the limitation of the high-
time cost of the WSM5 module in WRF, the WSM5
module was rewritten to CUDA and transplanted to the
GPU for separate operation, and no optimization actions
were performed. For Ref. [17], its main contribution is
that developers, who do not have any knowledge of the

Table 1 High-Performance Computing (HPC) trends for large installations of Earth System Model (ESM) Community, where
PF represents Pflops.

Category Organization Location Model Previous HPC Current HPC Size/Cost (million)/Date

Operational
and

research

ECMWF Reading, UK IFS IBM power Cray XC30-x86 3.5 PF/$65/Jun 2013
Met office Exeter, UK UM IBM power Cray XC30-x86 16 PF/$120/Oct 2014

DWD Offenbach, DE COSMO, ICON NEC SX-9 Cray XC30-x86 2 PF/$23/Jan 2013
MF Toulouse, FR Arpege, Arome NEC SX-9 Bull-x86 5 PF/$36/Nov 2012

NOAA NCEP Various, USA GFS, HRRR/WRF IBM power IBM Cray XC50-x86 5.8 PF/$50/Oct 2015
Env Canada Montreal, CA GEM-YY, WRF IBM power IBM Cray XC40-x86 2.4 PF/$50/Nov 2017

JMA Tokyo, JP GSM, ASUCA Hitachi power Hitachi Cray �4 PF/2018

Research
DKRZ/MPI-M Hamburg, DE ICON, MPI-ESM IBM power Bull-x86 3 PF/$35/May 2014

NCAR Boulder, CO, USA CESM, WRF, MPAS IBM iDataPlex SGI ICE XA-x86 5.34 PF/�$60/Jan 2016
NOAA Fairmont, WV, USA FV3, Radiation Various Cray CS-Storm-x86 �4 PF/Jan 2016

338 Tsinghua Science and Technology, June 2021, 26(3): 335–346

application transplant theory, can use a simple iterative
method to migrate complex scientific applications to the
GPU in a progressive manner, thus reducing system
overhead. Nevertheless, performance optimization
was not considered. The authors in Ref. [18] mainly
discussed how to transplant the Rapid Radiative Transfer
Model (RRTM) module in WRF to the GPU from
the aspect of performance optimization. It’s main
optimization strategies include the following: (1)
modifying the data structure; (2) optimizing the data
transfer; (3) splitting different kernel codes and kernel
configurations. Since the RRTM module relies heavily
on lookup tables, there is a robust inter-data correlation.
Thus, using different types of memory will vitally affect
the system performance.

3 Design of Parallelism Scheme for
GRAPES Model

To solve the large-scale problem in parallel computing,
decomposing the problem area to explore the parallelism
potential of multiple processors is firstly necessary. As
the GRAPES model adopts a global longitude-latitude
grid system, the grid space can be divided along the
longitude, latitude, and vertical directions during parallel
processing. In general, for large-scale isotropic parallel
communications, 3D partitioning can achieve better load
balancing and parallelism than 1D and 2D partitioning.
However, in numerical weather prediction, the role of
atmospheric vertical motion is critical to the prediction
of the entire model. From the entire life cycle of the
cumulonimbus to the classical three-circle ideal model,
vertical motion is a focus of atmospheric science, for it
is directly related to many key processes, such as the gas
expansion process and latent heat transfer in water vapor
heterogeneous condensation. Therefore, a subdivision in
the vertical direction will result in the simulative vertical
motion of intensive communications between adjacent
processes, which will greatly increase communication
overhead and inevitably limit the model scalability. For
the above reasons, GRAPES adopts a two-dimensional
area decomposition scheme, which divides the whole
problem space into several subareas along the longitude
and latitude directions, with each subarea handled by
one process. This partitioning scheme implements load
balance on the division of the mesh number in the
computation of GRAPES.

As shown in Fig. 3, ims represents the start address
of the storage area, which stores the array spaces of

0

Halo

Halo

Thread

its ite

North

South

1

32

East West

ims

ips

Storage

ids ide

ims

ipe

Predict

Node calculation

Fig. 3 Two-dimensional areas partitioning[19].

the patch area and the overlap area; its represents the
start address of the tile area, which is divided in the
patch area according to the number of available threads
of this area; ite represents the end address of the tile
area; ips represents the start address of the patch area,
which is a calculation sub-area that divided the global
forecast area according to the number of computer
processors; ipe represents the end address of the patch
area; ids represents the start address of the entire global
forecast domain; ide represents the end address of
the entire global forecast domain. To make the model
of parallel computing adaptable to the development
of modern parallel computer architecture, the parallel
implementation of GRAPES was considered from two
aspects: One is the distributed memory computer system
patch area. There is need to calculate the whole area in
accordance with the number of divisions. The division
of a subarea is called a patch. Each computer node
only completes the patch calculation and only the
corresponding patch + halo array space. When the
calculation involves other areas, information exchange
in the corresponding halo area must be carried out in
advance. The other is the tile computation performed
on a shared memory computer system, commonly
known as multithreaded parallel computing. The tile
is divided into regions within a patch according to the
number of available threads of this node. Therefore,
memory sharing between different tiles on the same
node is different only in calculation regions. The two
parallel computing solutions of the regional mode
are complementary to each other and can be used
independently or in combination for different computer
systems.

