
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 03/12 pp266–274
DOI: 10 .26599 /TST.2019 .9010034
V o l u m e 2 6, N u m b e r 3, J u n e 2 0 2 1

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Optimizing the Copy-on-Write Mechanism of Docker by Dynamic
Prefetching

Yan Jiang, Wei Liu, Xuanhua Shi�, and Weizhong Qiang

Abstract: Docker, as a mainstream container solution, adopts the Copy-on-Write (CoW) mechanism in its storage

drivers. This mechanism satisfies the need of different containers to share the same image. However, when a

single container performs operations such as modification of an image file, a duplicate is created in the upper read-

write layer, which contributes to the runtime overhead. When the accessed image file is fairly large, this additional

overhead becomes non-negligible. Here we present the concept of Dynamic Prefetching Strategy Optimization

(DPSO), which optimizes the CoW mechanism for a Docker container on the basis of the dynamic prefetching

strategy. At the beginning of the container life cycle, DPSO pre-copies up the image files that are most likely to

be copied up later to eliminate the overhead caused by performing this operation during application runtime. The

experimental results show that DPSO has an average prefetch accuracy of greater than 78% in complex scenarios

and could effectively eliminate the overhead caused by the CoW mechanism.

Key words: Docker; container; Copy-on-Write (CoW); storage driver; prefetch strategy

1 Introduction

Cloud computing provides users with convenient access
to computing resources, which are allocated by virtual
machines and consistently inefficiently scheduled.
Container technology satisfies the need for efficient
resource scheduling in cloud computing[1, 2] as it only
contains the files necessary for its startup and shares the
operating system kernel with the host.

Docker[3] is the most popular open-source container
solution today; it is based on image sharing to
minimize the container volume, but the runtime
files required by an individual container must be
stored separately. Several Docker storage drivers
featuring tiered storage have been proposed, such as
OverlayFS, AUFS[4], DeviceMapper[5], BtrFS[6], and
zFS[7]. Although these different storage drivers have

�Yan Jiang, Wei Liu, Xuanhua Shi, and Weizhong Qiang are
with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and
System Lab, Huazhong University of Science and Technology,
Wuhan 430074, China. E-mail: xhshi@hust.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2019-07-19; accepted: 2019-07-26

their own characteristics, all of them support the Copy-
on-Write (CoW) mechanism.

The CoW mechanism allows multiple callers obtain
the same pointer and share the same file; the system
does not actually provide a dedicated copy until the
caller attempts to modify this file. This mechanism
is utilized when Docker’s image file sharing feature
is implemented. Docker sets the image file to read-
only; therefore, an image can be used to start
multiple containers, and each container only needs
to save its own private data. The CoW mechanism
can considerably reduce the space requirement of the
container. However, when a single container performs
operations such as modification of an image file, the file
must be copied up to the upper read-write layer. This
copy operation results in performance degradation of
the application inside the container, particularly when
a massive number of large files must be modified.
Therefore, the overhead caused by the CoW mechanism
is an urgent problem that must be solved[8, 9].

In this paper, we present the concept of Dynamic
Prefetching Strategy Optimization (DPSO), which
optimizes the CoW mechanism for a Docker container

Yan Jiang et al.: Optimizing the Copy-on-Write Mechanism of Docker by Dynamic Prefetching 267

on the basis of the dynamic prefetching strategy. DPSO
avoids large overheads by pre-copying up image files at
the beginning of the container life cycle. Considering
that the internal behavior of containers launched by the
same image is similar, we prefetched image files that
were most likely to be copied up later. This work makes
the following contributions.
� We explored the pattern of the copy-up operation

performed by a container in the CoW mechanism.
�We developed a record-based approach to guide the

new container to perform a pre-copy-up operation when
it started.
� We developed a dynamic prefetching strategy-

based method to filter image files that must be pre-
copied up from a large number of records.

The rest of this paper is organized as follows.
Section 2 introduces the motivation of our work, while
Section 3 presents the system architecture and design
module of the DPSO system. We evaluate this strategy
in Section 4, discuss related work in Section 5, and,
finally, summarize this research in Section 6.

