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Utility Aware Offloading for Mobile-Edge Computing

Ran Bi�, Qian Liu, Jiankang Ren, and Guozhen Tan

Abstract: Mobile-edge computing casts the computation-intensive and delay-sensitive applications of mobile

devices onto network edges. Task offloading incurs extra communication latency and energy cost, and extensive

efforts have focused on offloading schemes. Many metrics of the system utility are defined to achieve satisfactory

quality of experience. However, most existing works overlook the balance between throughput and fairness. This

study investigates the problem of finding an optimal offloading scheme in which the objective of optimization aims

to maximize the system utility for leveraging between throughput and fairness. Based on Karush-Kuhn-Tucker

condition, the expectation of time complexity is analyzed to derive the optimal scheme. A gradient-based approach

for utility-aware task offloading is given. Furthermore, we provide an increment-based greedy approximation

algorithm with 1 C
1

e � 1
ratio. Experimental results show that the proposed algorithms can achieve effective

performance in utility and accuracy.

Key words: utility; approximation algorithm; quality of experience; mobile edge computing

1 Introduction

With the advancement of technologies in mobile
sensing and wireless communication, Mobile-
Edge Computing (MEC) bridges the gap between
intensely computational requirements and the restricted
capability of individual devices[1, 2]. MEC leverages
physical proximity to mobile devices, and brings a
promising possibility to enable Internet of Things
(IoT)-based computing intensive applications, such as
data analytics[3–5] and data mining[6–8], while achieving
low delay latency and energy cost[9, 10]. By offloading
part of the tasks to a nearby MEC cloud, the system
considerably decreases computation latency and energy
consumption[11].

Task offloading incurs extra communication latency
and energy cost; thus, the offloading decision becomes a
critical issue for end-nodes, mobile Base Stations (BSs),
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and the cloud. According to the optimization goals,
the research work can be divided into three categories:
delay latency minimization, energy consumption
minimization, and joint optimization for offloading and
resource allocation. To achieve satisfactory Quality of
Experience (QoE), researchers proposed many metrics
of system utility. In Ref. [12], the utility measured
the improvement in delay and energy consumption
by offloading compared with local execution. Tao
et al.[13] studied the performance guaranteed scheme,
which minimized the energy consumption of mobile
devices. Optimal offloading decision was formalized as
a latency-constrained energy minimization problem in
Ref. [14]. Meng et al.[15] aimed at improving the QoE
of end users, in which the trade-off between quality of
services and experience of end-users was investigated.

Due to the diversity of applications in MEC, the
range of data sizes related to offloading is large, and
the distribution of data sizes cannot be predicted.
Most existing works on MEC have overlooked the
balance between throughput and fairness. Considering
the realistic scenarios, we introduce a multi-user and
one-BS MEC system. We assume that the computation
task set is fT1;T2; : : : ;TN g, where N is the number
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of computation tasks. The data size of task TN is
much larger than that of Ti , for i ¤ N . The QoE
is severely reduced if we make an offloading decision
for TN . Because offloading task TN takes a significant
computation resource such that other tasks cannot be
offloaded.

The computing tasks have different requirements,
such as data size, number of CPU cycles, deadline
of completion time, and constraint for energy
consumption. Apart from considering fairness, the
offloading scheme will overlook certain types of
computation task, thereby leading to a significant
reduction in QoE. The computation capability is
always provided in advance. The relation between
the requirements of computing tasks and computation
capability of the server is neglected.

The aforementioned observation motivates us to
investigate the problem of finding an optimal offloading
scheme, which maximizes the system utility while
balancing the throughput and fairness. We present a
formal formulation of the optimization problem above.
By using Karush-Kuhn-Tucker (KKT) condition, we
prove the expectation of time complexity to derive
the optimal scheme. For a given precision parameter,

a
�

1 C
1

e � 1

�
-approximation algorithm is provided

based on greedy method. Its time complexity and space

complexity are O

�
N 4�

cmin

�
and O.N 3/, respectively,

where � is the computation constraint of server and cmin

is the minimum number of CPU circles among the tasks.
The main contributions of this paper are as follows:
� The problem of finding an optimal deployment

scheme with different requirements of computing task
is defined and formalized as an optimization problem.

� According to KKT condition, the expectation of
time complexity for deriving the optimal scheme is
proved to be O.4N /.