3.1 Optimization of the solution of Helmholtz
equation

GRAPES performs excellently in improving the

Jianqiang Huang et al.: Helmholtz Solving and Performance Optimization in Global/Regional Assimilation and : : : 339

forecasting accuracy, the available forecasting timeliness,
and the fineness of forecasting, with the fineness of 1–
2 km and the available grid range of 1–100 km. For such
a multi-scale unified model, parallel computing involves
the calculations of both the regional and global model
and considers not only low resolution but also HPC
efficiency under an extremely large grid size at the fine
resolution. As the Helmholtz equation contains the most
complicated calculation in GRAPES, we firstly focus on
the solution of the three-dimensional Helmholtz discrete
grid equation. It involves 19 points at three layers, with
five grid points each along the three directions of x,
y, and z. In terms of the boundary, one grid point is
reduced at each end of the three directions. Because the
earth is an approximate sphere and it both rotates and
revolves, the motion of the atmosphere on the earth’s
surface is relative to the motion of the earth’s surface.
A stationary coordinate system, such as the Cartesian
coordinate system, is no longer applicable. The basic
equations of atmospheric motion are given as follows:

du
dt
D�

Cp�

r cos'
@
Q
@�
C f v C FuC

ıM

�
u � v � tan'

r
�
u � w

r

�
� ı'

˚
f'w

	
(1)

where u, v, w,
Q

, Cp, � , r , �, f , Fu, ıM , ', ı' ,
and f'w represent the x direction horizontal wind
speed component, y direction horizontal wind speed
component, the vertical wind speed component in z
coordinates, Exner pressure variable, specific heat of air
at constant pressure, potential temperature, the vector in
spherical coordinates, longitude of spherical coordinates,
coriolis force, turbulent diffusion, curvature correction
term, latitude in spherical coordinates, earth deflection
force correction term, and Coriolis force derivative,
respectively. Bringing in intermediate pressure variable
at the same time,

dv
dt
D�

Cp�

r

@
Q
@�
� f uC Fv�

ıM

�
u2 � tan'

r
C
u � w

r

�
(2)

ıNH
dw
dt
D� Cp�

@
Q
@r
� g C Fw C ıM

�
u2 C v2

r

�
C

ı'
˚
f'u

	
(3)

. � 1/
d
Q

dt
D �

Y
�D3 C

F �
�

�
(4)

r � V D
1

r cos'
@u

@�
C

1

r cos'
@v cos'
@'

C
1

r2

@
�
r2w

�
@r

(5)

d�
dt
D
F �
�Q (6)

f D 2˝ sin' (7)

f' D @f=@' D 2˝ cos' (8)

 D
Cp

R2
(9)

D3 D Cr � V (10)

where ıNH represents the vertical acceleration switch,
D3 represents the three-dimensional divergence, V
represents three-dimensional wind speed vector, ˝
represents the Angular velocity of the earth’s rotation,
R2 represents the dry gas constants, g represents the
top height, and F �

�
represents the net reservoir heat sink

term.
The basic equations for controlling atmospheric

motion are Eqs. (1) – (6). After simplifying the
reference atmosphere semi-implicit, semi-Lagrangian
discretization, and separation of variables, the
basic prediction equations of the model dynamic
framework[19, 20] are obtained:

unC1 D

�
�u1

1

a cos�
@

@�
C �u2

1

a

@

@�
C �u3

@

@ Oz

�
��Y0

�nC1
C �u0

(11)

vnC1 D

�
�v1

1

a cos�
@

@�
C �v2

1

a

@

@�
C �v3

@

@ Oz

�
��Y0

�nC1
C �v0

(12)

OwnC1 D

�
�w1

1

a cos�
@

@�
C �w2

1

a

@

@�
C �w3

@

@ Oz

�
��Y0

�nC1
C �w0

(13)

