
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 06/12 pp296–308
DOI: 10 .26599 /TST.2019 .9010074
V o l u m e 2 6, N u m b e r 3, J u n e 2 0 2 1

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Memory Access Optimization of Molecular Dynamics Simulation
Software Crystal-MD on Sunway TaihuLight

Jianjiang Li, Jie Lin, Panpan Du�, Kai Zhang, and Jie Wu

Abstract: The radiation damage effect of key structural materials is one of the main research subjects of the numerical

reactor. From the perspective of experimental safety and feasibility, Molecular Dynamics (MD) in the materials

field is an ideal method for simulating the radiation damage of structural materials. The Crystal-MD represents

a massive parallel MD simulation software based on the key material characteristics of reactors. Compared with

the Large-scale Atomic/Molecurlar Massively Parallel Simulator (LAMMPS) and ITAP Molecular Dynamics (IMD)

software, the Crystal-MD reduces the memory required for software operation to a certain extent, but it is very

time-consuming. Moreover, the calculation results of the Crystal-MD have large deviations, and there are also

some problems, such as memory limitation and frequent communication during its migration and optimization. In

this paper, in order to solve the above problems, the memory access mode of the Crystal-MD software is studied.

Based on the memory access mode, a memory access optimization strategy is proposed for a unique architecture of

China’s supercomputer Sunway TaihuLight. The proposed optimization strategy is verified by the experiments, and

experimental results show that the running speed of the Crystal-MD is increased significantly by using the proposed

optimization strategy.
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1 Introduction

After the Molecular Dynamics (MD) was invented in
the 1950s[1], it has gradually attracted wide attention.
Molecular dynamics simulates the molecular trajectory
by solving the molecular motion equations of a system,
and obtains the macroscopic properties of the system
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through the description of some microscopic quantities,
such as atomic velocity, momentum, potential energy,
and others, and the application of statistical methods
on them. By using the molecular dynamics simulation
softwares to simulate the molecular trajectory, not
only the molecular motion scene can be restored
more realistically, but also the experimental time
can be reduced significantly. Currently, the most
popular molecular dynamics simulation softwares are
the Large-scale Atomic/Molecurlar Massively Parallel
Simulator (LAMMPS) software[2] developed by the
Sandia National Laboratory of the United States and the
ITAP Molecular Dynamics (IMD) software[3] developed
by University of Stuttgart of Germany. However, both
of them store a large amount of neighbor atomic index
data, requiring a large amount of memory space, which
poses great challenges to the simulation of a larger
molecular scale. In order to overcome this memory-
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related problem, Bai et al.[4] proposed a new data
structure named the Lattice Neighbor List based on
the characteristics of the Body-Centered Cubic (BCC)
structural metals to reduce the memory space occupied
by neighbors’ atomic information. The communication
model of parallel MD simulation was designed for
this data structure proposed in Ref. [4]. Based on
this data structure and a communication model, a
large-scale parallel MD simulation software Crystal-
MD[5] was developed, which greatly reduced the
memory space required for software operation. The
core algorithm of the Crystal-MD software is based
on the MD simulation of multithreading technology
optimization, and a partition step calculation method,
namely, the partition two-step method, is employed to
avoid write conflicts and improve the parallelism of
thread processing. Recently, the Crystal-MD software
has been implemented in Sunway TaihuLight and
optimized to a certain extent. With the aim to further
improve the performance of this software, this paper
studies the Crystal-MD memory access optimization
of the unique architecture of Sunway TaihuLight and
proposes a new optimization strategy for the memory
access of the salve core.

The main contributions of this paper are as follows:
(1) This paper summarizes the optimization methods

of the memory access of the slave core of Sunway
TaihuLight.

(2) This paper introduces the basic principle of the
Crystal-MD software and parallel techniques, and points
out the shortcomings of the traditional Crystal-MD
software in the calculation of the Embedded-Atom
Method (EAM) potential and the corresponding force
that is expressed as computeEam function.

(3) Aiming at the memory hierarchy of Sunway
TaihuLight, this paper divides the limited Local Data
Memory (LDM) of the slave core into two parts,
Software Cache (SWC) and Direct Access Cache (DAC),
and determines the access mode according to the access
characteristics of the variables used in the Crystal-MD
software. In the optimization based on the access mode,
the double-buffering strategy is used for DAC, while for
SWC, a strategy of simulating the function of the cache
is applied to get data.