� We present a gradient-based approach for utility-
aware task offloading. Furthermore, an increment-
based polynomial-time approximation algorithm is

provided, where the ratio bound is 1 C
1

e � 1
. The

complexity of the algorithm is analyzed.
� Simulation experiments are conducted to evaluate

the proposed algorithms. Experimental results show
that the given algorithms can achieve effective
performance in terms of utility and accuracy.

The rest of this paper is organized as follows.
Related works on offloading and task scheduling in

MEC are surveyed in Section 2. In Section 3, the
optimization problem is defined, and the computation
complexity is analyzed in Section 4. For utility-aware
task offloading, Section 5 provides a gradient-based
approach and a greedy-based approximation algorithm.
The approximation ratio bound is proved. Performance
evaluation is illustrated in Section 6, and Section 7
concludes this paper.

2 Related Work

The task scheduling is critical for distributed network
systems, such as wireless networks[16], IoT[17],
cyber-physical systems[18], and mobile crowdsensing
systems[19, 20]. However, the system architecture and
quality of service in MEC are different from these
networks. Computation offloading for MEC has
attracted considerable research effort and many efficient
algorithms were proposed in Ref. [21]. Recent work
has focused on either offloading decisions or resource
allocation with two optimization objectives: latency and
energy consumption.

To minimize the average delay, Liu et al.[22]

considered a power-constrained delay minimization
problem and proposed a 1D search-based approach to
find the optimal stochastic computation task scheduling.
Ren et al.[23] investigated the problem of minimizing the
weighted-sum delay, while considering the constraints
on communication and computation resource. To
improve the random access possibility, Liu et al.[24]

provided an MEC framework for energy internet, in
which the local network was used for data collection
and compression.

Lei et al.[25] proposed a semi-distributed task
scheduling strategy to minimize the long-term
average weighted sum of latency and energy cost,
where the computation offloading and multiuser
scheduling were jointly considered in a narrowband-
IoT edge computing system. Closed-form solutions
were provided for linear approximation and semi-
gradient descent approach. Zhu et al.[26] proposed two
approximation algorithms in a more complex scenario,
where multiple moving mobile devices shared multiple
MEC servers. The designed schedule strategy aimed
to minimize the energy consumption while satisfying
the latency constraint. To reduce the total energy
consumption of all mobile devices, Tao et al.[13] studied
the partial offloading decisions with constraints on
resource capacity and delay.

Lyu et al.[12] investigated the joint optimization
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for offloading decisions and computation resource
allocation. The optimization objective was to maximize
the system utility, which was defined as a linear
combination of improvement in latency and energy
cost by offloading compared with the local execution.
Wang et al.[27] addressed the minimization problem for
time delay and energy cost, where both of the CPU
frequency control and uploading cost were considered.
Firstly, the offloading decisions were made by a central
method, and then the local computation and wireless
transmission of devices were optimized. Most existing
works overlook the balance between throughput and
fairness, and the offloading scheme overlooks certain
types of computation task. As a result, the QoE of some
users is decreased.

3 System Model and Problem Formulation

In this section, the problem of finding an optimal
offloading scheme with different computational
requirements is defined and formalized as a general
optimization problem. Based on KKT condition, the
expectation of time complexity is proved to be O.4N /.

3.1 System model

We consider that the system consists of a base station
and N devices (the number of computation tasks
equals the number of devices), which can include IoT
and mobile devices. Each device needs to offload a
computation task to the base station. The devices can
access the station resources through a wireless channel,
and each device is endowed with different computing
and communication capabilities, such as smart meters,
tablets, and laptops. The system operates with a slotted
structure. Let N D f1; 2; : : : ; N g denote the index set
for computation task.

Definition 1 (computing task): A computing task
Ti is represented by a tuple .di ; ci ; ti ; ei /, where di

describes the data size of the task from device i , ci is the
total number of CPU cycles required to accomplish the
computation task, ti denotes the deadline of completion
time for the task, and ei is the upper bound of
energy consumption, which includes the energy cost of
wireless transmission and local computation.

For the uplink transmission, the data rate of device i

can be[12, 28]

ri D W log2

�
1 C

pihi

N0

�
(1)

where W is the bandwidth, pi represents the
transmission power of device i , hi denotes the channel
gain from device i to the base station including path
loss and fading, and N0 is the noise power. We assume
that the system bandwidth is B . Thus, no more than
M D B=W devices are allowed to transmit at the same
time.

