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Reliable Data Storage in Heterogeneous Wireless Sensor Networks by
Jointly Optimizing Routing and Storage Node Deployment

Huan Yang, Feng Li�, Dongxiao Yu�, Yifei Zou, and Jiguo Yu

Abstract: In the era of big data, sensor networks have been pervasively deployed, producing a large amount of data

for various applications. However, because sensor networks are usually placed in hostile environments, managing the

huge volume of data is a very challenging issue. In this study, we mainly focus on the data storage reliability problem

in heterogeneous wireless sensor networks where robust storage nodes are deployed in sensor networks and data

redundancy is utilized through coding techniques. To minimize data delivery and data storage costs, we design an

algorithm to jointly optimize data routing and storage node deployment. The problem can be formulated as a binary

nonlinear combinatorial optimization problem, and due to its NP-hardness, designing approximation algorithms is

highly nontrivial. By leveraging the Markov approximation framework, we elaborately design an efficient algorithm

driven by a continuous-time Markov chain to schedule the deployment of the storage node and corresponding routing

strategy. We also perform extensive simulations to verify the efficacy of our algorithm.
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1 Introduction

In the past decades, we have witnessed the rapid
development of Wireless Sensor Networks (WSNs) in
various applications[1]. In the era of big data, a diversity
of sensors has been pervasively deployed and networked
for monitoring and surveying purpose[2–5]. Nevertheless,
due to the proliferation of WSNs, which results in
big sensory data[6–11], data storage has become a very
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challenging issue. The sensor nodes usually cannot
provide qualified data storage services because they
have only limited resources (e.g., for computing, data
processing and storage, etc.). To enhance the capability
of data storage in a WSN, one option is to employ
designated storage nodes, forming a heterogeneous
wireless sensor network, such that the data sensed by the
regular sensor nodes are delivered to the storage node
through multi-hop transmissions.

Nevertheless, as the sensor nodes may be deployed
in hostile regions (e.g., battle fields and earthquake
scenarios), fault tolerance should be one of the main
concerns. Specifically, when a storage node is destroyed,
all data contained in the storage node are corrupted. To
address this issue, one popular solution is to introduce
data redundancy. For instance, the reliability of the
data storage can be considerably enhanced by relying
on erasure codes[12, 13]. However, the induced data
redundancy results in increased data traffic, which may
be unaffordable to energy-limited sensor networks[14].
Furthermore, managing the increasing volume of data
results in a considerable overhead in the storage nodes.
The storage cost should also be taken into account when
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designing data storage schemes.
In this study, we design an algorithm to minimize the

weighted sum of the data delivery and storage costs
by jointly optimizing data routing and storage node
deployment. In particular, by leveraging the Markov
approximation framework[8], we elaborately design a
Continuous-Time Markov Chain (CTMC). Through the
algorithm, we can adaptively deploy storage nodes and
update the data routing scheme, such that the induced
cost can be nearly minimized and the reliability of
the data storage can be ensured. The efficacy of our
algorithm can be verified by theoretical analyses and
extensive simulations.

The rest of this paper is organized as follows.
We introduce our system model and formulate our
optimization problem in Section 2. We present our
algorithm and the related analysis in Section 3. We
evaluate our algorithm through extensive simulations
in Section 4. We survey related literatures in Section 5
and finally conclude our paper in Section 6.

2 System Model and Problem Formulation

We first introduce our system model in Section 2.1 and
some preliminaries on storage reliability in Section 2.2.
We then formulate our optimization problem in Section
2.3.

2.1 System model

We consider a bipartite graph G consisting of two disjoint
sets of vertices N and U . Let N D fnigiD1;:::;jN j

represent the set of jN j sensor nodes and U D

fukgkD1;:::;jU j represent the jU j sites where we can
deploy our storage nodes. For each pair of ni 2 N
and uk 2 U , there exists an edge .ni ; uk/ between
them, with which we define a weight ci;k representing
the energy cost we have to spend on delivering one
unit of data from ni to the storage node placed at
uk . The data delivery cost assignment can be computed
by, for example, any state-of-the-art shortest path
algorithms, e.g., Dijkstra’s algorithm or Floyd-Warshall
algorithm, or other state-of-the-art distributed shortest
path algorithms[15, 16].

Let S D fsj gj D1;:::;jSj represent a set of storage
nodes, with jSj representing the size of S . We assume
�j denotes the cost for storing one unit of data at
sj . Specifically, the data storage cost includes not
only the energy consumption on data communication
(e.g., receiving the data from the sensor nodes and
responding to the remote data queries), but also the

one on maintaining and managing the received data.
We suppose that the storage nodes have long-range
communication modules to exchange messages with
each other and handle remote data queries. We also
assume that the storage nodes are equipped with mobile
mechanisms[17, 18], if re-deployment is demanded for
adapting to dynamic network states.