(4) The performance test of Crystal-MD software
before and after the optimization on Sunway TaihuLight
platform is conducted.

The rest of this paper is organized as follows. The
storage mode of Crystal-MD software on Sunway
TaihuLight platform is analyzed and optimized in
Section 2. The experimental results and analysis are
provided in Section 3. The research status of the relevant
work is introduced in Section 4 and the conclusions are
summarized in Section 5.

2 Memory Access Optimization of Crystal-
MD on Sunway TaihuLight Platform

2.1 Introduction to Sunway TaihuLight

Sunway TaihuLight represents China’s first
supercomputer built entirely with domestic processors.
It is world’s the first supercomputer with a peak speed
of more than 100 Pflops (peta floating point operations
per second). Currently, it is deployed in the National
Supercomputing Center of Wuxi in China. The peak
speed of Sunway TaihuLight is 125.4 Pflops, and it has
a continuous operation speed of 93 Pflops. Its power
consumption is 6.05 billion times per watt, and it
includes a total of 40 960 SW26010[6] heterogeneous
multi-core processors developed by the National High
Performance Integrated Circuit Design Center with its
own core technology.

In the SW26010 heterogeneous multi-core processor,
each slave core has a 64 KB Scratch Pad Memory (SPM)
that can be controlled by the user as an LDM. The SPM
can be configured to support fast buffers with a precise
user control or software emulation caches that implement
automatic data caching. Because of a poor performance
of the latter, SPM is mostly used in the form of the
former. The core directly accesses the register to obtain
the data, and after the calculation is finished, the result is
sent back to the register, as shown in Fig. 1. The register
can read data in the LDM or directly communicate
with the main memory to obtain the data. The LDM
can transfer data in bulk with main memory through
the Direct Memory Access (DMA). According to Ref.
[6], it takes 177 clock cycles to read the main memory

CPE core Register LDM Main 

memory

Private for one CPE

Public 
for CPEs

Fig. 1 Storage hierarchy of Computing Processing Element
(CPE) in the SW26010 processor.
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data directly from the slave core through the register,
while it takes only four clock cycles to read the data
from the register in the LDM. Therefore, it has been a
common method to transfer the required data to the LDM
in bulk in advance, thus achieving better acceleration
effect. However, the storage space of the LDM is only
64 KB, so an effective task division is required to balance
the calculation amount allocated to each slave core.
Moreover, it is crucial to make good use of the multi-
layer storage architecture of the slave core to transfer the
data needed for the current-stage calculation in the LDM,
so as to reduce the number of accesses to the slave core
memory.

The Sunway TaihuLight currently ranks the third in
the latest Top500 list, and it has attracted extensive
attention from many scholars and experts. Some of
the recent achievements in the research on the storage
optimization of Sunway TaihuLight are presented in
Table 1.

There are also analysis and optimization of multi-core
architecture in Refs. [13–15].

2.2 Introduction to traditional Crystal-MD
parallel software

2.2.1 Basic principles of MD method
Molecular dynamics represents a molecular simulation
method based on the classical Newton laws of motion.
This method firstly calculates the potential energy of an

atom by using the potential energy function, which is
generally the empirical function, according to the initial
position of the atom in the system, and then determines
the interaction force on the atom. Finally, according to
Newton’s second law, which is given by F D m � a,
the atom acceleration can be obtained. Based on the
above steps, Newton’s equations can be integrated over
time to obtain the velocity and position of the system’s
initial state, and the iterative process can be carried
out step by step to obtain the position and velocity of
atoms at any time. The flowchart of a general molecular
dynamics simulation is presented in Fig. 2. NVT is a
shorthand for canonical ensemble, which represents that
the number of particles (N), volume (V), and temperature
(T) are certain. NVE is a shorthand for micro-canonical
ensemble, which represents that the number of particles
(N), volume (V), and the total energy (E) are certain. In
the selection of potential function, Modified Embedded
Atom Method (MEAM) potential is an extension of
EAM potential. It introduces an angle factor to describe
the interaction between atoms more accurately, but the
fitting is complicated.