3.2 Task offloading model

Based on the communication model, the task duration
of offloading consists of time consumption by two parts,
i.e., (1) communication time consumed by the uplink
transmission and (2) execution time consumed by an
edge server. The task delay incurred by offloading can
be denoted as

toff
i D

di

ri

C
ci

fe

D
di

W log2

�
1 C pihiN

�1
0

� C
ci

fe

(2)

where fe is the computation capability of edge server in
term of instruction numbers per second.

In the procedure of task offloading, we only consider
the energy cost of the upload. Therefore, the energy
consumption depends on the data size of the task. If
device i offloads a task to edge server, then the energy
consumption of device i for uplink transmission can be
denoted as follows:

eoff
i D

di

ri

� pi D
dipi

W log2

�
1 C pihiN

�1
0

� (3)

3.3 Local computation

For local task computing, let fi denote the CPU
computing capability of device i . The local execution
time of the task can be obtained as follows:

t loc
i D

ci

fi

(4)

The energy cost of CPU is a superlinear function of
computation frequency. We denote ploc

i as the power
consumption per CPU cycle. For task Ti , the energy
cost of locally processing is expressed as

eloc
i D ploc

i � ci (5)

3.4 Problem formulation

For each task Ti , we consider the task completion time
and energy consumption simultaneously. Let �i denote
the fraction of the offloading task for device i . The task
delay consists of offloading and local computation as
follows:

�i � toff
i C.1��i /� t loc

i D
�idi

ri

C
�ici

fe

C.1��i /�
ci

fi

(6)
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Similarly, the energy consumption of each device
i includes the uplink communication and local
computation as follows:

�i � eoff
i C .1 � �i / � eloc

i D
�idipi

ri

C .1 � �i / � ploc
i ci

(7)
In our model, a set of tasks arrive and seek the derived

computing service. We adopt an economic point to
measure the utility for the edge server performing
a computation task. The nonlinear value function
presented in this paper is similar to that in the work of
Refs. [29,30] based on the law of diminishing marginal
utility[31, 32]. The utility of the edge server by serving
task Ti can be written as

ui D log.1 C �idi / (8)

Let � denote the total CPU computation capability,
which can be observed as the maximum number of
instructions per second. For a given set of computation
task fT1;T2; : : : ;TN g, the computation capability of the

server satisfies the condition that
NX

iD1

ci > � . That is,

the service cannot enable each task to be computed at
the BS. In this paper, we aim to maximize the sum of
the utility for the given tasks. The optimization problem
can be formulated as follows:

max
�

NX
iD1

log.1 C �idi / (9)

s:t:
�idi

ri

C
�ici

fe

C .1 � �i / �
ci

fi

6 ti ; 8i 2 N

(10)
�idipi

ri

C .1 � �i / � ploc
i ci 6 ei ; 8i 2 N (11)

NX
iD1

�ici 6 � (12)

0 6 �i 6 1; 8i 2 N (13)

4 Computation Complexity Analysis

Lemma 1 The objective function of optimization
problem (9) is strictly concave.

Lemma 1Proof For given i 2 f1; 2; : : : ; N g, we can have the
following:

@ log.1 C �idi /

@�i

D
di

.1 C �idi / ln 2
:

According to the constraints �i > 0 and di > 0, the
following is easily known:

@2 log.1 C �idi /

@2�i

D
�di

2

.1 C �idi / ln 2
< 0:

Then log.1 C �idi / is a concave function with respect
to �i , and the sum of independent concave functions
is still a concave function. Based on the preceding
discussion, we can determine that the objective function
of optimization problem (9) is strictly concave. �

For any given i , we know that the inequality
constraints of the problem are convex function, with
regard to �i . We can apply the KKT condition to obtain
the optimal solutions for the proposed problem (9). For
simplification, we introduce notations Ti and Ei , such
that 8i 2 f1; 2; : : : ; N g;

U.�/ D

NX
iD1

log.1 C �idi /; C.�/ D

NX
iD1

�ici � �:

Ti .�i / D
�idi

ri

C
�ici

fe

C .1 � �i / �
ci

fi

� ti (14)

Ei .�i / D
�idipi

ri

C .1 � �i / � ploc
i ci � ei (15)

Theorem 1 We assume that ��
1; ��

2; : : : ; ��
N are

the optimal solutions to Problem (9), then there must
exist ˛�

1 ; : : : ; ˛�
N , ˇ�

1 ; : : : ; ˇ�
N , and ��, satisfying the

following:

rU.��/ �

NX
j D1

˛�
i rTi .�

�
i / �

NX
kD1

ˇ�
krEk.��

k/�

��
rC.��/ D 0 (16)