2.2 Reliable data storage

The reliability of a data storage can be achieved via
replication or coding techniques. In the former scheme,
the original data are replicated for multiple times, and
each copy is placed at different storage nodes. In the
latter scheme, we encode the original data by Maximum
Distance Separable (MDS) codes, and then place each
of the encoded data in a distinct storage node. In both
schemes, the reliability is ensured by data redundancy.
For instance, visiting only some of the storage nodes
to partially access the replicated or encoded data is
sufficient to recover the original data.

We hereby take coding techniques as an example. We
suppose that �i is the data produce rate of sensor node
ni . Specifically, in each sensing-storage period (we
assume that the data storage is performed periodically
in individual nodes. In each period, the data cumulated
in the sensing phase are encoded and delivered to the
storage nodes.), the amount of data sensed by ni is �i .
These original data can be encoded by redundant coding
schemes, e.g., MDS codes parameterized by .�i ; �i /.
Particularly, node ni encodes the �i original data into
.�i � �i / parity data. Both the original and parity ones
are then delivered from the source node ni to �i distinct
storage nodes. As the original data can be regarded as
the ones encoded by an identity matrix, we call both the
original and parity data “encoded data” for brevity in
the following. The original data can be recovered based
on any �i of the �i encoded data. In another word, we
can tolerate the corruptions of any up to �i out of the
�i encoded data (or the storage nodes containing the
encoded data). Considering the whole system, at most
minif�i � �ig storage node failures are tolerable.

In the data replication scheme, we suppose that
each node ni replicates each of its data for multiple
times. As the data are all the same, accessing any one
of them is sufficient. Therefore, when these copies
are stored in different storage nodes, we can tolerate
only minif�i � 1g failures of the storage node. Using
this method, although the computation overhead in the
encoding process can be avoided, we have to spend more
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energy on data delivery. Specifically, node ni needs to
deliver each of its �i copies (for every original data) to
different storage nodes.

Our optimization framework is readily compatible to
both replication and coding-based schemes by scaling
the data delivery and storage costs; nevertheless, we
focus only on the latter one in this study.

2.3 Problem formulation

Let xi;k 2 f0; 1g be a binary variable indicating if node
ni 2 N delivers one of its encoded data to the storage
node placed at site uk (if any). We also suppose that
yj;k 2 f0; 1g indicates if storage node sj is deployed at
site uk . Given a coding scheme f.�i ; �i /giD1;:::;jN j, we
formulate our optimization problem of Joint roUting and
Storage node deploymenT (JUST) as follows:

min
jN jX
iD1

jU jX
kD1

ci;kxi;k C ˇ

jN jX
iD1

jU jX
kD1

jSjX
j D1

�j xi;kyj;k (1)

s:t:
jU jX

kD1

xi;k D �i ; 8ni 2 N (2)

jSjX
j D1

yj;k � xi;k > 0; 8ni 2 N ; uk 2 U (3)

jSjX
j D1

yj;k 6 1; 8uk 2 U (4)

jU jX
kD1

yj;k 6 1; 8sj 2 S (5)

xi;k 2 f0; 1g; 8ni 2 N ; uk 2 U (6)

yj;k 2 f0; 1g; 8sj 2 S; uk 2 U (7)

The quadratic objective Function (1) delivers our aim
to minimize the weighted sum of the data delivery and
storage costs. We introduce parameter ˇ in Function (1)
to make a trade-off between them. The main constraints
are explained as follows:

� Storage reliability Constraint (2): Under the
encoding scheme f.�i ; �i /giD1;:::;jN j, each node ni

encodes its �i original data in each sensing-storage
period, and the resulting encoded data are delivered to
distinct storage nodes.

� Data flow Constraint (3): Each sensor node
cannot deliver its data to an “empty” site with no storage
node deployed.

� Deployment Constraints (4) and (5): For any site
uk 2 U , only one storage node is deployed, and each

storage node ni 2 N is deployed at no more than one
site.

The NP-hardness of the above optimization problem
holds even in a homogeneous setting where all of
the storage nodes have identical storage cost, i.e.,
�j D � for 8j D 1; : : : ; jSj. In this case, our problem
can be transferred into minimizing

P
i;k ci;kxi;k with

consideration of Constraints (2) – (7). Specifically, given
a coding scheme, our goal is to choose a subset
of U to deploy the storage nodes such that the
induced cost of data delivery and storage is minimized
while guaranteeing the storage reliability. The above
degenerated problem is equivalent to a Fault-Tolerate
k-Median Facility Placement (FTkMFP) problem, and
hence, our original JUST problem is NP-hard.