In this paper, the EAM potential is used as an example
to introduce the MD parallel algorithm. The EAM
consists of a typical pair of potentials plus an interbody
embedding potential. The EAM[16] can be expressed as

Etot D

nX
i

ei C

nX
i

Gi .�i / (1)

Table 1 Research on memory access optimization of Sunway TaihuLight.
Targeted problem Solution Project proposer

High access delay caused by irregular
access.

Data prefetching using asynchronous DMA. Hunan University (Dong et
al.[7])

The limited memory bandwidth does not
match the powerful computing power of
Sunway TaihuLight platform.

Partition the local memory according to the
characteristics of the computing core and perform
data sharing between the cores through register
communication.

State Key Laboratory of
Computer Science, Institute of
Software, Chinese Academy of
Sciences (Yang et al.[8])

The slave core’s memory space is small, and
the program has a large number of discrete
memory accesses.

Adjust the storage order of the original discrete
array in order to facilitate communication, and then
the core performs the communication operations of
reading data, calculating and writing back data, and
finally calculating the data that the core writes back
to the original storage order again.

Hunan University (Hong et
al.[9])

Matrix multiplication optimization based
on double-precision universal format of
SW26010 multi-core processor.

A block algorithm at three levels of memory, SPM,
and registers is proposed to coordinate data on the
memory hierarchy.

Institute of Software, Chinese
Academy of Sciences (Jiang et
al.[10])

The cores of the same core group share data
through main memory, which has a large
overhead.

Use registers communication to design a data
transfer protocol from the core so that data can be
shared without main memory.

Chinese Academy of Sciences
(Ao et al.[11])

Data accessed irregularly from memory
transfer causes serious bandwidth
occupation.

Use software Cache to store data accessed
irregularly, design appropriate data structures for
applications, reduce data reuse distance, and
improve reusability.

University of Science and
Technology of China (Yu et
al.[12])
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Fig. 2 Flowchart of a general molecular dynamics simulation.

where e denotes the pair potential, G denotes the
embedding energy, and the electron density � represents
the sum of the actions of surrounding atoms. The ei and
�i are expressed as

eiD
1

2

nP
jD1;j¤i

˚ij .rij / (2)

�iD

nP
jD1;j¤i

fj .rij / (3)

where rij denotes the distance between atoms i and j ,
˚ij denotes the two-bady pair potential between atoms
i and j , and fj denotes the electron density generated
by atom j .

The MD simulation has the following characteristics:
(1) Both the number of particles and the number of

time steps in the MD simulation system are very large,
so the calculation amount is huge.

(2) Particle computing information needs to
synchronize at each step, resulting in a huge amount of
communication.

A general block diagram of the MD simulation parallel
computing method is presented in Fig. 3. The Crystal-
MD parallel program uses the Spatial-Decomposition
(SD)[17, 18] method to distribute the actual simulated
spatial physics evenly to each node machine such
that each node machine calculates only the force of
the particles in its subdomain. Thus, when particles
move from one subdomain to another, the particles are
exchanged between the nodes.
2.2.2 Traditional Crystal-MD parallel program of

Sunway TaihuLight
The large-scale parallel MD simulation software Crystal-

MD aims at the structural characteristics of the BCC
structural metals, and the data structure is the Lattice
Neighbor List[4].

According to the spatial distribution order of atoms,
the Lattice Neighbor List stores the position, speed,
and other related information of atoms in the specific
positions of corresponding arrays one by one so that the
array index corresponds to the Lattice points in the space
one by one. Based on the truncation radius and lattice
constant, the program calculates the offset of the index of
a center atom from the index of the neighbor atom in an
array. When an atom runs away from its original lattice
point, the program allocates extra memory space to store
its information. Based on the characteristics of the BCC
structure of a metal, the atoms are substantially fixed at
the lattice points throughout the simulation. Therefore, at
the beginning of the simulation, the program calculates
the indexes of the atoms that need to be sent to and
received from the neighbor process, and stores these
indexes in an array. In each subsequent time interval,
atom information are sent and receivced according to
the index stored in the array. The Crystal-MD divides
the simulation area into several blocks by using the two-
step method and divides the simulation blocks into two
groups such that blocks within one group are not adjacent
to each other, and then calculates the potential energy
and force between atoms in the two groups, respectively,
so as to avoid write conflicts between the threads.
2.2.3 Current problems in traditional Crystal-MD

parallel programs
After conducting a series of statistics of the program
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Start

Apply for nodes

Initialize the clock

Read in and initialize data

Establish node pseudo three-dimensional

virtual distribution system

Related variables are zeroed

MD cycle start recording

Set initial configuration

Record time

Determine related cellular structure and

calculate force

Record the time of calculating force

Whether the loop ends ?