˛�
i Ei .�

�
i / D 0; ˇ�

i Ei .�
�
i / D 0; 8i 2 f1; 2; : : : ; N g

(17)

��C.��/ D 0 (18)

Ti .�
�
i /60; Ei .�

�
i /60; C.��/60; 8i 2f1; 2; : : : ; N g

(19)

�� > 0; 06��
i 61; ˛�

i >0; ˇ�
i >0; 8i 2f1; 2; : : : ; N g

(20)
We define the Lagrangian function as follows:

L.�; ˛; ˇ; �/D

NX
iD1

log.1C�idi /C

NX
iD1

˛i .0�Ti .�i //C

NX
iD1

ˇi .0�Ei .�i //C� .0�C.�// (21)

Based on Theorem 1, we need to solve .3N C 1/

equations, that is, Eqs. (16)–(18). Then, we check if the
solutions satisfy Constraints (19) and (20). For given
i 2 f1; : : : ; N g, we obtain the optimal solutions by
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dealing with the following equations:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

di

.1 C ��
i di / ln 2

C˛�
i

�
ci

fi

�
di

ri

�
ci

fe

�
D

� ˇ�
i

�
ploc

i ci �
dipi

ri

�
C ��ci (22a)

ˇ�
i

�
��

i dipi

ri

C.1���
i /�ploc

i ci �ei

�
D0 (22b)

��

 
NX

iD1

��
i ci � �

!
D 0 (22c)

Lemma 2 Without the constraint of Eq. (22c), four
cases are used to check the feasibility of the solutions
derived by the preceding equations.

Proof For given i , we consider the equations for
�i ; ˛i , and ˇi .

Case 1 ˛0
i ¤ 0 and ˇ0

i D 0. Then, the following
formulas simultaneously hold:8̂̂<̂

:̂
�0

idi

ri

C
�0

ici

fe

C .1��0
i / �

ci

fi

� ti D 0 (23a)

�0
idipi

ri

C .1��0
i / � ploc

i ci � ei < 0 (23b)

According to Eq. (23a), we can obtain that �0
i D

cifi
�1

� ti

cifi
�1

� cife
�1

� diri
�1

. If �0
i satisfies Constraint

(23b), then �0
i is the candidate of optimal solutions. If

�0
i does not meet Constraint (23b), then we consider

Cases 2 � 4.
Case 2 ˛0

i D 0 and ˇ0
i ¤ 0. Similarly, the following

formulas simultaneously hold:8̂̂<̂
:̂

�0
idi

ri

C
�0

ici

fe

C .1��0
i / �

ci

fi

� ti < 0 (24a)

�0
idipi

ri

C .1��0
i / � ploc

i ci � ei D 0 (24b)

According to Eq. (24b), we know that �0
i D

ei � pi
locci

dipiri
�1 � pi

locci

. If �0
i can meet Constraint (24a),

then �0
i is the candidate of optimal solutions. If �0

i does
not satisfy Constraint (24a), then we consider Cases 3
and 4.

Case 3 ˛0
i ¤ 0 and ˇ0

i ¤ 0.8̂̂<̂
:̂

�0
idi

ri

C
�0

ici

fe

C .1��0
i / �

ci

fi

� ti D 0 (25a)

�0
idipi

ri

C .1��0
i / � ploc

i ci � ei D 0 (25b)

Based on Eq. (25a), �0
i D

cifi
�1

� ti

cifi
�1

� cife
�1

� diri
�1

.

If �0
i satisfies Constraint (25b), then �0

i is the candidate
of optimal solutions. Otherwise, we consider Case 4.

Case 4 ˛0
i D 0 and ˇ0

i D 0. According to
@L

@�0
i

D 0,

we know �0
i D

1

� 0ci ln 2
�

1

di

, which implies that � 0 > 0.

˛0
i ¤ 0, ˇ0

i ¤ 0 or � 0
i ¤ 0 mean that the corresponding

optimal point is on the boundary. �
Theorem 2 For given N tasks, the expectation

of time complexity for deriving the optimal points is
O.4N /.