3 Algorithm Design and Analysis

In this section, we leverage the notation of Markov
approximation[19] to address our JUST problem. In
Section 3.1, we first introduce a simplified case where the
storage nodes are fixed, in order to inspire the application
of the Markov approximation framework to our JUST
problem in Section 3.2. We then report our algorithm in
detail and give a short discussion in Section 3.3.

3.1 A simplified case with fixed storage nodes

Given a placement of the storage nodes fyj;kgj;k ,
our goal is reduced to designing an optimal routing
scheme fxi;kgi;k such that the resulting data delivery
and storage overheads are minimized. In particular, we
minimize

P
i;k.ci;k C ˇ

P
j �j yj;k/xi;k , subjected to

xi;k 6
jSjP

j D1

yj;k for 8ni 2 N and uk 2 U . The optimal

solution to the above problem is to let each sensor node
ni deliver its encoded data to the “nearest” distinct �i

storage nodes. Specifically, let eS � S be the subset of
the sites with storage nodes deployed, such that yi;k D 1

for 8sk 2 eS and yi;k D 0 otherwise. For 8sk 2 eS and
8ni 2 N , we can calculate the total (weighted) cost as
ci;k C ˇ

P
j �j yj;k . Then, the destination storage nodes

for ni are the top ones with a minimum total cost. The
above �i -Nearest storage Nodes (�i -NN) policy has
a polynomial-time complexity. Although introducing
a new freedom of storage node deployment has the
potential of decreasing the objective cost function,
designing the corresponding algorithm becomes much
more difficult, such that we have to be contented with
nearly optimal solutions, as we have demonstrated in



Huan Yang et al.: Reliable Data Storage in Heterogeneous Wireless Sensor Networks by Jointly Optimizing Routing : : : 233

Section 2.3.

3.2 Markov approximation

Let F denote a set of all feasible storage node
deployment strategies and cf be the total cost induced
by f 2 F . As shown above, for 8f 2 F , the
data routing strategy and the resulting cost cf can
be computed according to the �i -NN policy. Our
optimization framework can accommodate various
routing subroutines aiming at distinct objectives (e.g.,
in terms of energy and delay[20–22]). Nevertheless,
designing specific routing protocols is beyond the scope
of this study.

Our JUST problem (Function (1) and Constraints (2) –
(7)) can be rewritten as

min
f 2F

fcf g (8)

which can be approximated by a log-sum-exp function
(which is parameterized by � ):

�� .fcf gf 2F / D �
1

�
log

0@X
f 2F

exp.��cf /

1A (9)

where � is a positive constant. In accordance with Ref.
[23], the above approximation can be characterized as
follows:

Theorem 1 minf 2Ffcf g can be approximated by
�� .fcf gf 2F /, owing to the following tight bound:

0 6 �� .fcf gf 2F / � min
f 2F

fcf g 6
1

�
log jF j (10)

The above bound shows that, as � approaches infinity,
the approximation gap closes to zero. Specifically, we
have

min
f 2F

fcf g D � lim
�!1

1

�
log

0@X
f 2F

exp.��cf /

1A :

Therefore, we usually take a very large value for � in
the numerical computation.

We suppose that each f 2 F is associated with weight
pf 2 Œ0; 1�, such that

P
f 2F pf D 1. The optimization

problem (8) has the same optimal value as
min

X
f 2F

cf pf (11)

s:t:
X

f 2F

pf D 1 (12)

pf > 0; 8f 2 F (13)

where fpf gf 2F are variables. Weight pf can be
explained as the time fraction of adopting the
deployment strategy f in a long run. Clearly, when
pf D 1 for the storage node deployment strategy with

the minimum cost and pf D 0 for others, Problems (8)
and (11) achieve the minimum cost.

As Problem (8) is approximated by �� .fcf gf 2F /,
we exploit the unique properties of this approximation
to design our algorithm. In detail, the log-sum-exp
function �� .fcf gf 2F / has a convex and closed conjugate
function:

��
� .fpf gf 2F / D �

1

�

X
f 2F

pf log pf ;

pf > 0 for 8f 2 F and
P

f 2F pf D 1. In other
words, �� .fcf gf 2F / is the same as the optimal value of
the following optimization problem (so-called “JUST-
Approx”):

min
X

f 2F

cf pf C
1

�

X
f 2F

pf log pf (14)

s:t:
X

f 2F

pf D 1 (15)

pf > 0; 8f 2 F (16)
Based on Karush-Kuhn-Tucker (KKT) conditions, the

optimal solution to our JUST-Approx problem can be
represented as

p�
f D

exp.��cf /P
f 02F

exp.��cf 0/
; 8f 2 F (17)

According to Theorem 1, the above definition of
p�

f
is a nearly optimal solution to our JUST problem

with the gap bounded by ��1 log jF j. Specifically, we
can nearly minimize the cost via time-sharing across
different deployment strategies in a long run according to
probability distribution fp�

f
gf 2F . However, the number

of the feasible storage node deployment strategies,
i.e., jF j, is exponentially large; so we cannot directly
calculate p�

f
according to Eq. (17).