.� 0/
nC1
D

�
��1

1

a cos�
@

@�
C ��2

1

a

@

@�
C ��3

@

@ Oz

�
��Y0

�nC1
C ��0

(14)�Y0
�nC1

D

�
�Q1
a cos�

@

@�
C
�Q2
a

@

@�
C �Q3 @

@ Oz
C

�QH1

.a cos�/2
@2

@2�
C
�QH2

a2
@2

@2�
C �QH3

@2

@2 Oz
C

�QH4

a2 cos�
@2

@�@�
C

�QH5

a cos�
@2

@�@ Oz
C

�QH6

a

@2

@�@ Oz

� �Y0
�nC1

C �Q0 (15)

where �u1
, �u2

, �u3
, �v1

, �v2
, �v3

, �w1
, �w2

, �w3
, �QH1

;

�QH2
; �QH3

; �QH4
; �QH5

; �QH6
; �Q1; �Q2; �Q3; ��1

,
��2
; and ��3

represent the coefficients of the equation

340 Tsinghua Science and Technology, June 2021, 26(3): 335–346

that do not change with time. �u0
, �v0

, �w0
, �Q0; and ��0

represent the coefficient terms at the previous moment
that change with time. a represents radius of the earth,
� represents the spherical curvature, and n represents
the coefficient term at the previous moment that changes
with time and at some point.

We firstly focus on the solution of the three-
dimensional Helmholtz discrete grid equation. As shown
in Fig. 4, it involves 19 points at three layers, with five
grid points each along the three directions of x, y, and
z. In terms of the boundary, one grid point is reduced at
each end of the three directions.

The coefficient matrix of the Helmholtz equation is a
large-scale sparse matrix, and its order equals the total
number of all discrete grid points in all directions in
the three dimensions. Due to a very sparse nature of
the whole matrix, each row (column) has only 19 non-
zero elements distributed on 19 diagonal lines that are
symmetrical with respect to the main diagonal of the
matrix. Such a sparse matrix with a diagonal structure is
of great significance both in storage and computation. In
this paper, the GCR iterative method is used as the basic
method for solving the Helmholtz equation. The solution
process with the preconditioner is shown in Algorithm 1.

In each iteration step of the GCR method,
the computational core is the sparse matrix-vector
multiplication at the third row, the preconditioner at
the seventh row, the vector dot product at the third,
eighth, ninth, and tenth rows, and some other vector
multiplications. In the case of a parallel solution, one
neighbor communication is required before each sparse
matrix-vector multiplication to fill the boundary data

12 3

4

5

(𝒊 − 𝟏, 𝒋, 𝒌 + 𝟏) (𝒊, 𝒋, 𝒌 + 𝟏) (𝒊 + 𝟏, 𝒋, 𝒌 + 𝟏)

(𝒊, 𝒋 + 𝟏, 𝒌 + 𝟏)

(𝒊 − 𝟏, 𝒋 + 𝟏, 𝒌) (𝒊, 𝒋 + 𝟏, 𝒌) (𝒊 + 𝟏, 𝒋 + 𝟏, 𝒌)

(𝒊 + 𝟏, 𝒋, 𝒌)(𝒊 + 𝟏, 𝒋 − 𝟏, 𝒌)

(𝒊, 𝒋 − 𝟏, 𝒌)

(𝒊, 𝒋, 𝒌)

(𝒊 − 𝟏, 𝒋, 𝒌 − 𝟏)

(𝒊, 𝒋 − 𝟏, 𝒌 − 𝟏)

(𝒊, 𝒋, 𝒌 − 𝟏)
(𝒊 + 𝟏, 𝒋, 𝒌 − 𝟏)

(𝒊, 𝒋 + 𝟏, 𝒌 − 𝟏)

(𝒊 − 𝟏, 𝒋, 𝒌)

(𝒊, 𝒋 − 𝟏, 𝒌 + 𝟏)

y

z

o

(𝒊 − 𝟏, 𝒋 − 𝟏, 𝒌)

6

78

9

10

11 12

13

14

17

18

19

16 15

x

Fig. 4 Distribution of discrete grid points and correlation
coefficients of three-dimensional Helmholtz equation[21].

Algorithm 1 GCR solution process with the preconditioner
Input: Matrix A, initial solution S0, the right vector b, the inverse

of the preprocessing matrixM�1, subspace dimension k, and
the initial residual r0

Output: approximate solution S
1: r0 D b � AS0, r 0

0
DM�1r0, p0 D r

0
0

2: for i D 1: Maximum number of iterations do
3: ˛i�1 D .ri�1; Api�1/=.Api�1; Api�1/

4: Si D Si�1 C ˛i�1pi�1

5: ri D ri�1 � ˛i�1Api�1

6: if converged then exit;

7: r 0
i
DM�1ri

8: for j D intŒ i�1
k
�k; :::; i � 1 do

9: ˇij D �.Ar
0
i
; Apj /=.Apj ; Apj /

10: pi D r
0
i
C

i�1P
jDintŒ i�1

k �k
ˇijpj

11: Api D Ar
0
i
C

i�1P
jDintŒ i�1

k �k
ˇijApj

of the sub-region calculated by each process. After
each process performs the local vector dot product, all
processes carry out global Allreduce communication to
obtain a global dot product result.