Yes

Process and output results

No

End

Calculate the motion of molecules by the

verlet algorithm

Fig. 3 General block diagram of the MD simulation parallel
computing method.

running time, it is found that the EAM potential and
its corresponding force calculation, which is expressed
as computeEam function in the program, are the most
time-consuming tasks in Crystal-MD program. The
calculation process can be divided into the following
three stages. In the first stage, the pair potential energy
between atoms is calculated, and the density of the
electron cloud is obtained by interpolating the distance
between the atoms using the interpolation function. In
the second stage, the embedding energy and its derivative

are calculated. In the third stage, the interaction between
the atoms is calculated by embedding the energy and
potential energy. In these three stages, during the
calculation, data information on the potential table are
required; thus, the table lookup based on the atomic
distance is required during the calculation process. The
potential table size is about 280 KB, but as the storage
capacity of the LDM is only 64 KB, it is impossible to
load the entire potential table into the LDM all at once.

The Crystal-MD program adopts the method of storing
partial data and obtaining the rest data by interpolation
to solve the mentioned problem. Namely, in the program
initialization stage, 5000 values are read from the
potential table file, used as the initial value (about
40 KB), and used for cubic spline interpolation, while
35 000 values are inserted for later calculation. This
initial incoming data represent static data in the LDM
and are resident in them; thus, in the initial phase of the
calculation, only one DMA transfer is needed, which
significantly reduces the amount of data transferred to
the potential table.

There are many nested loops in the computeEam
function, which are loaded onto numerous slave cores
by the Crystal-MD program for further computation
through an interface in the athread library provided by
the platform. As shown in Fig. 4, the data accessed
by rules are transferred between the main memory and
local memory through the DMA in the cyclic calculation
process, while the potential table, as static data, is put
into local memory at once before the cycle starts.

However, there are two obvious drawbacks of the
above method:

(1) Most data stored in the potential table are obtained
by interpolation, so there may be deviations from the
original table, and when the deviation is amplified, it will
have a significant impact on the final result. Therefore,
the complete data stored in the potential table need to
be calculated, which increase the calculation amount
significantly.

(2) 5000 double data are resident in the LDM, causing

Fig. 4 Pseudo-code of the calculation of slave core data.
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that the LDM space of 40 KB, which is about 5/8 of the
LDM total capacity, is occupied all the time. Therefore,
other regular-access variables can only reduce the data
granularity per transfer into the LDM, which puts more
pressure on the LDM storage space that is of a small
capacity.

2.3 Crystal-MD optimization strategy for slave
core memory access on Sunway TaihuLight

2.3.1 Memory access analysis of the main variables
of the Crystal-MD

With the aim to overcome all the above-mentioned
problems, considering the specific structure of Sunway
TaihuLight platform, this paper suggests optimizing the
three stages of the EAM potential and the corresponding
force calculation. However, due to the limited space
of paper, only one of these phases, the calculation of
potential energy between the atoms, is presented. The
computational overhead of this phase is related mostly
to the nested loops, so that it should be optimized.
The amount of computation varies with the size of the
simulated atom and the number of the processes. The
main variables involved in the optimization process are
the x-array of three-dimensional position information
of atoms, the rho array of the electron cloud density
information of atoms, and the rho spline array of the
potential energy table of the electron cloud density. It
is worth noting that the rho spline array of the potential
table is complete, and its size is about 280 KB. Arrays
x and rho are acquired and calculated in turn according
to the subscripts at the programming time, so they
belong to the regular access memory. However, from the
perspective of variable size, even with the small number
of atomic simulations and more calculations from the
kernel, the size of each array variable allocated from the
kernel is likely to exceed the LDM capacity size of the
kernel (64 KB).