3.3 Algorithm

To resolve the JUST-Approx problem (and thus
to address the JUST problem with approximation
optimality), we design a CTMC fF.t/gt>0 to drive
the adaptive deployment of the storage nodes and the
corresponding routing scheme, where t denotes time and
F.t/ 2 F denotes the storage node deployment adopted
at time t . In the CTMC, state transitions (i.e., storage
node redeployments) continuously happen at any point
in time and are characterized by transition rates. We
assume that, any two of the states have a transition link
if and only if the two states have only one storage node
deployed at different sites. Note that this assumption
does not compromise the reachability between the states
and thus the irreducibility of the Markov chain.
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The CTMC fF.t/gt>0 has a unique stationary
distribution, as it has finite states and is of irreducibility.
In the Markov approximation framework, we design
a time-reversible CTMC fF.t/gt>0, such that the
following detailed balance equation holds for the
stationary distribution, i.e.,

p�
f qf;f C D p�

f Cqf C;f (18)

where qf;f C and qf C;f denote the transition rates from
f to f C and the one from f C to f , respectively. In
this paper, we define the transition rates qf;f C as

qf;f C D ı
exp.��cf C/

exp.��cf / C exp.��cf C/
(19)

where ı is a constant. Recalling the definition of p�
f

(for 8f 2 F ) in Eq. (17), the above definition of qf;f C

apparently satisfies the balance in Eq. (18).
The CTMC fF.t/gt>0 can be implemented based

on the two propositions in Ref. [24], as shown in the
following:

Proposition 1 For each state f 2 F , the sojourn
time is a random variable obeying an exponential
distribution parameterized by

vf D

X
f 02F.f /

qf;f 0 D

ı
X

f 02F.f /

exp.��cf 0/

exp.��cf / C exp.��cf 0/
(20)

where F.f / denotes the set of the states adjacent to f .
Proposition 2 The transition probability from f 2

F to f C 2 F.f / is defined as
pf;f C D qf;f C=vf (21)

if considering the discrete-time counterpart of the
CTMC.

According to the above propositions, the optimality
of the CTMC-driven method can be explained from the
following two folds: On one hand, we adopt the storage
node deployments that have lower costs for a longer
time; on the other hand, it is more likely to move to
the lower-cost storage node deployment in each state
transition.

Motivated by the two propositions, we can implement
a CTMC to drive the adaptive deployment of the storage
nodes by repeating the following steps: (1) Supposing
f denotes the current storage node deployment, we
set up a countdown timer initialized by an exponential
random value �t � Exponential.vf /; (2) once the timer
expires, we transit to a new storage node deployment
f C 2 F.f / according to the transition probabilities
defined in Eq. (19). Although we can achieve the

optimal distribution fp�
f

gf 2F by repeating the above two
steps in a long run, this approach entails some central
infrastructures.

We propose an algorithm (see Algorithm 1) to
implement the CTMC in a distributed manner. By
default, we initially deploy the storage nodes in a
randomized fashion (as shown in Line 1). The lifetime
of the sensor network can be divided into a sequence
of epochs, and a new epoch begins when some storage
nodes are redeployed. In each epoch, we first compute
a routing strategy according to the current storage
node deployment f by the �i -NN policy (see Line 3).
In every epoch, each storage node sj generates an
exponential random variable �tj � Exponential.vj /,
where

vj D

X
f 02Fj .f /

qf;f 0 ;

with Fj .f / representing the subset of feasible storage
node deployments where only sj is placed at different
sites from the one in f (see Line 5). Each storage node
sj then sets up a countdown timer initialized by �tj (see
Line 6). We assume j � D arg minj f�tj gj D1;:::;jSj, and
storage node sj � is the one whose timer expires first.
When the timer expires, sj � broadcasts a notification
message, and the other storage nodes that received the
message (before their timers expire) stop counting down.
As shown in Line 8, we redeploy sj � according to the
probability distribution:

pf;f C D qf;f C=vj � ; 8f C
2 Fj �.f / (22)

Algorithm 1:�1. Algorithm for jointly optimizing storage
node deployment and routing (in each epoch)

1 Initialization: randomly initialize the storage node
deployment f ;

2 foreach epoch do
3 Calculate a routing strategy according to f ;
4 foreach sj 2 S do
5 Generate an exponential random variable

�tj � Exponential.vj /;
6 Set up a countdown timer initialized by �tj ;
7 if no notification message is received then
8 when the timer expires, move to a new site

according to Eq. (22), and broadcast a
notification message;