3.2 Preconditioner optimization

In an iterative algorithm, the preconditioner M�1S D
b is critical[22]. A proper preconditioner can greatly
accelerate the iterative convergence process at a fair
implementation cost. As for the Helmholtz equation
solver of the GRAPES model, Incomplete LU (ILU)
factorization is used as the preconditioner. Incomplete
LU factorization, i.e., an approximation of LU
factorization, is the decomposition of matrix A into an
upper triangular matrix U and a lower triangular matrix
L. As shown in Eq. (16), the residual matrix R obtained
by the difference between product and the original matrix
meets certain requirements, such as the same location
of non-zero elements as that of A. Moreover, ILU can
be divided into ILU .p/; p D 0; 1; 2; : : : , and other
forms according to the non-zero element fill-in during
factorization, where ILU(0) refers to the ILU model
without any filling. In other words, the distribution of
the non-zero elements of the residual matrix R is the
same as that of the original matrix A, and the choice of
ILU form depends on the computational overhead and
convergence performance.

R D L � U � A (16)

The calculation process of the ILU preconditioner is to
firstly perform ILU on the original matrixA .A � L �U/

Jianqiang Huang et al.: Helmholtz Solving and Performance Optimization in Global/Regional Assimilation and : : : 341

to get LUS D b, and then solve it in each iteration
step. For each solution process, the lower triangular
matrix of the previous generation is calculated to obtain
US D L�1b, and then the upper triangular matrix of the
back-generation is computed to get S D U�1.L�1b/,
where S is the approximate solution obtained.

There are many options of the generation of the ILU
preconditioner matrix according to the characteristics of
the diagonal elements of the coefficient matrix A. By
analysis, when the order of magnitudes of the coefficient
of the center grid points at the vertical layer x.i; j; k/,
x.i; j; k � 1/, and x.i; j; k C 1/ reaches about 10�1 �
1, the order of magnitudes of the coefficient of x.i �
1; j; k/, x.i; j � 1; k/, x.i; j C 1; k/, and x.i C 1; j; k/
is about 10�3 , and those of other grid points are about
10�7. In the original GRAPES model, the three-diagonal
matrix with the largest order of magnitudes was used
as the preprocessing matrix. Applying it to the GCR
iterative method can accelerate the convergence, but the
preconditioner can be further improved[23]. We discuss
the effect of the 7-diagonal matrix and the 19-diagonal
matrix as the coefficient matrix of the ILU preconditioner
on the entire GCR iterative algorithm.

Figure 5 shows the residual variations of the GCR
algorithm when a 7-diagonal matrix and a 19-diagonal
matrix were applied to the ILU preconditioner. It can
be seen that when the convergence criterion was set as
1�10�12, the entire GCR iteration converged at Step 225
when the 7-diagonal ILU preconditioner was used, and at
Step 134 when the 19-diagonal ILU preconditioner was
used. The more complicated preconditioner accelerates
the convergence but costs higher in computation. In
large-scale calculations, due to a small number of grid
points handled by each process, the calculation is no
longer the focus. The overhead of global communication

0 50 100 134 150 200 225

1×10−3

7 point ILU preconditioner 19 point ILU preconditioner

R
es
id
ua
l

Number of iterative steps

1×10−4

1×10−6

1×10−8

1×10−10

1×10−12

Fig. 5 Residual curve of 7-diagonal and 19-diagonal
preconditioners[21].

is not related to the number of grid points but grows
rapidly as the number of processes increases. The 19-
diagonal ILU preconditioner can greatly reduce the total
number of iteration steps, thereby reducing the number
of global communication steps, which is very helpful
for the overall performance improvement of the GCR
algorithm.

3.3 Improved generalized conjugate residual
algorithm

As can be seen from Algorithm 1, there are two
vector dot product operations in each iteration step
of the GCR algorithm, found at Rows 3, 8–10,
which need to be implemented by global Allreduce
communication in the parallel algorithm. The global
Allreduce communication has huge overhead during
massive parallelism. Considering the work of Zhao and
Tian[24], we implement an improved GCR algorithm
with preconditioners that can reduce the number of
global Allreduce communication steps from two to
one. The Krylov subspace algorithm[25] characterizes a
feature whereby the vectors that make up the subspace
are orthogonal to each other. Based on this property,
the principle of the improved GCR is to deduce
the equivalent mathematical formula based on the
orthogonality of the vector Apj in the GCR algorithm to
obtain the vector dot product .Api ; Apj / of the original
algorithm through the iteration of floating-point number
at Row 14 in Algorithm 2, where M�1 represents the
inverse of the preprocessing matrix; r0 represents the
initial residual; k represents subspace dimension; and ˛0
represents the initial inner product. Compared with the
original GCR algorithm, the improved GCR algorithm
maintains the same convergence characteristics while
reducing the number of global Allreduce communication
steps by once at the cost of adding several floating-point
numbers; thus, the improved algorithm outperforms the
original in both performance and scalability.