Array rho spline of the electron cloud density and
potential energy is a static table, with the size of 280 KB,
which is used to look up the table according to the atomic
distances calculated by the atomic potential energy
calculation process and obtain the electron cloud density
and potential energy of the corresponding distances for
subsequent calculation. Therefore, it belongs to the
irregular access memory. However, in the calculation
process, the access of array rho spline is also local. After
a certain period of program running, the continuous
access records of array rho spline are counted, as shown
in Fig. 5. In Fig. 5, the abscissa denotes the sequence

Fig. 5 Statistics of 3000 consecutive access records of
rho spline array.

of the nuclear access array and the ordinate denotes the
row number of the nuclear access array. The array has
only four columns, so the row number can represent
the locality of array rho spline to a certain extent. The
red pattern in Fig. 5 is composed of the coordinate
points located at the horizontal and vertical coordinates.
As can be seen from Fig. 5, although the data access
span is relatively large in the access records, the data
access is generally concentrated around the line number
of 5 categories, indicating that array rho spline shows
certain locality characteristic. Thus, from the storage
perspective, arrays should be stored in the SWC, so that
they can be fully reused.

Following the specific structure of Sunway TaihuLight
platform, this paper divides the LDM storage space into
SWC and DAC, which store different types of variables.
Generally, the SWC simulates the function of the cache,
which is suitable for storing and accessing irregular and
reusable data, while DAC directly accesses data, which
makes it suitable for storing regular data. According
to the above analysis, arrays x and rho are suitable for
storing in the DAC, while array rho spline is suitable for
storing in the SWC.

2.3.2 SWC implementation and optimization
In this work, the SWC is divided into an index section
and a data section, where the data in a cache row
correspond to the index information at the same offset of
the index section, as shown in Fig. 6. In Fig. 6, hashs 1

Fig. 6 Structure of a cache row.
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and 2 denote the hash values calculated by hash functions
1 and 2, respectively, and they are used to determine
whether the data belong to the current cache line. The
parameters of both hash functions are array names of
variables. The start field represents the subscript index
value of the array of the first data of the corresponding
row in the data area, and the end field represents the
subscript index value of the array of the last data of
the corresponding row in the data area. The start and
end fields are used to determine the range of variables
in the row. If the data are in the cache row, the index
must be between the start and end fields. The pre field
represents the row before the current row in the Least
Recently Used (LRU) replacement policy, and the next
field represents the row after the current row in the
LRU replacement policy, which mainly records the most
recent data access order and is used for data replacement.

The address mapping of the SWC adopts the hash
mapping method, whose steps are as follows:

(1) Determine the hash function to be used for
addressing. Set it as Hashoffset.x/, where x denotes the
unique identifier name of an array element, such as a
string consisting of the array name and the index value
of array element.

(2) Mark the hash value obtained in Step 1, and
modulo the cache capacity value (measured in the cache
row) as the starting offset.

Consider the example of data reading from the SWC,
suppose the calculation core needs to read an element
ArrayŒi �, and get the starting index through the address
mapping. Assume that the cache row at the beginning of
the index location includes the data, hash1 has a value
of h1, and hash2 has a value of h2. Set the hash values
of ArrayŒi � to be hash cal1 and hash cal2. If h1 is equal
to hash cal1 and h2 is equal to hash cal2, the process
continues; otherwise, it is determined that the data are
not in the cache line. The start and end values from the
index row are assumed to be v1 and v2, respectively. If
i is in the interval Œv1; v2�, then the data are stored in
the cache row and ArrayŒi � can be quickly located to the
specific location of the data in the cache row. Otherwise,
the required data are not in the Cache line. If the data are
not in the current cache row, the starting offset will be
incremented by 1, and the desired data will continue to
be queried. Thus, the program either exits the loop, when
the desired data are found, or continues the loop until
blank rows are encountered, ending the query process.

In this article, the first blank line found by a sequential

fashion is called the most recent blank line and the
corresponding index row is called the most recent index
row. When the required data are not queried after the
above-described process, it is concluded that the data
have not been stored in the SWC. So it is needed to
communicate with the main memory, obtain the needed
data from the main memory, and store the obtained data
in the SWC along with the adjacent data. The address
mapping of the data storing process is the same as the
address mapping of the data reading process, and since
the data in both processes are identical, their starting
indexes are the same. When the starting index is empty,
the data index information are stored in the index row
and the data are stored in the corresponding cache row
of the data area. However, when the leading index row
is not empty, data collision occurs, indicating that other
data are also located to that row. By using the address
mapping and conflict resolution, the nearest index row is
located, the data index information are stored in it, and
the data are stored in the corresponding cache row.