9 end
10 else
11 Stop the timer;
12 end
13 end
14 end
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The complexity of the above algorithm mainly stems
from computing cf C , i.e., calculating the routing
strategy and corresponding cost. The shortest paths
from the sensor nodes to the sites and the induced
cost can be computed by state-of-the-art polynomial-
time algorithms (e.g., Dijkstra’s method with a time
complexity of O.jN j2/). As the sensor nodes and the
sites where we deploy the storage nodes are fixed, the
data delivery paths and their costs can be preloaded
in the storage nodes, especially as the storage nodes
usually have sufficient memory space. When a storage
node is redeployed, it notifies the other ones of its new
position by broadcasting O.log jU j/-length notification
messages, such that all the other storage nodes can
locally compute cf C . Moreover, the storage nodes
can forward the notifications to the sensor nodes by
piggybacking the received new storage node deployment
in the acknowledgments to the data deliveries. For each
sensor node, once the notification is received from the
storage nodes, the sensor node can quickly compute the
cost of delivering a data unit in the redeployed storage
node and then update the routing strategy according to
the �i -NN policy.

In the above implementation, each of the storage nodes
only needs to set up a local timer. One question is,
does such a distributed implementation realize CTMC
fF.t/gt>0 by respecting Propositions 1 and 2? To
answer this question, we present the following theorem,
which implies that relying on a set of local timers in a
distributed manner instead of a centralized one does not
compromise the optimality of fF.t/gt>0 in solving our
JUST-Approx problem.

Theorem 2 In Algorithm 1, the sojourn time
for each state f is a random variable following an
exponential distribution parameterized by rate vf in
Eq. (20), and the transition probability from f to f C

(f C 2 F.f /) is pf;f C D qf;f C=vf (see Eq. (21)).
Proof For any storage node deployment f 2 F , the

sojourn time �t.f / can be defined as
�t.f / D minf�tj gj D1;:::;jSj;

as shown in Algorithm 1. As �tj � Exponential.vj /

for 8j , we have �t.f / � Exponential.
P

j vj / for
8f 2 F . In another word, �t.f / is an exponentially
distributed random variable with the rate defined byP

j vj D
P

j

P
f 02Fj .f / qf;f 0 . Also, since

S
j Fj .f /D

F=ff g and
T

j Fj .f / D ∅, we have
P

j vj DP
f 0¤f qf;f 0 D vf . Therefore, for 8f 2F ,

�t.f / � Exponential.vf /:

For 8j � 2 f1; : : : ; jSjg, the probability that sj � is
the redeployed storage node with �t.f / D �tj � can
be calculated as vj �=

P
j vj . Let Fj �.f / denote the set

of the storage node deployments with sj � deployed at
different sites from the one in f . Then, for 8f C 2

Fj �.f /, the probability that we have the transition
f ! f C (given that sj � has to be redeployed) can
be defined by qf;f C=vj � (see Eq. (22)). Therefore,

pf;f C D
vj �P
j vj

�
qf;f C

vj �

D
qf;f C

vf

holds for 8f C 2

F.f /. �

4 Simulation

In this section, we evaluate the efficacy of our algorithm
through extensive simulations. We uniformly deploy
200 sensor nodes in a 100 m � 100 m targeted area. For
each sensor node, we choose its data storage reliability
requirement uniformly from the range of Refs. [1, 4].
For simplicity, we assume that sensor nodes have
identical transmission power and receiving power, such
that the data delivery cost associated with each edge can
be normalized to 1. We suppose there are 10 storage
nodes, and their storage costs are uniformly chosen from
Refs. [1, 4]. We assume that ˇ D 1, such that the data
delivery and storage costs are of equal importance for
our optimization problem.

Figure 1 illustrates the total cost of our algorithm
(i.e., the weighted sum of the data delivery and data
storage costs) under different numbers of sites where
we deploy the storage nodes. We also vary the value
of � to investigate its impact on the total cost of our
algorithm. It is shown that, we can decrease total cost
by increasing the number of the sites, as we search in
a much larger space of the feasible solutions. Figure 1
also shows that taking larger value for � implies a lower
total cost, which is consistent with the fact that we are
able to approach the optimum by increasing the value of
� (see Theorem 1).
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Fig. 1 Total cost of our algorithm under different values of ��� .
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Moreover, we compare our algorithm with the optimal
solution due to the computational intractability of large
system settings. We suppose that the storage nodes
have identical storage costs to deliberately “shrink” the
domain of the feasible solutions. The optimality gaps
(defined in Eq. (10)) are shown in Fig. 2. As shown
in Fig. 2, increasing � leads to a reduced optimality
gap, which is again consistent with Theorem 1. Another
remarkable observation is that, although establishing
more sites to place the storage nodes can decrease the
total cost, the resulting optimality gap is larger than that
in the case where less sites are utilized. This observation
can be explained by revisiting Eq. (10) in Theorem 1:
The increased number of sites implies a larger feasible
region F , and the optimality gap is proportional to the
size of the feasible region, i.e., jF j.