2 Motivation

Image files exist as a read-only layer in a Docker
container instance. When the image file must be
modified, it is copied up to the private read-write
layer belonging to an individual container. We used
the base image docker.io/Ubuntu:latest to customize
specific images and simulate the container instance in
real scenarios and performed two sets of experiments to
illustrate the additional overhead caused by the copy-up
operation.

In the first set of experiments, we created an image
with five log files with sizes of 4 KB, 128 KB, 4 MB,
128 MB, and 4 GB inside the image and accessed these
files via the internal application. In the second set
of experiments, we customized an image containing
1000 files of 4 KB each and then periodically updated
the timestamps of these files by using the internal
application. Our experiments evaluated the containers
that were started by these two sets of images. As
shown in Fig. 1, the additional overhead of the copy-up
operations accounted for most of the overall overhead
of file access. Moreover, this overhead increased with
increasing size and the number of files. In some
cases, the overhead resulted in significant performance
degradation in the application within the container. In
this study, we aim to eliminate the overhead caused by

(a) Effect of file size

(b) Effect of the number of files

Fig. 1 Overhead of copy-up operation.

the CoW mechanism.
In the CoW mechanism, reading of the file does not

trigger a copy-up operation, and the internal application
of the container does not modify all of the image files
that need to be copied up in its life cycle within a
short time after startup. In Fig. 2, we assume that the
container starts at t0 and the copy-up operation of the
image file occurs at t2. The core idea of our optimization
is to pre-copy up the image file during the idle time
between t0 and t2.

3 Design and Implementation

3.1 Overall architecture

The overall architecture of DPSO is shown in Fig. 3.

-

t0 t1 t2

Fig. 2 Timeline of the container life cycle.

268 Tsinghua Science and Technology, June 2021, 26(3): 266–274

Fig. 3 Overall architecture of DPSO.

Our strategy includes four internal modules: the
metadata collection module, the metadata processing
and storage module, the pre-operation module, and the
dynamic prefetching strategy. The metadata collection
module is responsible for collecting the metadata
information of the file throughout the life cycle of the
container and sending it to the metadata processing
and storage module, which stores and analyzes the
records. The pre-operation module performs a pre-
copy-up operation on part of the image files at the
beginning of the container life cycle. The dynamic
prefetching strategy is an abstraction module that is
responsible for guiding the processing strategy and the
processing flow of the other modules.

3.2 Collection of metadata

Docker adopts OverlayFS as its default storage driver
on account of various reasons, such as improved
performance and Linux kernel support[10]. Moreover,
the copy-up operation described earlier is a special
operation implemented by OverlayFS. Thus, we
collected the metadata information from OverlayFS.

In OverlayFS, the copy-up operation of the image
file is in ovl copy up data(). The DPSO system obtains
the file handle of the image file in this function and
takes the handle as a parameter to acquire the full path
of the image file, which is used to uniquely mark the
image file. One of the goals of DPSO is to analyze
the mode in which Docker images perform copy-up
operations internally; thus, correlating the image file
with the image ID is necessary. We can easily obtain

the full path to the image file, but we cannot directly
get the image ID on which the container is based.
However, the characteristics of Docker allow us to get
the unique containerID, which can be used to query the
corresponding image ID on the host side later.

After the metadata collection module has obtained
the necessary information, it will compose this
information into a complete record and use NETLINK
to send this record to the metadata processing and
storage module. Here, we only collected metadata
information for image files larger than 256 KB; the
explanation for doing so is given in Section 4.4.

3.3 Processing and storage of metadata

This subsection describes the processing and final
storage structure of records. To use the records directly,
we designed additional properties for them on the basis
of the parameters necessary for the prediction module.
We also used MySQL to store historical records for
lower overhead access and updated the database with
dynamic policies.