4 Optimization

4.1 Thread-level parallelism and vectorization

To solve the Helmholtz equation, 2D or 3D grid
points were processed. Specifically, in the first step of
parallel, the OpenMP primitive was used to divide the
computational tasks into different threads. For multi-core
CPU, the threads in the same number as the physical
cores provided good scalability. In this paper, as the
platform contained two CPUs, the memory access had
a non-uniform memory access architecture effect. The

342 Tsinghua Science and Technology, June 2021, 26(3): 335–346

Algorithm 2 Improved GCR iterative method with
preconditioners
Input: Matrix A, initial solution S0, the right vector b, the inverse

of the preprocessing matrix M�1, subspace dimension k, the
initral residual r0, and the initial inner product ˛i

Output: approximate solution S
1: r0 D b � AS0, r 0

0
D M�1r0, p0 D r 0

0
, ˛0 D .r0; q0/,

0 D .q0; q0/

2: for i D 1 : Maximum number of iterations do
3: ˛i�1 D ˛i�1=i�1

4: Si D Si�1 C ˛i�1pi�1

5: ri D ri�1 � ˛i�1qi�1

6: if converged then exit;

7: r 0
i
DM�1ri

8: ar D Ar 0
i

9: ˛i D .ri ; ar/

10: ci D .ar; ar/

11: for j D intŒ i�1
k
�k; :::; i � 1 do

12: ˇij D �.ar; qj /=.qj ; qj /

13: i D ci �

i�1P
jDintŒ i�1

k �k
ˇ2

ij
j

14: pi D r
0
i
C

i�1P
jDintŒ i�1

k �k
ˇijpj

15: Api D ar C
i�1P

jDintŒ i�1
k �k

ˇij qj

numactl was adopted to increase bandwidth utilization
and enhance performance. Next, the vectorization
component in the kernel achieved the parallelism of
the second step. Vectorization and better performance
were effectively achieved by adding Single Instruction
Multiple Data (SIMD) single instruction multiple data
to compile the guiding statement in the program, or by
overriding some of the looping codes.

4.2 Optimization of data reuse

When all the processor cores and vectorization
components were used to maximize the parallelism
of the program, memory requirements became our
bottleneck. With better data layout, we could better reuse
data and improve performance in a multi-tier cache. The
common way to optimize cache usage is to partition the
used matrix so that each thread continuously accesses
the data suitable for each layer of caches. When access is
a bottleneck for performance, proper partitioning brings
significant enhancement.

5 Experimental Result

5.1 Experimental platform

There were 10 Intel Xeon E5-2680 v3@ 2.50 GHz CPUs

(Sandy Bridge architecture) nodes. Each Intel Xeon
E5-2680 CPU was equipped with 12 cores running
at 2.5 GHz, and each core had two vector processing
elements that could perform 256-bit floating-point
operations. The peak computing power of the floating
points of the CPU was 1.2 Tflops (for double-precision,
there was one multiplication and one addition floating-
point arithmetic component; for single precision, each
calculation unit could store 4 floating points with single
precision and perform two calculations due to the
adoption of Streaming SIMD Extensions (SSE) with
a length of 128 bit, both double-precision and single-
precision presented high parallelism). To approach and
reach a theoretical peak, we must make full use of all
computing resources. Each core of the multicore CPU
had L1 data cache of 32 KB, L1 instruction cache of
32 KB, and L2 cache of 256 KB. Twelve cores shared
an L3 cache of 20 MB that enabled quick data exchange
among processor cores. Each processor was connected
to DDR3’s memory via a 4-channel memory controller,
which provided nearly 100 GB/s of memory bandwidth.

5.2 Analysis of experimental result

The single-process version of GCR was firstly
implemented; then the multi-process version was
extended, and the preconditioners of ILU and Jacobi
were added to speed up the convergence. The GCR
algorithm had data sizes of 360 � 180 � 38 and 720 �
360 � 38. Taking the GCR iteration time of two cases
as benchmark, the run time and the speedup of the
benchmark are shown in Fig. 6.

Jacobi preconditioner was implemented as a
comparison. After two Jacobi iterations, R0 D R �

.LC U/R:

Table 2 shows that for data sizes of 360�180�38 and
720 � 360 � 38, the use of ILU(0) preconditioner, the
optimized GCR algorithm with the number of processes
n D 20, the number of nodes N D 2, and the number of
threads c D 2 can achieve the best performance with the
run time of 0.6298 and 2.932 s.