5 Related Work

A vast body of proposals have studied the data collection
problem by one or multiple sink nodes[25–28]. Although
we borrow the idea of empowering the sinks with
mobility, these data collection algorithms cannot be
directly applied to our problem as neither storage
reliability nor the data storage cost is considered. As
shown in Section 2.3, integrating both of them into an
optimization framework is highly nontrivial.

Some of the exiting proposals have a goal of
disseminating the sensed data among the sensor nodes
for storage. For example, as demonstrated in Ref. [29],
in a tree-structure sensor network, the data delivered
from the downstream sensor nodes can be stored in a
subset of non-root ones. In Refs. [30, 31], compress
sensing and probabilistic broadcasting were integrated
to decrease data traffic and energy consumption. In
Refs. [32,33], quorum-based data storage strategies were
proposed, guaranteeing the storage reliability through
data replication.
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To deal with the ever-increasing demand on reliable
data storage raised by pervasive deployments of sensor
networks, robust storage nodes are usually employed
in sensor networks. In Ref. [34], a random network
coding technique was utilized to encode original data.
The encoded data were then randomly delivered to
predeployed neighboring storage nodes. In Ref. [17],
sensor nodes were divided into a number of clusters
with respect to predeployed storage nodes. A mobile
sink is then employed to visit the storage nodes to
collect the data. In Ref. [35], the problem of energy-
efficient routing in the context of data storage was
investigated. Specifically, an algorithm was designed
to associate the sensor nodes with the storage nodes for
energy-efficient data delivery. In Ref. [35], the study
relied on the random linear network coding technique to
ensure the desired fault-tolerance. In Ref. [36], storage
nodes were utilized as “relay” nodes such that the
data collected at sensors were first delivered to storage
nodes for compression, and the compressed data were
then forwarded to a sink node. The resulting energy
consumption can be minimized by optimally deploying
the storage nodes. However, in Ref. [36], storage
reliability was not taken into account.

6 Conclusion

To minimize data delivery and storage costs while
guaranteeing storage reliability, we have proposed a
CTMC-based algorithm in this paper by leveraging the
Markov approximation framework. In particular, driven
by an elaborately designed CTMC, the deployment
of the storage nodes is adaptively scheduled, and the
routing scheme is accordingly updated. We evaluate our
algorithm through a theoretical analysis and numerical
simulations.

We will take dynamic sensor networks into account
where sensor nodes may join in or depart from the
networks. In this case, we aim to design an on-line
algorithm where the storage node deployment and data
routing can be adaptively leveraged to the churn of the
sensor nodes.

Acknowledgment

This work was partially supported by the Shandong
Provincial Natural Science Foundation (No. ZR2017QF005),
the National Natural Science Foundation of China (Nos.
61702304, 61971269, 61832012, 61602195, 61672321,
61771289, and 61602269), and the China Postdoctoral
Science Foundation (No. 2017M622136).



Huan Yang et al.: Reliable Data Storage in Heterogeneous Wireless Sensor Networks by Jointly Optimizing Routing : : : 237

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.
Cayirci, Wireless sensor networks: A survey, Computer
Networks, vol. 38, no. 4, pp. 393–422, 2002.

[2] C. Y. Ai, F. H. Li, and K. J. Zhang, Detecting isolate
safe areas in wireless sensor monitoring systems, Tsinghua
Science and Technology, vol. 22, no. 4, pp. 427–436, 2017.

[3] R. Arcucci, C. Pain, and Y. K. Guo, Effective variational
data assimilation in air-pollution prediction, Big Data
Mining and Analytics, vol. 1, no. 4, pp. 297–307, 2018.

[4] F. Li, J. Luo, S. Q. Xin, and Y. He, Autonomous deployment
of wireless sensor networks for optimal coverage with
directional sensing model, Computer Networks, vol. 108,
pp. 120–132, 2016.

[5] F. Li, J. Luo, W. P. Wang, and Y. He, Autonomous
deployment for load balancing k-surface coverage in sensor
networks, IEEE Transactions on Wireless Communications,
vol. 14, no. 1, pp. 279–293, 2015.

[6] L. Xiang, J. Luo, C. W. Deng, A. V. Vasilakos, and W.
S. Lin, DECA: Recovering fields of physical quantities
from incomplete sensory data, in Proc. 9th Annu. IEEE
Communications Society Conf. Sensor, Mesh and Ad Hoc
Communications and Networks, Seoul, South Korea, 2012,
pp. 182–190.

[7] S. Y. Cheng, Z. P. Cai, J. Z. Li, and H. Gao, Extracting
kernel dataset from big sensory data in wireless sensor
networks, IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 4, pp. 813–827, 2017.