Docker provides commands for various functions.
The docker inspect command can effectively query
specific information based on the container ID sent by
the metadata collection module. By parsing the output
of docker inspect $containerID, we can get the unique
ID of the image on which the container was started.
Thus, the metadata information is associated with the
corresponding image. We then added two properties
to the record: Count and Timestamp. Count indicates
the number of times the same record occurred, while

Yan Jiang et al.: Optimizing the Copy-on-Write Mechanism of Docker by Dynamic Prefetching 269

Timestamp refers to the last time the record occurred.
These two properties play a decisive role in the analysis
and prediction phase discussed later.

To establish correspondence between an image and
the metadata information of the image file, we followed
several principles when designing the data table as
follows: each Docker image corresponds to a table
and each record in the table represents the metadata
information of an image file.

The structure of the data table includes Id, Filename,
Count, and Timestamp. Besides Count and Timestamp,
we added an Id column as the primary key to indicate
the sequential number of the record in data table.
Filename consisted of the image ID and the full path
to the file, and it was also given a UNIQUE attribute
and was used to identify the image file. The data
table is inserted/updated upon arrival of some metadata
information. During insert operations, Count was set
to 1 and Timestamp was set to the current system time.
When records in the table were updated, Timestamp was
refreshed first. However, Count was updated only if the
total number of records in the table is greater than a
preset value of N ; the reason for doing so is given in
Section 3.4.

3.4 Dynamic prefetching strategy

The dynamic prefetching strategy is one of the core
designs of the DPSO system, and its main function is
to manage updates to historical records and filter them
in the pre-operation module.

Because of the highly customized characteristics
of a container image, containers often have the
functional attributes of specific applications, which
means containers launched from the same image are
highly likely to access the same image files. For
example, in our experiment in Section 2, we started
the container multiple times and observed that the
files that were copied up inside the container were
always the same. Our prefetch method is based on
the observation that the internal behavior of containers
launched by the same image is the same. However,
small differences in the container instances launched by
the same image may occur in more complex scenarios.
Taking these scenarios into consideration, we require a
flexible prefetch strategy to predict which files are most
likely to be copied.

We could pre-copy up all of the recorded image
files to obtain the highest prediction accuracy when
only a few records are available. However, individual

differences between container instances can bring about
a massive increase in the number of records over
time, and large amounts of space and time may be
necessary to copy up all records completely. Thus, we
set a preset value N to mark an upper limit on the
number of predicted files. The value of N is set by the
administrator based on experience and container type.
If the number of records exceeds N , we propose the
following schemes for filtering.
� Filter the latest N records, on the basis of the value

of Timestamp.
� Perform a further analysis by using the probability

model on the basis of the value of Count.
In the second scheme, we used a probability model

based on the value of Count to randomly predict N

different records. The implementation of the probability
model is shown in Algorithm 1. As described above, the
Count value indicates the number of times the image
file is copied up. Therefore, the image file with a larger
Count value is the most likely to be copied later. If
we make all Counts form a linear interval and the
size of Count corresponds to the subinterval size, we
can express the probability of the subinterval i being
selected follows:

Pi D
countiPn�1

0 counti
(1)

where n is the total number of records in the table and
counti is the Count value of the i -th record.

As mentioned in Section 3.3, DPSO implements
a dynamic strategy to update Count, i.e., when the
number of records is less than or equal to the preset
value N, Count will not be updated to avoid the
additional accumulation of records entering the table.

Algorithm 1 Probability model
1: records[] f(id.count), : : : g

2: records sum[] empty
3: records sum[0] records[0]
4: for each item in records sum do
5: records sum[i] = records sum[i � 1]C records[i]
6: end for
7: for i in range(N) do
8: index rand()%records sum[n � 1]C1

9: k binarysearch(records sum, index)
10: if k has been chosen then
11: continue
12: end if
13: res[i] k C 1

14: i CC

15: end for
16: return res

270 Tsinghua Science and Technology, June 2021, 26(3): 266–274

This dynamic strategy can guarantee the prediction
accuracy of the probability model when it is just
enabled. However, it may also lose the earliest part of
the information. In the next section, we prove that this
loss has a limited effect on the prediction results.