Proof For given task Ti , we need to check the
feasibility of optimal solution under four cases. If
�0

1; �0
2; : : : ; �0

N are candidates of optimal points, that
are derived based on Lemma 2, then � 0 can be obtained

by resolving equation
NX

iD1

�0
ici � � D 0. We verify

whether the candidate points such as �0
1; : : : ; �0

N ,
˛0

1; : : : ; ˛0
N , ˇ0

1; : : : ; ˇ0
N , and � 0, meet the KKT

conditions in Eqs. (16) – (20).
For a given feasible solution ˛; ˇ, and �, we denote

the computation cost to verify KKT conditions as O.1/.
We assume that the optimal points satisfy the uniform
distribution. The expectation of time complexity is

analyzed as 1�
1

4N
C2�

1

4N
C� � �C4N �

1

4N
D

4N C 1

2
.

Based on the preceding analysis, the expectation of
time complexity to derive the optimal points is O.4N /.

�

5 Algorithm Design for Utility-Aware Task
Offloading

As the expectation of time complexity is O.4N /,
designing an exact algorithm with polynomial time
for optimal task offloading is difficult. We present
a gradient-based approach for utility-aware task
offloading, in which the performance depends on step
size and relative ratio. Moreover, we prove that the
objective function of the problem is increasing and
submodular. We provide a greedy polynomial-time
algorithm with approximation ratio guarantee.

5.1 Gradient-based approach for utility-aware
task offloading

We provide a gradient-based approach for utility-
aware task offloading. The basic idea of the gradient
method is to solve the dual problem. We consider
the dual decomposition for Problem (9). Owing to the
separability of Constraints (10) and (11), we present the
Lagrangian form of the primal problem.
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L.�; �/ D

NX
iD1

log.1 C �idi / C �

 
��

NX
iD1

�ici

!
(26)

s:t:
�idi

ri

C
�ici

fe

C.1��i /�
ci

fi

6 ti ; 8i 2N (27)

�idipi

ri

C.1��i /�ploc
i ci 6ei ; 8i 2N (28)

0 6 �i 6 1; 8i 2 N (29)

We can easily know that

L.�; �/ D

NX
iD1

flog.1 C �idi / � ��icig C ��;

and L.�; �/ is a strictly concave function.
Without the constraints, the maximum value of

L.�; �/ can be achieved by a given � . For a given �,
�?

i is defined as follows:
�?

i .�/ D arg max
�i>0

Œlog.1 C �idi / � ��ici � (30)

�?
i .�/ can be obtained by @L.�;�/

@�i
D 0. For 8i 2 N ,

we have
@L.�; �/

@�i

D
di

.1 C �idi / ln 2
� �ci (31)

�?
i .�/ D

1

�ci ln 2
�

1

di

(32)

According to strict concavity, �?
i .�/ is unique. The dual

problem is as follows:

g.�/ D

NX
iD1

g.�?
i ; �/ C �� (33)

s:t: g.�?
i ; �/ D log.1 C �?

i di / � ��ici (34)

��
i .�/ D

1

�ci ln 2
�

1

di

(35)

� > 0 (36)

Based on the preceding analysis, the gradient
approach can be applied:

�.l C 1/ D

"
�.l/ � '

 
� �

NX
iD1

�i .� .l//

!#C

(37)

where l is the iteration index, ' > 0 is a small
positive step size, and Œ��C denotes the projection onto
the nonnegative quadrant.

Theorem 3 If we do not consider the Constraints
(10) and (11), then the dual variable �.m/ converges to
the dual optimal �? as m ! 1, and the primal variable
�?

i .�.m// also converges to the primal optimal variable
�?

i .
Proof The objective function of Problem (9)

is strictly concave. The problem satisfies Slater’s

condition. Thus, the primal Problem (9) and dual
Problem (33) are strong dualities, if we do not consider
the constraints on delay latency and energy cost. As
the duality gap is zero, the solution of Problem (30)
is unique because of the strong duality. Therefore, the
dual variable �.m/ converges to the dual optimal �?

as m ! 1, and the primal variable �?
i .�.m// also

converges to the primal optimal variable �?
i . �

We can obtain the optimal solution for the primal
problem by solving the dual problem. Constraints
(10) and (11) are linear functions with respect to
�i . The feasible solution space is convex. The dual
solution �.m C 1/ leads to the primal solution �,
when m ! 1. In the iterative process, we should
check the boundary conditions for �i . For a given Ti D

< di ; ci ; ti ; ei ; pi ; ploc
i >, the boundary condition for �i

is easily obtained due to the separability of Constraints
(10) and (11).

