
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 07/11 pp199–207
DOI: 10 .26599 /TST.2019 .9010058
Volume 26, Number 2, Apri l 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Study of Texture Segmentation and Classification for Grading Small
Hepatocellular Carcinoma Based on CT Images

Bei Hui�, Yanbo Liu, Jiajun Qiu, Likun Cao, Lin Ji, and Zhiqiang He

Abstract: To grade Small Hepatocellular CarCinoma (SHCC) using texture analysis of CT images, we retrospectively

analysed 68 cases of Grade II (medium-differentiation) and 37 cases of Grades III and IV (high-differentiation).

The grading scheme follows 4 stages: (1) training a Super Resolution Generative Adversarial Network (SRGAN)

migration learning model on the Lung Nodule Analysis 2016 Dataset, and employing this model to reconstruct Super

Resolution Images of the SHCC Dataset (SR-SHCC) images; (2) designing a texture clustering method based

on Gray-Level Co-occurrence Matrix (GLCM) to segment tumour regions, which are Regions Of Interest (ROIs),

from the original and SR-SHCC images, respectively; (3) extracting texture features on the ROIs; (4) performing

statistical analysis and classifications. The segmentation achieved accuracies of 0.9049 and 0.8590 in the original

SHCC images and the SR-SHCC images, respectively. The classification achived an accuracy of 0.838 and an

Area Under the ROC Curve (AUC) of 0.84. The grading scheme can effectively reduce poor impacts on the texture

analysis of SHCC ROIs. It may play a guiding role for physicians in early diagnoses of medium-differentiation and

high-differentiation in SHCC.

Key words: grading of Small Hepatocellular CarCinoma (SHCC); Gray-Level Co-occurrence Matrix (GLCM); texture

clustering; super-resolution reconstruction

1 Introduction

Hepatocellular CarCinoma (HCC) is a malignant
tumor that originates in hepatic cells, which is the

� Bei Hui, Yanbo Liu, and Zhiqiang He are with the School
of Information and Software Engineering, University of
Electronic Science and Technology of China, Chengdu 610054,
China. E-mail: bhui@uestc.edu.cn; 1264803611@qq.com;
jianglinhe888@163.com.

� Jiajun Qiu is with the West China Biomedical Big Data Center,
West China Hospital, Sichuan University, Chengdu 610041,
China. E-mail: jiajun.ml@foxmail.com.

� Likun Cao is with the Department of Radiology of Peking Union
Medical College Hospital, Beijing 100032, China. E-mail:
clk2089@hotmail.com.

� Lin Ji is with the Department of Radiology, West China
Hospital, Sichuan University, Chengdu 610041, China. E-mail:
jilin2@sina.com.

�To whom correspondence should be addressed.
Manuscript received: 2019-09-29; revised: 2019-12-03;
accepted: 2020-01-02

most common primary liver cancer and has a high
mortality rate[1]. The pathological grade of an HCC
reflects its degree of malignancy. Compared with high-
differentiated HCCs, low-differentiated HCCs are more
prone to spread, metastasize, and invade surrounding
healthy tissue. To analyze and determine the prognosis
of an HCC patient, it is important to accurately
identify the pathological grade of the tumor. However,
pathological differentiation of a tumor and its related
immunohistochemistry can only be determined based on
a pathology examination, which is necessarily invasive.
However, invasive examinations cannot be performed
in patients with surgical or puncture contraindications.
Furthermore, pathological examinations are often time-
consuming, which may reduce efficiencies and increase
the risk of delaying therapies. Hence, the effective
automated grading of tumor differentiation has great
value to HCC patients.

In 2010, Huang and Lai[2] developed an automatic
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grading system for HCC biopsy images, used a
watershed transformation method with control markers
to obtain the initial contours of the nucleus, and a
snake model to segment the nuclear shapes, and finally
extracted 14 texture features and built an HCC-biopsy-
image decision-graph classifier based on a Support
Vector Machine (SVM). This classifier achieved 94.54%
accuracy. In 2014, Atupelage et al.[3, 4] developed an
automated texture classification model to classify HCC
grades based on the nuclear characteristics of the
HCC cells, constructed two input pathways to separate
the nuclear and non-nuclear structures of HCC, then
extracted features of the HCC nuclei and built a random
forest classifier, which achieved an accuracy of 95.97%.
In 2018, Lin et al.[5] extracted texture features from
217 second-harmonic-generation microscope images
using Gabor transformation, Haralick statistical analysis,
and local binary patterns, and then built an SVM
classifier to classify the HCC grades. However, the
above studies all graded pathological images, which
are obtained invasively. In this study, we graded HCC
by extracting the texture features of CT images from
early examinations, and then built a texture classification
model by extracting the texture features of multiple
layers by the texture analysis method. However, this
method still presents some difficulties: (1) texture
analysis is usually performed on a single CT image,
which makes it difficult to comprehensively represent
the textural characteristics inside a tumor; (2) in the study
of small tumors, most HCC patients have small Regions
Of Interest (ROIs), which makes it difficult to perform
effective texture analysis; and (3) it is difficult to obtain
ideal segmentation results for small-sample CT images
of liver tumors, so fully automatic tumor segmentation
remains challenging[6].