[8] J. Li, S. Y. Cheng, Z. P. Cai, J. G. Yu, C. K. Wang, and D.
M. Li, Approximate holistic aggregation in wireless sensor
networks, ACM Transactions on Sensor Networks, vol. 13,
no. 2, pp. 1–24, 2017.

[9] Z. B. He, Z. P. Cai, S. Y. Cheng, and X. M. Wang,
Approximate aggregation for tracking quantiles and
range countings in wireless sensor networks, Theoretical
Computer Science, vol. 607, pp. 381–390, 2015.

[10] S. Y. Cheng, Z. P. Cai, and J. Z. Li, Curve query
processing in wireless sensor networks, IEEE Transactions
on Vehicular Technology, vol. 64, no. 11, pp. 5198–5209,
2015.

[11] Q. Y. Meng, K. Wang, X. M. He, and M. Y. Guo, QoE-
driven big data management in pervasive edge computing
environment, Big Data Mining and Analytics, vol. 1, no. 3,
pp. 222–233, 2018.

[12] M. Albano and S. Chessa, Distributed erasure coding in
data centric storage for wireless sensor networks, in Proc.
2009 IEEE Symp. Computers and Communications, Sousse,
Tunisia, 2009, pp. 22–27.

[13] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran,
Decentralized erasure codes for distributed networked
storage, IEEE Transactions on Information Theory, vol.
52, no. 6, pp. 2809–2816, 2006.

[14] F. Li, Y. B. Yang, Z. C. Chi, L. Y. Zhao, Y. W. Yang, and J.
Luo, Trinity: Enabling self-sustaining WSNs indoors with
energy-free sensing and networking, ACM Transactions on
Embedded Computing Systems, vol. 17, no. 2, pp. 1–27,
2018.

[15] S. Holzer and R. Wattenhofer, Optimal distributed all pairs
shortest paths and applications, in Proc. 2012 ACM Symp.
Principles of Distributed Computing, Madeira, Portugal,
2012, pp. 355–364.

[16] M. Ghaffari and J. Li, Improved distributed algorithms for
exact shortest paths, in Proc. 50th Annu. ACM SIGACT
Symp. Theory of Computing, Los Angeles, CA, USA, 2018,
pp. 431–444.

[17] G. Maia, D. L. Guidoni, A. C. Viana, A. L. L. Aquino, R. A.
F. Mini, and A. A. F. Loureiro, A distributed data storage
protocol for heterogeneous wireless sensor networks with
mobile sinks, Ad Hoc Networks, vol. 11, no. 5, pp. 1588–
1602, 2013.

[18] Q. Liu, K. Zhang, X. D. Liu, and N. Linge, Grid routing:
An energy-efficient routing protocol for WSNs with single
mobile sink, International Journal of Sensor Networks, vol.
25, no. 2, pp. 93–103, 2017.

[19] M. H. Chen, S. C. Liew, Z. Y. Shao, and C. H. Kai, Markov
approximation for combinatorial network optimization,
IEEE Transactions on Information Theory, vol. 59, no. 10,
pp. 6301–6327, 2013.

[20] X. Zheng, Z. P. Cai, J. Z. Li, and H. Gao, A study on
application-aware scheduling in wireless networks, IEEE
Transactions on Mobile Computing, vol. 16, no. 7, pp. 1787–
1801, 2017.

[21] Z. P. Cai, G. H. Lin, and G. L. Xue, Improved
approximation algorithms for the capacitated multicast
routing problem, in Proc. of the 11th COCOON, Berlin,
Germany, 2005, pp. 136–145.

[22] Z. P. Cai, Z. Z. Chen, and G. H. Lin, A 3.4713-
approximation algorithm for the capacitated multicast tree
routing problem, Theoretical Computer Science, vol. 410,
no. 52, pp. 5415–5424, 2009.

[23] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge, UK: Cambridge University Press, 2004.

[24] R. G. Gallager, Stochastic Processes: Theory for
Applications. Cambridge, UK: Cambridge University Press,
2014.

[25] R. L. Deng, S. B. He, and J. M. Chen, An online
algorithm for data collection by multiple sinks in wireless-
sensor networks, IEEE Transactions on Control of Network
Systems, vol. 5, no. 1, pp. 93–104, 2018.

[26] J. Wang, J. Y. Cao, R. S. Sherratt, and J. H. Park, An
improved ant colony optimization-based approach with
mobile sink for wireless sensor networks, The Journal of
Supercomputing, vol. 74, no. 12, pp. 6633–6645, 2018.

[27] G. R. Li, S. C. Peng, C. Wang, J. W. Niu, and Y. Yuan,
An energy-efficient data collection scheme using denoising
autoencoder in wireless sensor networks, Tsinghua Science
and Technology, vol. 24, no. 1, pp. 86–96, 2019.