Accordingly, it can be concluded that empty lines
play an important role in the SWC. Therefore, in this
work, a relevant threshold fz for the SWC cache row
utilization u is set, requiring that u 6 fz , so as to leave
a certain number of empty lines. For a certain value of
fz , the addressing cost and data-replacement overhead
of the data are determined based on the underlying
architecture of Sunway TaihuLight and its specific
parameters. The adaptive load factor fz of the next stage
is obtained using the sum of the minimized costs as the
objective function, and finally, the addressing overhead
and replacement overhead of the data are balanced. In
this work, the granularity of the DMA transfers when
the SWC communicates with the main memory is also
optimized, and a new adaptive cache row optimization
strategy is proposed. The cache hit ratio is calculated
during the run of the program operation, and different
sizes of cache rows are selected based on the cache hit
ratio.

Suppose that the calculation of the core requires the
element rho splineŒi � in variable rho spline. The process
of reading rho splineŒi � from the SWC is shown in
Fig. 7.
2.3.3 DAC optimization
The DAC generally stores regular data, and in this
work, the double-buffering strategy is employed to
optimize the data transfer and computation. Among
them, two buffers of the same size need to be used;
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Fig. 7 Flowchart of the data reading process from the SWC.

for the convenience of illustration, the buffers are
numbered as Nos. 1 and 2. No. 1 storage space of
the current stage denotes the data-computation area,
where the data needed for the current computing stage
are stored. When the computational core needs the
data, the data-computation area is accessed to obtain
the required data. No. 2 storage space denotes the
data-buffering area, which is responsible for receiving
the next computing phase of data transferred from the
main memory. In the next computing phase, the core
gets the data from the No.2 storage space, so No.1
storage space becomes the data-buffering area. Because
the DMA data transfer operation is asynchronous, the
kernel can only send DMA instructions to the DMA
controller and then return to continue the relevant
operation; the rest of the data transfer is conducted by the
DMA controller. Therefore, data computation and data
transmission can be performed at the same time. When
the communication cost is less than the computational
cost, the slave core acceleration can achieve an ideal
parallel acceleration effect.

2.3.4 Implementation of optimized crystal-MD
program

The comparison of the flowcharts of the original Crystal-
MD program and the optimized Crystal-MD program is
presented in Fig. 8.

Compared with the original Crystal-MD program,
the optimized Crystal-MD program determines the
storage mode of variables by the storage-optimization
process proposed in this paper and then applies different
optimization strategies to the variables with different
storage modes. In the Crystal-MD optimization, the
main optimization process includes the follwing steps:

(1) Use the createSwc./ function to allocate index
and data areas for the SWC in the LDM, where
the underlying call from the core memory allocation
function ldm nalloc./ returns pointers to the index and
data areas. Then the remaining unallocated storage space
of the LDM is used as the DAC.

(2) Call the dataStore() function to get the required
storage space of arrays x and rho in the DAC and their
transfer granularity, respectively. According to the data
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(a) Flowchart of the original Crystal-MD program (b) Flowchart of the optimized Crystal-MD program

Fig. 8 Comparison of the flowcharts of the original Crystal-MD program and optimized Crystal-MD program.

storage strategy based on data access mode proposed in
this paper, the dataStore() function models the incoming
variable parameters, such as arrays x and rho. The model
is essentially a linear constraint problem. After finding
the solution to the model, the solution is returned as the
size of storage space and the corresponding transmission
granularity. In the original Crystal-MD program, after
storing the 40 KB rh spline potential table into the LDM,
only 24 KB of the storage space is left for arrays x and
rho. However, if the SWC capacity is set to 16 KB, the
total space allocated for the data with regular memory
access mode by dataStore() function will be 48 KB, so
the rule data transfer granularity can be increased and
the DMA transfer times can be reduced.

(3) Take the starting address of the storage space in the
slave core, the starting address of the storage space in
the main memory, and the DMA transfer granularity
of arrays x and rho as parameters and pass them to
dataTrans() function, and return the information on the
data transfer success. Function dataTrans() encapsulates
the details about data transfer, where the underlying
DMA operation primitive described in Section 2.3.3 is
used to transfer data in combination with the parameters
passed in by the function dataTrans(). And the double
buffer optimization strategy is encapsulated, which is
convenient for users to call directly. Since the potential
table is not stored as static data, a larger double buffer
space can be allocated, which greatly improves the
computational efficiency of regular data.