2 Materials and Data

A retrospective study was conducted on 105 cases of
Small Hepatocellular CarCinoma (SHCC). These cases
were selected from the West China Hospital of Sichuan
University from January 2013 to present, for these SHCC
cases were confirmed by pathological diagnoses after
surgery. The differentiation grading of these SHCC
cases follows the Edmondson-Steiner (E-S) grading
criteria, where 68 cases are medium-differentiation
SHCC (Grade II) and 37 cases are high-differentiation
SHCC (Grades III and IV)[7]. In this study, we diagnosed
medium-differentiation and high-differentiation SHCC,
examples of which are shown in Fig. 1.

(a) (b)
Fig. 1 CT images of (a) medium-differentiation and (b)
high-differentiation SHCC.

Nonenhanced CT images were used in the
experiments. All slices were 512 pixel � 512 pixel.
The images were acquired using a SIEMENS CT
scanner (SOMATOM Definition AS+) with the
following parameters: 120 – 140 kV, 210 mA, pitch
5 mm, window width 250 – 300 HU, window level
35 – 40 HU.

3 Experiment and Method

The grading scheme of this study comprises four
stages: (1) training of a Super-Resolution Generative
Adversarial Network (SRGAN) migration learning
model on the LUng Nodule Analysis (LUNA) 2016
dataset and employing this pre-training model to
reconstruct Super-Resolution (SR) images of the SHCC
dataset (SR-SHCC images); (2) designing a texture
clustering method based on a Gray-Level Co-occurrence
Matrix (GLCM) to segment tumor regions from the
original and SR-SHCC images as ROIs; (3) extracting
the texture features of the ROIs; and (4) performing
statistical analysis and classification. Figure 2 shows
this scheme.

3.1 Super-resolution reconstruction of tumor
regions

In recent years, machine-learning methods have made
advances in the study of medical images[8, 9]. The
SRGAN is a method for performing super-resolution
reconstruction using a Generative Adversarial Network
(GAN) that can reconstruct a high-resolution image

Fig. 2 Scheme used in this study.
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from a single low-resolution image. The SRGAN uses
a GAN to clarify the features of low-resolution images,
then generates detailed information to supplement
these low-resolution images, and finally creates high-
quality reconstructed images. The SRGAN is built on a
residual network (called SRResNet) and can improve the
abstraction ability of convolutional networks and enable
the reconstructed image to contain more high-frequency
details. The SRGAN also defines perceptual loss and
adversarial loss, which makes the generated and target
images consistent in content and contour, as well as
strongly similar in image style. This method ensures the
realism of the reconstructed image and can also refine
the texture details of a target while enlarging it[10, 11].

This study was based on the LUNA 2016 dataset to
pre-train an SRGAN migration learning model with
500 000 iterations. The LUNA dataset includes 1186
tumor data points from 888 patients. After loading the
pre-trained data, the dataset was divided into a training
set and a validation set at a ratio of 7:3 for migration
learning with 200 000 iterations. The learning rate was
set to 0.0001, the learning decay rate was set to 0.1, the
maximum number of iterations was set to 200 000, and
the conversion coefficient was 0.006.

In this paper, nonenhanced CT images of the 105
SHCC cases were input into the SRGAN model to obtain
SR-SHCC images.

3.2 Tumor segmentation

The purpose of segmentation is to extract the tumor
region, which is surrounded by normal liver tissue. With
regard to the tumor texture, there are large number
of invisible statistical rules, which can be used to
reveal great differences between the two types of tissue.
As such, these rules play an important role in tumor
segmentation. For this study, we designed a GLCM-
based texture clustering method to extract the texture
features of a neighborhood, and then segment images at
the pixel level.

3.2.1 Build GLCMs for each pixel
The textural differences between tumor regions and
normal liver tissue can be effectively utilized for
accurate and fully automatic tumor segmentation. If
a neighborhood is too small (such as a 3 pixel�3 pixel
neighborhood or a 5 pixel�5 pixel neighborhood), it is
difficult to determine its texture. Therefore, in this study,
we used 16 pixel�16 pixel neighborhood to construct the
GLCMs.