Table 3 shows the scalability analysis results. We can
see that the increase of computing nodes presents linear
speedup, although the multi-computer communication
is a huge cost. The proposed improvement of GCR to
reduce communication obtains outstanding scalability.

Comparison of time consumed for the test cases: It
can be seen that in each case test, the actual iteration time
is better than the benchmark iteration time, indicating
the series of optimizations yield satisfactory results.

Jianqiang Huang et al.: Helmholtz Solving and Performance Optimization in Global/Regional Assimilation and : : : 343

(a) Data size of 360 � 180 � 38

(b) Data size of 720 � 360 � 38

Fig. 6 Comparison of run time and speedup for different optimization methods under different data sizes.

Table 2 Comparison of time consumed for the cases in tests.

Data size Benchmark
time (s)

Actual
time (s)

Number of
iterations

360 � 180 � 38 16.07 0.62 29
720 � 360 � 38 76.23 2.86 33

Table 3 Scalability analysis results.
Number of nodes Data size Time (s) Speedup

2 360 � 180 � 38 0.62 25
2 720 � 360 � 38 2.86 25
4 360 � 180 � 38 0.34 48
4 720 � 360 � 38 1.49 48
10 360 � 180 � 38 0.16 121
10 720 � 360 � 38 0.61 118

Finally, the speedup of each algorithm optimized
in the Helmholtz equation solution in the 25 km case
was compared with that of the original algorithm.
After a series of parallel optimization techniques, such
as OPENMP, MPI, and precondition, the improved
GCR algorithm always outperformed the original GCR
algorithm under each parallel scale.

6 Related Work

The Krylov subspace method is essential for solving
large-scale sparse linear equations, which are widely
used in scientific applications, such as numerical
weather prediction[7] and ocean simulation[21]. Linear
systems to be solved are usually obtained by the
discretization of partial differential equations by implicit
or semi-implicit time-integration schemes. With the
continuous improvement of people’s living standards
and the advancement of science and technology,
the requirements for the analog resolution of such
applications are getting increasingly higher, and thus,
high-performance computers are urgently needed. As
parallelism improves, the Krylov subspace approach
presents a new performance bottleneck, namely, frequent
global communication. To better utilize the computing
resources available in modern clusters, recent research
has proposed algorithms that mitigate the performance
pressures of global communications. Zhao and Tian[24]

proposed an improved parallel GCR algorithm that

344 Tsinghua Science and Technology, June 2021, 26(3): 335–346

can reduce global communication in each iteration
step. The pipeline’s Krylov subspace method[25, 26]

allows the overlapping of global communication, sparse
matrix-vector multiplication, preconditioner, and other
calculation cores. These methods reduce the impact
of global communication to a certain extent but do
not solve the problem in essence. At the extreme
scale, global communication will still be the main
factor limiting the algorithm performance. On this
basis, a Krylov subspace method was proposed for
communication avoidance[27–29]. The method, based on
the s-Step Krylov subspace algorithm[30], reduces the
number of global communication steps to 1=s of the
original at the cost of additional calculations. There
are many methods for solving the Helmholtz equation,
such as relaxation iteration, multigrid method, and
GCR. Among them, the GCR method converges quickly
and is easy to implement; thus, it is widely used in
solving the Helmholtz equation. The GCR algorithm
is used in the GRAPES model, with details seen in
Ref. [31]. Regarding the choice of iterative methods,
Lin[32] discussed and compared the performance of
GCR, GMRES, Bi-CGSTAB algorithm, and IDR[33],
and finally concluded the GCR algorithm performed
best with respect to the numerical stability, convergence
property, and computation amount.

7 Conclusion

In this paper, the solution of the Helmholtz equation
was optimized in terms of the time consumption
of the GRAPES model, and the effects of different
forms of ILU preconditioner and different regional
partition schemes on the convergence effect of the
iterative solution algorithm were discussed. The 19-
diagonal incomplete preconditioner was found to result
in better convergence despite more complex operations.
Additionally, an improved GCR algorithm is proposed,
which reduces the number of global communication
steps in each iteration from two to one. The optimized
solving module of the Helmholtz equation achieves
acceleration by up to 100� with different parallelisms in
different cases.

Acknowledgment

This paper was partially supported by the Open Project of
State Key Laboratory of Plateau Ecology and Agricuture,
Qinghai University (No. 2020-ZZ-03), the Qinghai
Province High-End Innovative Thousand Talents Program
Leading Talents, the National Natural Science Foundation

of China (Nos. 61762074 and 61962051), and the National
Natural Science Foundation of Qinghai Province (No.
2019-ZJ-7034).