According to the pseudocode as shown in
Algorithm 1, the computation complexity depends
on the ı and initial value of �O .

Algorithm 1 Gradient-based algorithm for utility-aware
task offloading
Input: W; �; fe; ' > 0; ı > 0; Ti D < di ; ci ; ti ; ei ; pi ; ploc

i
>;

for i D 1; : : : ; N ;
Output: �1; �2; : : : ; �N ;

1: Initialization, let �O and �U equal a nonnegative value;
2: Initialization, let �i D 0;
3: for i D 1 to N do
4: According to Constraints (10) and (11), compute the lower

bound Li and upper bound Ui of �i ;
5: end for
6: Let h D C1;
7: while h > 1 C ı do
8: �O D �U ;

9: �U D

"
�O � '

 
� �

NP
iD1

�i .�O/

!#C

;

10: for i D 1 to N do
11: �i D

1
�U ci ln 2

�
1

di
I

12: if �i > Ui then
13: �i D Ui ;
14: end if
15: if �i < Li then
16: �i D Li ;
17: end if
18: end for

19: h D

NP
iD1

log.1 C �i .�U /di /

,
NP

iD1

log.1 C �i .�O/di /I

20: end while
21: return �i .
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5.2 Increment-based approximation algorithm

Designing an exact algorithm with polynomial-time
cost for optimal offloading scheme is difficult. In this
section, we prove that the objective function of the
proposed problem is increasing and submodular. Then,
we provide a greedy algorithm called Increment-based
Approximation Algorithm for Offloading Scheme
(IAAOS). The approximation ratio bound is proved to

be 1 C
1

e � 1
.

Theorem 4 The objective function of Problem (9)
is submodular.

Proof We denote � D f�1; : : : ; �N g as a given
feasible offloading scheme. For convenience, we define
a unit set I.k; i/ D f0; : : : ; 10�k; 0; : : : ; 0g. � C I.k; i/

will generate a new set O� D f�1; : : : ; �i�1; �i C

10�k; �iC1; : : : ; �N g, in which the schemes of all the
tasks are the same as �, and expect �i added by 10�k .

We denote ı.�; k; i/ as the increment of the utility
where only �i is added by 10�k . Thus we can have the
following:

ı.� C I.k; i/; �/ D U.� C I.k; i// � U.�/ D

log.1 C �idi C 10�kdi / � log.1 C �idi / (38)

Since log.1 C �idi / is a monotone increasing function,
we know ı.� C I.k; i/; �/ > 0.

For any given h and j ¤ i , we can have
ı.� C I.h; j / C I.k; i/; � C I.h; j // D

log.1C�j dj C10�hdj /Clog.1C�idi C10�kdi / �

log.1 C �j dj C 10�hdj / � log.1 C �idi / D

ı.� C I.k; i/; �/ (39)

For any given h and j D i , we can get
ı.� C I.h; i/ C I.k; i/; � C I.h; i// D

log.1 C �idi C .10�h
C 10�k/di /�

log.1 C �idi C 10�hdi /:

Based on Lagrange mean value theorem, it can be
known that8̂̂<̂
:̂

ı.� C I.k; i/; �/ D
di10�k

.1 C x1di / ln 2
;

ı.�CI.h; i/CI.k; i/; �CI.h; i//D
di10�k

.1Cx2di / ln 2
(40)

where x1 2 .�; � C 10�k/ and x2 2 .� C 10�h; � C

10�h C 10�k/. And then we can have
ı.�CI.h; i/CI.k; i/; �CI.h; i// < ı.�CI.k; i/; �/

(41)
According to the definition of submodular set

function[33], the objective function of Problem (9) is
submodular. �

In the following, we propose an increment per-cost-
based greedy algorithm and analyze the approximation
ratio.

Step 1. We enumerate all feasible solutions of
cardinality 3.

Step 2. For each feasible solution, we find the
offloading task with the largest increment per cost.
Let the corresponding � be increased by 10�k , until
Constraints (10)�(13) are not be satisfied. Then, k is
the input parameter for precision, which can be defined
by the users.

Step 3. Finally, the algorithm returns the offloading
scheme with the largest utility among all the schemes
derived from Step 2, thereby obtaining the final result.

Based on the preceding analysis, Algorithm 2
presents the pseudocode of calculating the feasible
offloading scheme.