The proposed strategy is based on the observation
that the internal behavior of different containers
launched by the same image is similar. Thus,
subinterval accountings for most of the entire linear
interval could be obtained, and records from this
subinterval are expected to be predicted. These records
can be expressed as follows:

R D Ri CRc ; Ri � Rc (2)
where Ri represents the record that is expected to
be predicted, R represents the total records, and Rc

represents the record resulting from the difference
between the container instances.

When the number of records count.R/ is greater than
N , the property can be expressed as follows:

count.R/ D N C a (3)
where a represents the partion that the number of
records count(R) exceeds N. The number of records
predicted by the probability model is equal to the preset
value N . We used Rpre to represent the actual predicted
records as Eq. (4).

count.R/ D count.Rpre/C a (4)
From the above equations, we obtained the following:

count.Ri /C count.Rc/ D count.Rpre/C a (5)
When the system starts to enable the probability

model (i.e., Count just starts updating and count.R/ just
exceeds N), a � count.Rpre/. Moreover, count.Ri /�

count.Rc/; thus, count.Ri / can be expressed as follows:
count.Ri / � count.Rpre/ (6)

Because Ri accounts for the majority of the total
records, we can speculate that most of Rpre also
falls within this interval, which achieves the goal of
prediction. As the proportion of a gradually increases to
the point where it cannot be ignored, the weight (Count)
of each record is basically formed; thus, we can predict
the target record with high accuracy.

3.5 Pre-operation of the image files

In Section 3.4, we illustrated the feasibility of
prefetching. In the current section, we introduce the
specific implementation of prefetching.

Prefetch is a key step in our proposed optimization
system; it is based on a dynamic strategy that screens
out image files requiring pre-operation and pre-copies

up the image files in the idle time described in Section
2 to eliminate the additional runtime overhead caused
by the CoW mechanism.

The pre-operation of an image file is divided into
two sub-processes, i.e., the client process and the server
process. As shown in Fig. 3, the client resides within
the container, and the server is on the host. The client
initiates a pre-copy-up operation at the beginning of the
container life cycle via the following process:
� Parse the container ID from /proc/self/cgroup inside

the container and write it to /etc/hostname.
� Create socket to connect with the server and send

the container ID for query.
� Perform a copy-up operation on each file in the

returned image file list. The specific command for this
step is touch $filename.

The server queries and returns the image file
information according to the container ID sent by the
client via the following steps:
� Create a socket and wait for the client’s request.
� Obtain the image ID based on the container ID sent

from the client.
� Query the database, and filter the data in the table

according to the prefetching strategy. Then, return the
filtered results to the client.

4 Evaluation

4.1 Experiment environment

We evaluated DPSO on a Linux high-performance
server with a 2.6 GHz Intel Xeon E5-2670 CPU and
64 GB memory. The implementation of DPSO was
based on Docker version 1.13.1. In addition, the system
collected the historical information of OverlayFS by
instrumentation.

4.2 Performance evaluation

DPSO was optimized by spreading the copy-up
overhead to the idle time of the container runtime. To
test the performance improvements the system could
bring about, we evaluated the additional access cost of
image files under different idle times.

Because no standard benchmarks and applications
exist for testing in this area, our experiments were
based on a set of synthetic simulations; for the sake
of simplicity and efficiency, we only simulated the
copy-up operation of the image file triggered by the
application inside the container. We used the base image
docker.io/Ubuntu:latest to customize a specific image
with four target image files with sizes of 4 GB, 256 MB,

Yan Jiang et al.: Optimizing the Copy-on-Write Mechanism of Docker by Dynamic Prefetching 271

16 MB, and 1 MB for testing; the internal application
must access these image files and add a record to
the end of each file. In this experiment, the variables
were the idle time between the container startup and
the application execution. Note that the idle time here
should actually be the time between the container
startup and the copy-up operation of the target image
file.