(4) Since the arrays x and rho have been transferred
to the designated storage location in advance, it

can be accessed directly according to its subscript
index when calculating the nuclear access. Since the
rho spline potential table is stored in the SWC, it
needs to be accessed through the interface function
cacheGet(). Function cacheGet() encapsulates the
process of computing that the core reads the data in the
SWC. Firstly, it is determined whether the required data
are in the SWC via a series of successive steps including
address location and conflict resolution. If the required
data have already been stored in the SWC at the time of
computation, the data are retrieved; otherwise, the data
are acquired via DMA communication from the main
memory. Next, the data are sent to the calculation core,
and then stored in the SWC with adjacent data, waiting
for the next reuse.

3 Experimental Result and Analysis

3.1 Experimental environment and program

The test environment was the Sunway TaihuLight
supercomputer, and the specific experimental parameters
are provided in Table 2.

The test programs are the original Crystal-MD
program[5], the traditionally optimized Crystal-MD
program, which was optimized with the multi-way
set-associative cache by our team, and the proposed
optimized Crystal-MD program in this paper.

3.2 Test result and analysis of proposed
optimization strategy

The running time of the original Crystal-MD program,
the traditionally optimized Crystal-MD program, and the
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Table 2 Experimental parameters.
Environment Parameter Remark or value

Hardware
environment

Operating system Sunway RaiseOS 2.0.5, Linux
Processor SW26010 multi-core processor

CPU frequency (GHz) 1.45
Main memory capacity per node (GB) 32
Processor memory bandwidth (GB/s) 136.51

Maximum number of nodes used 4000
Maximum use from the number of cores 256 000

Software
environment

Basic programming language C, C++, and Fortran
Parallel programming language MPI 3.0, OpenMP 3.1, OpenACC 2.0, and Athread library

Compiler SWACC compiler

proposed optimized Crystal-MD program was tested in
the small-scale (2 � 106 atoms), medium-scale (1:28 �
108 atoms), and large-scale (8:192 � 109 atoms) test
environments, respectively.

The experimental results of the above three programs
in a small-scale test environment are presented in Fig.
9. As can be seen in Fig. 9, under the same auditing,
the order of the running time was the original Crystal-
MD program, the traditionally optimized Crystal-
MD program, and the proposed optimized Crystal-
MD program, which showed that in the Crystal-MD
programs, storing the non-regular access variables firstly
into the software cache had a certain optimization effect.
Moreover, the storage optimization strategy proposed
in this paper resulted in better optimization effect than
the traditional optimization strategy, and the running
time was lower by 18.1% than that of the traditionally
optimized Crystal-MD program, and by 30.8% than that
of the original Crystal-MD program. The reasons for
such results are as follows: The non-regular access array
rho spline had a certain locality, and the use of software
cache could increase the reuse rate of data. Also, since
rho spline array was stored in the software cache, rather
than in the LDM as static data, it could increase the
granularity of each transfer of rule access data x and

Fig. 9 Running time of the original Crystal-MD program,
traditionally optimized Crystal-MD program, and proposed
optimized Crystal-MD program in the small-scale test
environment.

rho arrays and reduce the number of DMA transfers.
In addition, the software cache designed in this article
did not have a group-based concept and did not limit
the mapping location of the cache rows, so the data
replacement frequency was lower.

It is worth noting that the running time of the original
Crystal-MD program declined faster with the number of
cores grew than that of the other two programs. This was
because when the number of cores increased, the amount
of data allocated to each computational core decreased.
In the original Crystal-MD program, rho spline array
was partially stored in the LDM, the rest was calculated
by the interpolation process, and the number of DMA
transfers reduced after the data amount of x and rho
arrays to be calculated by each core reduced. The
LDM was sufficient to store the arrays of x, rho, and
rho spline, etc., when the number of computed cores
was large enough to require only an initial DMA transfer,
so the running time of the original Crystal-MD program
could be reduced faster by increasing the number of
computed cores. In the optimized Crystal-MD programs
that used the cache, increasing the transfer granularity
of the rule access variable reduced the number of DMA
transfers. However, when the computation amount of
each core was reduced, the DMA transfer times of
regular-access data of the traditionally optimized Crystal-
MD program did not differ signigicantly from that of the
original Crystal-MD program. However, multiple DMA
transfers of irregular-access data were still needed, so
further optimization could not be achieved. The original
Crystal-MD program used the interpolation to calculate
rho spline array, and the final result had a certain error.
Moreover, in the large-scale atomic simulation, the
proposed optimized Crystal-MD program only needed
a small number of cores to achieve excellent simulation
effect, while the original Crystal-MD program needed
2–4 times larger number of cores to achieve a similar
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simulation effect.
The experimental results of the above three programs