Corollary 1 For a given precision parameter k,
let QOPT.k/ denote the utility of the optimal solutions
of Problem (9). We denote the utility derived from
the solution of Algorithm 2 as QIAAOS.k/. Then, the

approximation ratio r D
QOPT.k/

QIAAOS.k/
satisfies

r 6 1 C
1

e � 1
(42)

Proof Based on Theorem 4, the objective function
of Problem (9) is increasing and submodular.
According to Ref. [34], the provided greedy-based

approximation algorithm is with ratio bound 1 C
1

e � 1
.

�
In Corollary 1, we note that the approximation

ratio is also related to precision parameter k. This
condition means that for 8i 2 f1; 2; : : : ; N g, �i 2

f0; 1 � 10�k; 2 � 10�k; : : : ; 10k
� 10�k

g.

N 3 feasible schemes exist, such that
NX

iD1

�i 6 3�

10�k . According to Algorithm 2, the time complexity
for enumerating all feasible solutions of cardinality
3 is O.N 3/. For each feasible scheme �.h/, the
complexity for greedily increasing �i .h/ by 10�k is

O

�
min

�
N�

cmin
; 10k

��
, where cmin D minfci ji D 1; 2;

: : : ; N g. Then, the cost is O

�
N 4�

cmin

�
from Lines 4 �

14. Based on the preceding analysis, the computation

complexity is O

�
N 4�

cmin

�
. The space complexity is
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Algorithm 2 Increment-based approximation algorithm for
offloading scheme
Input: k; W; �; fe;Ti D < di ; ci ; ti ; ei ; pi ; ploc

i
>; for i D 1;

: : : ; N

Output: �1; �2; : : : ; �N

1: Initialization, let �i D 0 for i 2 f1; 2; : : : ; N g.
2: Enumerate all feasible solutions of cardinality 3, as

the initial scheme set S3 D f�.1/; �.2/; : : : ; �.M/g.
Such that for each scheme �.j / D f�1.j /; �2.j /; : : : ;

�N .j /g;
NP

iD1

�i .j / 6 3 � 10�k , and the constraints are

satisfied, i.e. 8i 2 f1; : : : ; N g; Ti .�i .j // 6 0; Ei .�i .j //

6 0, and
NP

iD1

�i .j /ci 6 �:

3: Umax D max fU.�.j //jj 2 f1; 2; : : : ; M gg I

4: for j D 1 to M do

5: while
NP

iD1

�i .j /ci C 10�k � minfc1; : : : ; cN g 6 � do

6: for h D 1 to N do
7: "h.j / D 0;
8: O�h.j / D �h.j / C 10�k I

9: if

(
O�h.j /dh

rh

C

O�h.j /ch

fe

C .1 � O�h.j // �
ch

fh

6 th

)
^(

O�h.j /dhph

rh

C .1 � O�h.j // � ploc
h

ch 6 eh

)
then

10: if
NP

iD1

�i .j /ci C 10�k � ch 6 � then

11: "h.j / D fU.�.j / C I.k; h// � U.�.j //g=10�kch

12: end if
13: end if
14: end for
15: g D arg max f"h.j /jh 2 f1; 2; : : : ; N gg I

16: �.j / D �.j / C I.k; g/I

17: end while
18: Umax D max .Umax; U.�.j ///

19: end for
20: return Umax and the corresponding offloading scheme.

O.N 3/. In conclusion, the proposed algorithm can be

implemented in time complexity of O

�
N 4�

cmin

�
and

space complexity of O.N 3/.

6 Performance Evaluation

In this section, a series of experiments have been
conducted to evaluate the performance of given
algorithms. We compare the performance of the
algorithms with the exact solutions, which are
calculated by convex optimization Matlab toolbox. In
the simulation, the number of offloading tasks is set as
20, and the mobile CPU ability is randomly generated
from f1; 1:1; : : : ; 2g GHz. The size of the task follows
uniform distribution over .0; 2/ MB. We set the channel

bandwidth B D 10 MHz. The transmitting power is
uniformly distributed on .0; 1/ W. For each i , ti and ei

are randomly generated.

6.1 Gradient-based algorithm for utility-aware
task offloading

The first group of experiments aims to investigate the
performance of Gradient-based Algorithm for utility-
aware Task Offloading (GATO).