Figure 4 shows that, when the idle time is set to
zero, the overhead required to copy up a 4 GB image
file is approximately 70 s. As the idle time increased
to 70 s, the overhead of DPSO gradually approached
zero (0.067 ms) because the image file had already been
copied up to the upper read-write layer in advance.
Results from the three experiments were similar. These
findings prove that the DPSO system could effectively
eliminate the overhead caused by the copy-up operation
when the container has enough idle time. Indeed, the
system does not increase the overhead even in some
extreme cases.

4.3 Accuracy of the dynamic prefetching strategy

As described earlier, DPSO predicts the files that
are most likely to be copied up on the basis of the
observation that the internal behaviors of containers
launched by the same image are similar. To simulate
the similarities and differences between containers, we
abided by the following principles when designing the
internal behavior of each container: all of the containers
performed a copy-up operation on the same set of
files to simulate their similarity and each container
also performed a copy-up operation on a few other
different image files to simulate individual differences
between container instances. Based on these principles,
we designed a reasonable set of inputs, which are listed
in the second column of Table 1. In this experiment,
the behavior of the application and the contents of
the image file are identical to those in Section 4.2.
Since nearly all of containers modified files 1–10,
we set N to 10. We evaluated the accuracy of the
dynamic prefetching strategy by experimenting with 10
containers successively launched from the same image.
The history of all previous containers was used to
predict the behavior of the next container.

Table 1 reveals an average prediction accuracy
of 78.6% (range 60%–90%) despite the experiment
using a small data set, leading to differences between
different container instances accounting for a large
proportion (approximately 10%). Moreover, as the

(a) Additional overhead of 4 GB file

(b) Additional overhead of 256 MB file

(c) Additional overhead of 16 MB file

(d) Additional overhead of 1 MB file

Fig. 4 Overhead of different sized image files under
different idle times.

number of containers launched by the image increased,
our probability model based on the value of Count
appeared to improve the accuracy of prefetching.

272 Tsinghua Science and Technology, June 2021, 26(3): 266–274

Table 1 Experimental results of the proposed dynamic prefetching strategy.
Container ID Copy-up file Predicted file Accuracy (%)

1 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 File:1, 2, 4, 5, 6, 7, 8, 9, 10, 11 81.8
3 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 23 File:2, 3, 4, 5, 6, 7, 8, 9, 10, 11 75.0
4 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 File:1, 2, 3, 4, 5, 6, 8, 10, 11, 12 81.8
5 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 File:1, 3, 6, 7, 8, 9, 10, 11, 12, 23 63.6
6 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 11 81.8
7 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 11 File:1, 2, 3, 5, 6, 7, 8, 9, 11, 23 90.0
8 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10 File:1, 2, 4, 5, 6, 7, 10, 11, 12, 23 70.0
9 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 File:1, 2, 3, 4, 7, 8, 9, 10, 11, 12 81.8
10 File:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 File:1, 2, 3, 4, 5, 7, 8, 9, 10, 11 81.8

4.4 System overhead analysis

In this subsection, we measured and analyzed the
overall cost of the DPSO system. The overhead mainly
concentrates on two processes: metadata collection and
pre-operation. During the metadata collection process,
a complete record is combined and transmitted in
OverlayFS when a copy-up operation occurs. The pre-
operation occurs during the idle time of the container.
Thus, the metadata collection behavior interferes with
the application inside the container.

We estimated the additional cost of DPSO by
switching the metadata collection function on and off.
We tested our strategy on 1000 files with sizes of 4 KB
each and show the results in Table 2. The average cost
of collecting and transmitting metadata information was
approximately 10 ms. When the image file was small
(4 KB or less), the additional cost of DPSO accounted
for a large proportion of the total overhead. However,
this cost was independent of the file size. The overhead
of the copy-up of small files did not have a considerable
effect on the application. Therefore, only files larger
than 256 KB were collected in our flexible metadata
collection method, which implies that DPSO’s overhead
exerts a minimal effect on the entire system.