[28] F. Li, J. Luo, G. T. Shi, and Y. He, ART: Adaptive
frequency-temporal co-existing of ZigBee and WiFi, IEEE
Transactions on Mobile Computing, vol. 16, no. 3, pp. 662–
674, 2017.

[29] B. Sheng, Q. Li, and W. Z. Mao, Data storage placement in
sensor networks, in Proc. 7th ACM Int. Symp. Mobile Ad
Hoc Networking and Computing, Florence, Italy, 2006, pp.
344–355.



238 Tsinghua Science and Technology, April 2021, 26(2): 230–238

[30] X. J. Yang, X. F. Tao, E. Dutkiewicz, X. J. Huang, Y.
J. Guo, and Q. M. Cui, Energy-efficient distributed data
storage for wireless sensor networks based on compressed
sensing and network coding, IEEE Transactions on Wireless
Communications, vol. 12, no. 10, pp. 5087–5099, 2013.

[31] A. Talari and N. Rahnavard, CStorage: Decentralized
compressive data storage in wireless sensor networks, Ad
Hoc Networks, vol. 37, pp. 475–485, 2016.

[32] J. Luo, F. Li, and Y. He, 3DQS: Distributed data access in
3D wireless sensor networks, in Proc. 2011 IEEE Int. Conf.
Communications, Kyoto, Japan, 2011, pp. 1–5.

[33] C. Zhang, J. Luo, L. Xiang, F. Li, J. C. Lin, and Y. He,
Harmonic quorum systems: Data management in 2D/3D
wireless sensor networks with holes, in Proc. 2012 9th Annu.
IEEE Communications Society Conf. Sensor, Mesh and Ad
Hoc Communications and Networks, Seoul, South Korea,

2012, pp. 1–9.
[34] R. F. Zeng, Y. X. Jiang, C. Lin, Y. F. Fan, and X.

M. Shen, A distributed fault/intrusion-tolerant sensor
data storage scheme based on network coding and
homomorphic fingerprinting, IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 10, pp. 1819–
1830, 2012.

[35] J. Tian, T. Yan, and G. L. Wang, A network coding based
energy efficient data backup in survivability-heterogeneous
sensor networks, IEEE Transactions on Mobile Computing,
vol. 14, no. 10, pp. 1992–2006, 2015.

[36] G. D’Angelo, D. Diodati, A. Navarra, and C. M. Pinotti, The
minimum k-storage problem: Complexity, approximation,
and experimental analysis, IEEE Transactions on Mobile
Computing, vol. 15, no. 7, pp. 1797–1811, 2016.

Huan Yang received the PhD degree
in computer science from Nanyang
Technological University, Singapore in
2015, the MS degree in computer science
from Shandong University, China in 2010,
and the BS degree from the Heilongjiang
Institute of Technology, China in 2007.
Currently, she is an associate professor

in the College of Computer Science and Technology, Qingdao
University, China. Her research interests include applied
optimization, stochastic modeling, and machine learning.

Feng Li received the BS, MS, and
PhD degrees in computer science from
Shandong Normal University, China in
2007, Shandong University, China in 2010,
and Nanyang Technological University,
Singapore in 2015, respectively. From
2014 to 2015, he worked as a research
fellow in National University of Singapore,

Singapore. He jointed the School of Computer Science and
Technology, Shandong University, China in 2015, where he is
currently an associate professor. His research interests include
distributed algorithms and systems, wireless networking, mobile
computing, and internet of things.

Dongxiao Yu received the BSc degree from
Shandong University in 2006 and the PhD
degree from the University of Hong Kong
in 2014. He became an associate professor
in the School of Computer Science and
Technology, Huazhong University of
Science and Technology in 2016. He
is currently a professor in the School

of Computer Science and Technology, Shandong University.
His research interests include wireless networks, distributed
computing, and graph algorithms.

Yifei Zou received the BE degree from
Wuhan University in 2016. He is currently
a PhD student in Department of Computer
Science, the University of Hong Kong. His
research interests include wireless networks,
ad hoc networks, and distributed computing.

Jiguo Yu received the PhD degree from
Shandong University in 2004. He became
a full professor in the School of Computer
Science, Qufu Normal University,
Shandong, China in 2007. Currently he
is a full professor in Qilu University
of Technology (Shandong Academy of
Sciences) and Shandong Computer Science

Center (National Supercomputer Center in Jinan). His main
research interests include privacy-aware computing, wireless
networking, distributed algorithms, peer-to-peer computing,
and graph theory. Particularly, he is interested in designing and
analyzing algorithms for many computationally hard problems in
networks. He is a senior member of IEEE, a member of ACM,
and a senior member of the China Computer Federation (CCF).