References

[1] Y. Su, X. S. Shen, X. D. Peng, X. L. Li, X. J. Wu, S. Zhang,
and X. Chen, Application of PRM scalar advection scheme
in GRAPES global forecast system, (in Chinese), Chin.J .
Atmos. Sci., vol. 37, no. 6, pp. 1309–1325, 2013.

[2] T. Yanagawa and K. Suehiro, Software system of the earth
simulator, Parallel Comput., vol. 30, no. 12, pp. 1315–1327,
2004.

[3] S. Habata, K. Umezawa, M. Yokokawa, and S. Kitawaki,
Hardware system of the earth simulator, Parallel Comput.,
vol. 30, no. 12, pp. 1287–1313, 2004.

[4] H. Ishizaki and I. Ishikawa, High parallelization efficiency
in barotropic-mode computation of ocean models based on
multi-grid boundary ghost area, Ocean Modelling, vol. 13,
nos. 3�4, pp. 238–254, 2006.

[5] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn,
M. Ohlberger, and O. Sander, A generic grid interface for
parallel and adaptive scientific computing. Part I: Abstract
framework, Computing, vol. 82, nos. 2�3, pp. 103–119,
2008.

[6] P. Lynch, The origins of computer weather prediction and
climate modeling, J. Comput. Phys., vol. 227, no. 7, pp.
3431–3444, 2008.

[7] N. Raba, E. Stankova, and N. Ampilova, On investigation
of parallelization effectiveness with the help of multi-core
processors, Procedia Computer Science, vol. 1, no. 1, pp.
2763–2768, 2010.

[8] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp,
W. Skamarock, and W. Wang, The weather research and
forecast model: Software architecture and performance,
in Proc. 11th ECMWF Workshop on the Use of Parallel
Processors in Meteorology, Reading, UK, 2005, pp. 156–
168.

[9] Y. R. Chen, Research on key technigues of performance
models for high performace computing, (in Chinese), PhD
dissertation, National University of Defense Technology,
Changsha, China, 2007.

[10] Z. Y. Jin and D. X. Wang, Diffusion algorithm of dynamic
load balancing for heterogeneous system, (in Chinese), Chin.
J . Comput., vol. 26, no. 11, pp. 1487–1493, 2003.

[11] Z. Y. Jin and D. X. Wang, An optimal method of diffusion
algorithm for hetergeneous system, (in Chinese), J . Softw.,
vol. 14, no. 5, pp. 904–910, 2003.

[12] L. L. Zhang, H. Ye, J. P. Wu, and J. Q. Song, Parallel load-
balancing performance analysis based on maximal ratio of
load offset, (in Chinese), J . Comput. Res. Dev., vol. 47, no.
6, pp. 1125–1131, 2010.

[13] Z. Y. Mo, X. P. Liu, and Z. M. Liao, Research on key
techniques for parallelization and optimization of applied
codes, (in Chinese), J . Numer. Methods Comput. Appl., vol.
23, no. 1, pp. 31–40, 2002.

Jianqiang Huang et al.: Helmholtz Solving and Performance Optimization in Global/Regional Assimilation and : : : 345

[14] Y. Q. Zhang, DRAM(h): A parallel computation model for
high performance numerical computing, (in Chinese), Chin.
J . Comput., vol. 26, no. 12, pp. 1660–1670, 2003.

[15] Michalakes J and Vachharajani M, GPU acceleration of
numerical weather prediction, Parallel Process. Lett., vol.
18, no. 4, pp. 531–548, 2008.

[16] Z. W. Wang, X. B. Xu, W. Q. Zhao, S. B. He, and Y. P.
Zhang, Parallel acceleration and performance optimization
for GRAPES model based on GPU, (in Chinese), J .
Comput. Res. Dev., vol. 50, no. 2, pp. 401–411, 2013.

[17] J. Michalakes, J. Hacker, R. Loft, M. O. McCracken,
A. Snavely, N. J. Wright, T. Spelce, B. Gorda, and R.
Walkup, WRF nature run, in Proc. 2007 ACM/IEEE Conf.
Supercomputing, Reno, NV, USA, 2007, pp. 1–6.

[18] G. Ruetsch, E. Phillips, and M. Fatica, GPU acceleration
the long-wave rapid radiative transfer model in WRF
using CUDA Fortran, in Proc. 2010 Many-Core and
Reconfigurable Supercomputing Conf., Rome, Italy, 2010,
pp. 1–11

[19] P. Xu, Research on performance optimization of GRAPES
dynamic core on sunway Taihu light, (in Chinese), Master
dissertation, Tsinghua University, Beijing, China, 2019.