5 Related Work

Given the increasing popularity of Docker[11], serveral
researchers have conducted studies on the storage
drives of the software. Several Docker storage drivers
were comprehensively evaluated in Refs. [12, 13] and

Table 2 Overall cost of metadata collection.
Number of

files accessed
Metadata collection

off (µs)
Metadata collection

on (µs)
1 12 459 23 595

10 130 486 224 302
100 1 265 765 2 320 724

1000 12 391 793 22 423 136

a number of key findings were obtained. For example,
BtrFS performs better under Docker commands but has
poor performance under real workloads, DeviceMapper
has poor performance under Docker commands but
performs well under actual workloads. Interestingly,
Advanced multi-layered Unification Filesystem
(AUFS) performs well in both cases.

Some research has focused on the memory usage of
specific storage drivers (e.g., DeviceMapper and BtrFS)
for Docker. File systems based on the block storage
mode, such as BtrFS and zFS, bear the disadvantage
of redundant disk reads. Wu et al.[14] designed
TotalCOW to create a read-only cache layer between
the block device and the file system, thereby eliminating
redundant disk reads and caching. Similarly, Zhao et
al.[15] designed a DRR strategy that includes a DRR
metadata management layer between the file system
and the disk to reduce redundant disk reads by memory
copying between containers.

Another study focused on the optimization of the
performance of UnionFS. Copying files from disk to
memory and synchronizing from memory to disk are
the most time-consuming overheads caused by the CoW
mechanism. In Ref. [16], Mizusawa et al. found the
most time-consuming fsync operation by analyzing
the OverlayFS stack. The group then reduced the
number of unnecessary fsync operations to lower the
overhead caused by the CoW mechanism; despite the
improvements provided by this solution, however, it
still impacts the application. Our work can completely
eliminate this impact.

6 Conclusion

In the present paper, we introduced DPSO, an
optimization of the CoW mechanism for a Docker
container based on the dynamic prefetching strategy,
to spread the overhead of the CoW mechanism

Yan Jiang et al.: Optimizing the Copy-on-Write Mechanism of Docker by Dynamic Prefetching 273

to the idle time of the container life cycle. We
analyzed the execution flow of the copy-up operation
performed by OverlayFS and realized efficient metadata
information collection on the basis of this analysis. We
also designed a flexible dynamic prefetch strategy
to select different prefetching schemes according to
different needs. DPSO proved to be effective in various
scenarios, although several aspects of our approach
could still be improved. In future work, we plan to
build more complex models or use machine learning
strategies to prefetching. As the implementation of
DPSO does not depend on a specific code of Docker, we
will also consider integrating it into the Docker source
code as a plug-in.

Acknowledgment

The work was supported by the National Key Research and
Development Program of China (No. 2018YFB1003203),
the National Natural Science Foundation of China
(Nos. 61772218 and 61433019), the Outstanding Youth
Foundation of Hubei Province (No. 2016CFA032),
and the Chinese Universities Scientific Fund (No.
2019kfyRCPY030).

References

[1] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, An
updated performance comparison of virtual machines
and Linux containers, presented at IEEE Int. Symp.
Performance Analysis of Systems and Software,
Philadelphia, PA, USA, 2015.

[2] B. Xavier, T. Ferreto, and L. Jersak, Time provisioning
evaluation of KVM, Docker and unikernels in a cloud
platform, in Proc. 16th IEEE/ACM Int. Symp. Cluster,
Cloud and Grid Computing, Cartagena, Colombia, 2016.

[3] C. Anderson, Docker [Software engineering], IEEE Softw.,
doi: 10.1109/MS.2015.62.

[4] J. Okajima, Aufs5-advanced multi layered unification
filesystem version 5.x, http://aufs.sourceforge.net/, 2013.

[5] V. Tarasov, D. Jain, G. Kuenning, S. Mandal, K.
Palanisami, P. Shilane, S. Trehan, and E. Zadok, Dmdedup:
Device mapper target for data deduplication, presented
at Ottawa Linux Symposium, Ottawa, Canada, 2014.

[6] O. Rodeh, J. Bacik, and C. Mason, BTRFS: The Linux B-
tree filesystem, ACM Trans. Storage, vol. 9, no. 3, p. 9,
2013.