in the medium-scale and large-scale test environments
are presented in Figs. 10 and 11, respectively. Due to the
constraints, the maximum number of used cores was
256 000. In the medium-scale test environment, the
running time of the proposed optimized Crystal-MD
program was 18.3% lower than that of the traditionally
optimized Crystal-MD program, and 32.9% lower than
that of the original Crystal-MD program. In the large-
scale test environment, the running time of the proposed
optimized Crystal-MD program was 19.6% lower than
that of the traditionally optimized Crystal-MD program,
and 33.9% lower than that of the original Crystal-MD
program. In all the test environments, the proposed
optimized Crystal-MD program had a good optimization
effect, indicating that the access optimization strategy
proposed in this paper provided good scalability.

Following the proposed optimization strategy in this
paper, the proposed optimized Crystal-MD program
used a complete potential table, so its results were more
accurate than those of the original Crystal-MD program.

4 Related Work

Molecular dynamics represents a multi-body simulation
method, which obtains macroscopic and microscopic

Fig. 10 Running time of the original Crystal-MD program,
traditionally optimized Crystal-MD program, and proposed
optimized Crystal-MD program in the medium-scale test
environment.

Fig. 11 Running time of the original Crystal-MD program,
traditionally optimized Crystal-MD program, and proposed
optimized Crystal-MD program in the large-scale test
environment.

process quantities, such as system structure and property,
by simulating the interaction and motion process of
microscopic particles in a multi-body system composed
of particles by a computer. Fermi et al.[19] firstly
proposed the molecular dynamics method in 1955.
Verlet[20] proposed the classic Verlet algorithm in
1967, and in the molecular dynamics simulations,
the acceleration, displacement, velocity, and other
physical parameters of particles were calculated step
by step, thus expanding and developing the research
field and scope of the molecular dynamics. Daw
and Baskes[21, 22] proposed the famous EAM based
on the density-functional theory and quasi-atomic
theory. The molecular dynamics software, such as
LAMMPS[2], IMD[23], Ls1-MarDyn[24], and COMD[25],
has been widely used. In Ref. [11], the implementation
of molecular dynamics under Intel’s Xeon Phi was
studied, the Single Instruction Multiple Data (SIMD)
performance was improved, the OpenMP shared-
memory model was implemented, and the thread
cost of the OpenMP was decreased by deleting the
reduce. According to the characteristics of the BCC
structural-based metals, Bai et al.[4] proposed a new
Lattice Neighbor List to reduce the space occupied
by neighbor atomic information. The communication
model of parallel MD simulation was designed for
this kind of data structure. Based on this data
structure and communication model, a large-scale
parallel MD simulation software, the Crystal-MD was
successfully developed[5], which greatly reduced the
memory required for software operation. The Crystal-
MD simulations achieved a parallel efficiency of more
than 90% in test cases and reduced the memory of a
multicore cluster by more than 25% compared to the
LAMMPS and IMD, which are two popular molecular
dynamics simulators.

5 Conclusion

We introduce the massive parallel MD simulation
software Crystal-MD and analyze the problems of the
Cystal-MD on Sunway TaihuLight that exists in the
process of accessing memory. In view of the problems,
we divide the limited LDM into two parts: SWC and
DAC. Taking the potential energy calculation between
atoms as an example, we analyze the characteristics
of accessing array variables and determine whether
to store the data in SWC or DAC according to the
characteristics. In this paper, the function of software
Cache is realized by using the limited LDM in CPEs, and
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DAC is optimized. Finally, compared with the original
Crystal-MD program and the traditionally optimized
Crystal-MD program, the memory access optimization
strategy proposed in this paper can obviously improve
the running efficiency and has a better optimization
effect for different test scales.
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