[20] J. S. Xue and D. H. Chen, Scientific Design and Application
of Numerical Prediction System, (in Chinese). Beijing,
China: Science Press, 2008.

[21] X. J. Wu, Study on the parallel computing in GRAPES
high resolution numerical weather prediction mode, (in
Chinese), PhD dissertation, National University of Defense
Technology, Changsha, China, 2011.

[22] D. H. Chen, J. S. Xue, X. S. Yang, H. L. Zhang, X. S. Shen,
J. L. Hu, Y. Wang, L. R. Ji, and J. B. Chen, New generation
of multi-scale NWP system (GRAPES): General scientific
design, Chin. Sci. Bull., vol. 53, no. 22, pp. 3433–3445,
2008.

[23] D. H. Chen, X. S. Yang, H. L. Zhang, and J. L. Hu, Strategy
for designing a non-hydrostatic multi-scale community
model dynamic core, (in Chinese), J . Appl. Meteor. Sci.,
vol. 14, no. 4, pp. 452–461, 2003.

[24] L. B. Zhao and Y. X. Tian, Improved parallel generalized
conjugate residual algorithm, (in Chinese), Comput. Eng.,
vol. 35, no. 4, pp. 80–82, 2009.

[25] Y. Saad, Iterative Methods for Sparse Linear Systems. 2nd
ed. Philadelphia, PA, USA: SIAM, 2003.

[26] X. M. Huang, Q. Tang, Y. H. Tseng, Y. Hu, A. H. Baker, F. O.
Bryan, J. Dennis, H. H. Fu, and G. W. Yang, P-CSI v1.0, an
accelerated barotropic solver for the high-resolution ocean
model component in the Community Earth System Model
v2.0, Geosci. Model Dev., vol. 9, no. 11, pp. 4209–4225,
2016.

[27] S. Cools and W. Vanroose, The communication-hiding
pipelined BiCGstab method for the parallel solution of large
unsymmetric linear systems, Parallel Computing, vol. 65,
pp. 1–20, 2017.

[28] H. A. Van der Vorst, Iterative Krylov Methods for Large
Linear Systems: Volume 13. Cambridge, UK: Cambridge
University Press, 2003.

[29] P. Sanan, S. M. Schnepp, and D. A. May, Pipelined, flexible
Krylov subspace methods, SIAM J. Sci. Comput., 2016, vol.
38, no. 5, pp. C441–C470, 2016.

[30] J. Demmel, M. F. Hoemmen, M. Mohiyuddin, and K.
A. Yelick. Avoiding Communication in Computing Krylov
Subspaces. EECS Department, University of California,
Berkeley, CA, USA, 2007.

[31] M. F. Hoemmen, Communication-Avoiding Krylov
Subspace Methods. EECS Department, University of
California, Berkeley, CA, USA, 2010.

[32] F. L. Lin, Performance optimization technology of global
numerical weather forecasting system, (in Chinese), Master
dissertation, Tsinghua University, Beijing, China, 2012.

[33] S. Williams, M. Lijewski, A. Almgren, B. Van Straalen,
E. Carson, N. Knight, and J. Demmel, s-Step Krylov
subspace methods as bottom solvers for geometric multigrid,
presented at 2014 IEEE 28th Int. Parallel and Distributed
Processing Symp., Phoenix, AZ, USA, 2014, pp. 1149–
1158.

Jianqiang Huang received the master
degree in computer technology from Anhui
University in 2011. He is an associate
professor at Qinghai University, China. He
is currently a PhD candidate at Department
of Computer Science and Technology,
Tsinghua University. His research interest
includes high performance computing.

Wei Xue received the BE and PhD degrees
in electrical engineering from Tsinghua
University in 1998 and 2003, respectively.
Currently, he is an associate professor
at Department of Computer Science
and Technology, Tsinghua University.
His research interests include scientific
computing and parallel I/O.

Haodong Bian received the BS degree
in computer and information from Anhui
Polytechnic University, China in 2018.
Now, he is a master student at Department
of Computer Technology and Applications,
Qinghai University, China. His research
interests include high performance
computing and graph computing systems.

Wenxin Yan is a master student at
Department of Computer Technology
and Applications, Qinghai University,
China. Her research interest includes high
performance computing.

346 Tsinghua Science and Technology, June 2021, 26(3): 335–346

Xiaoying Wang is a professor at
Department of Computer Technology and
Applications, Qinghai University, China.
She received the PhD degree from Tsinghua
University in 2008. Her research interests
include cloud computing and parallel
computing.

Wenguang Chen received the BS and
PhD degrees in computer science from
Tsinghua University in 1995 and 2000,
respectively. He is a professor and associate
head at Department of Computer Science
and Technology, Tsinghua University. His
research interest is in parallel and distributed
computing and programming model.