[7] O. Rodeh and A. Teperman, zFS—A scalable distributed
file system using object disks, in Proc. 20th IEEE/11th

NASA Goddard Conf. Mass Storage Systems and
Technologies, San Diego, CA, USA, 2003.

[8] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, Slacker: Fast distribution with lazy
Docker containers, in Proc. 14th USENIX Conf. File and
Storage Technologies, Santa Clara, CA, USA, 2016.

[9] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L.
Peterson, Container-based operating system virtualization:
A scalable, high-performance alternative to hypervisors,
in Proc. 2nd ACM SIGOPS/EuroSys European Conf.
Computer Systems, Lisbon, Portugal, 2007.

[10] N. Mizusawa, K. Nakazima, and S. Yamaguchi,
Performance evaluation of file operations on OverlayFS,
in Proc. 15th Int. Symp. Computing and Networking,
Aomori, Japan, 2017.

[11] D. Jaramillo, D. V. Nguyen, and R. Smart, Leveraging
microservices architecture by using Docker technology,
presented at SoutheastCon 2016, Norfolk, VA, USA, 2016.

[12] R. Dua, V. Kohli, S. Patil, and S. Patil, Performance
analysis of union and cow file systems with Docker,
presented at Int. Conf. Computing, Analytics and Security
Trends, Pune, India, 2016.

[13] V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke, D.
Hildebrand, M. Mohamed, N. Mandagere, W. J. Li,
R. Rangaswami, and M. Zhao, In search of the ideal
storage configuration for Docker containers, in Proc. 2nd

Int. Workshops on Foundations and Applications of Self
Systems, Tucson, AZ, USA, 2017.

[14] X. B. Wu, W. G. Wang, and S. Jiang, TotalCOW:
Unleash the power of copy-on-write for thin-provisioned
containers, in Proc. 6th Int. Asia-Pacific Workshop on
Systems, Tokyo, Japan, 2015, p. 15.

[15] F. Zhao, K. Xu, and R. Shain, Improving copy-on-write
performance in container storage drivers, presented at
Storage Developers Conference, Santa Clara, CA, USA,
2016.

[16] N. Mizusawa, J. Kon, Y. Seki, J. Tao, and S. Yamaguchi,
Performance improvement of file operations on OverlayFS
for containers, presented at IEEE International Conference
on Smart Computing, Taormina, Italy, 2018.

Yan Jiang received the bachelor degree
from Huazhong University of Science and
Technology, China, in 2017. He is a master
student at National Engineering Research
Center for Big Data Technology and
System, Services Computing Technology
and System Lab, Huazhong University
of Science and Technology, China. His

research interests focus on the HPC I/O, burst buffer, and parallel
filesystem.

Wei Liu received the bachelor degree
from Huazhong University of Science and
Technology, China, in 2016. He is a master
student at National Engineering Research
Center for Big Data Technology and
System, Services Computing Technology
and System Lab, Huazhong University
of Science and Technology, China. His

current research interests focus on the HPC I/O, cloud
computing, and parallel filesystem.

274 Tsinghua Science and Technology, June 2021, 26(3): 266–274

Xuanhua Shi is a professor in National
Engineering Research Center for Big
Data Technology and System, Services
Computing Technology and System Lab,
Huazhong University of Science and
Technology, China. He received the PhD
degree from Huazhong University of
Science and Technology, China, in 2005.

From 2006, he worked as an INRIA Post-Doc in PARIS team at
Rennes for one year. His current research interests focus on the
cloud computing and big data processing. He has published over
100 peer-reviewed publications.

Weizhong Qiang is an associate professor
in National Engineering Research Center
for Big Data Technology and System,
Services Computing Technology and
System Lab, Huazhong University of
Science and Technology, China. He
received the PhD degree from Huazhong
University of Science and Technology,

China, in 2005. He has authored or coauthored about 30 scientic
papers. His research interests include system security about
virtualization and cloud computing.