Firstly, we evaluate the performance on utility when
the computation capability varies. Figure 1 shows the
relationship of the utility and server computation when
ı D 0:15. In Algorithm 1, the termination criterion for
iteration is the ratio between the objective value of the
latest �.�U / and that of �.�O/. When the computation
capability of the server is low, the constraint on �

makes the utility low and the number of iterations is
high. When the computation capability of the server
is high, the constraints on delay latency and energy
consumption have a strong impact on the termination
of iteration.

Figure 2 shows the relationship of the utility and
server computation when the size of the task follows a
normal distribution over N.2; 0/ MB and ı D 0:15. The
normal distribution generates a data size that is more
uniform than that of uniform distribution. The objective
value is higher because of the concavity.

Secondly, we investigate the performance of utility
when the number of users varies. Figure 3 plots the
relationship between the utility and number of mobile
devices. When the number of mobile devices is
small, GATO plays a major role in the utility gain.
When the number of mobile devices is large, the
constraint on bandwidth has a major impact on the
utility. Owing to the concavity of the objective function,
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Fig. 1 Relationship between utility per device and server
computation when di ��� U(0, 2) MB.
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Fig. 2 Relationship between utility per device and server
computation when di ��� N(2, 0) MB.
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Fig. 3 Relationship of utility per device and number of
mobile devices when di ��� N(0, 2) MB.

multiple small tasks have a larger utility than that of
a large task if the amount of offloading data is the
same. The constraints on delay latency and energy
consumption play a minor role in the utility when
the number of available offloading increases. As the
termination criterion for iteration is the ratio of the
utility, the number of iterations decreases when the
utility increases slightly.

Thirdly, we evaluate the computing performance
of GATO. In the experiments, Approximation Ratio

(AR) is the ratio of
NX

iD1

log.1 C �idi / generated by

the solutions of exact approach to that of the solution
output by GATO. Figure 4 demonstrates the relationship
between the AR and server computation where the
step sizes are ' D 0:01 and ' D 0:005, respectively.
Experimental results show that the utility value of
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Fig. 4 Relationship of approximation ratio and server
computation.

solutions returned by GATO is close to that of the
optimal ones. For a given ı D 0:1, the utility value
of solutions returned with a small step size is large
because the number of iterations is large. The ratio of
the termination criterion equals 1 C ı. The utility value
is small when the capability of computation is low.
Thus, the AR is extremely close to 1. The AR is larger
when the server computation increases.

6.2 Increment-based approximation algorithm for
offloading scheme

In the following, we evaluate the performance of
IAAOS.

Firstly, we show the utility when the computation
capability of server varies. According to Fig. 5,
the utility increases when the server computation
is enhanced. As the objective function is concave,
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Fig. 5 Relationship between utility per device and server
computation.
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the increment is gentler with larger computation
capability. Owing to the limited bandwidth, the increase
is not obvious even if the server computation is more
than the total number of CPU circles.

Figure 6 plots the relationship between the number
of mobile devices and utility of the proposed
approximation algorithm. As the computation
capability of the server is given, the utility per
device decreases when the number of mobile devices
increases. Due to the concavity, the data size of
offloading becomes fair when the number of mobile
devices increases. Thus, the difference between the
utility of approximation algorithm and that of the exact
algorithm is minimal.

Then, we investigate the computing performance of
IAAOS, and the correctness of the AR is verified. We

prove that AR 6 1 C
1

e � 1
. In the experiments,

approximation ratio is the ratio of
NX

iD1

log.1 C �idi /

generated by the solutions of exact approach to that
of the approximated solution output by IAAOS. Figure
7 demonstrates the relationship between the AR and
server computation, where precision parameter k D 3.
Experimental results show that the utility value of
approximation results returned by IAAOS is very close
to that of the optimal ones. The proposed approximation
algorithms can achieve high accuracy.

7 Conclusion

By offloading part of the tasks to a nearby MEC
cloud, MEC can decrease the computation latency
and energy cost by optimizing task offloading and
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Fig. 6 Relationship of utility per device and number of
mobile devices.
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Fig. 7 Relationship of approximation ratio and server
computation (k DDD 3).

resource allocation. Many factors pose challenges to the
offloading decision. To maximize the system utility, we
defined the problem of finding the optimal offloading
scheme. We studied the expectation of time complexity
to derive the optimal scheme based on the KKT
condition. We provided a greedy-based polynomial-

time algorithm with
�

1 C
1

e � 1

�
-approximation ratio.

Simulation results show the improved performance of
the proposed algorithms for system utility.
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