3.2.2 Extract texture features from the GLCMs of
each pixel

Five Haralick texture features (entropy, contrast,
correlation, homogeneity, and energy) were utilized to
indicate the texture differences between tumor regions
and normal liver tissue.
3.2.3 Cluster the texture feature vectors
The texture features of a pixel comprise a texture feature
vector. We used a K-means algorithm to cluster the
texture feature vectors and calculated the weighted
Euclidean distance to measure the similarity between
two vectors. Equation (1) defines the distance (dist),
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where x represents the feature vector, n represents
the vector dimension, and Sk represents the standard
deviation of the feature component. A abdominal CT
image usually contains: (1) bone regions with higher
gray values and simplex textures; (2) background regions
with gray values close to 0 and almost no texture
properties; (3) outer adipose layer regions with relatively
invariable textures; (4) liver regions with clear textures;
(5) other visceral regions with irregular textures; and (6)
tumour regions that needed to be extract. Therefore, this
study predefined 6 cluster centers and used these texture
characteristics as prior knowledge, then performed
cluster. The clustering results were first morphologically
operated to connect the gaps generated in clustering and
wipe off the extraneous scattered pixels, then formed
texture clustering marks. The markers were mapped to
the original CT image without any treatment, resulting
in a post-marked image with true textures[12].
3.2.4 Extraction of tumor regions by a watershed

immersion method
A tumor region can be extracted by performing a
watershed immersion method on a CT image, which
has texture clustering markers.
3.2.5 Obtaining ROIs
ROIs can be obtained in two steps: (1) calculating the
longest path distance of a 2D tumor region based on
the texture segmentation results, selecting the central
point of the longest path across the 2D tumor region,
and performing a morphological expansion operation to
obtain a central rectangle inside the tumor region, until
the point on the central rectangle is tangent to the tumor
boundary (while ensuring that the upper point is tangent
to the tumor boundary), such that the central rectangle
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represents the 2D ROI of this tumor; (2) performing
Step (1) on all tumor slices of a nonenhanced CT scan
sequence and using the 2D ROIs to reconstruct a 3D
ROI[13, 14]. Finally, a 2D ROI and a 3D ROI can be
obtained from one case.

3.3 Multi-dimensional texture feature extraction

In this study, 2D and 3D texture features were extracted
from original SHCC and SR-SHCC images.

3.3.1 2D-GLCM and SR-2D-GLCM features
In this paper, we describe the texture features based
on a GLCM, which extracted 2D-GLCM features from
the 2D ROIs in original SHCC CT images and SR-2D-
GLCM features from 2D ROIs in SR-SHCC CT images.
GLCMs are obtained by counting two pixels in an image
with the same gray level in a distance and a direction[15].
Different statistical directions (0ı, 45ı, 90ı, and 135ı)
can be selected to construct 2D-GLCMs. The five texture
features, contrast, correlation, energy, homogeneity, and
entropy, were extracted from the GLCMs[16].

3.3.2 Multi-scale 3D-GLCM features
Currently, 2D texture features are widely used in CT
image analysis, but 2D textures can only describe
the characteristics of a single CT image and cannot
reflect the overall and internal texture changes of a
tumor. In this study, we obtained a 3D ROI from a
tumor, which inevitably contained abundant intratumoral
texture information. In addition, in previous studies on
3D-GLCM features, a co-occurrence matrix has been
established using a neighborhood model with a distance
measure of “1”, which only considers the correlation
between the current voxel and a voxel value in the space
“1” neighborhood in a certain direction. This kind of
construction can only represent the spatial statistical law
between the current CT image and its adjacent slices.
However, in any combination of arbitrary directions
and arbitrary distance measures, there may be a certain
texture parameter that can more effectively distinguish
two types of tissue regions[17, 18].

Therefore, we constructed a multi-scale 3D-GLCM
using four distance measures, 1, 2, 3, and 4, to extract
texture features called multi-scale 3D-GLCM features.
Each voxel in a 3D tumor has 26 adjacent voxel
blocks, so there are 26 spatial extension directions
for a given voxel. According to the definition of a
co-occurrence matrix, two co-occurrence matrices in
two opposite directions from a line are completely
identical. Therefore, we used 13 spatial directions

to construct multi-scale 3D-GLCMs, for a total of
52 different 3D-GLCMs constructed. Figure 3 shows
an example of the construction of a multi-scale 3D-
GLCM. The distance measure is 1, which indicates a
co-occurrence relationship between the current voxel and
its surrounding 26 neighborhood voxels. However, the
co-occurrence relationship exists only in adjacent slices
(For example, i and j represent two adjacent voxels
along the z axis direction in 3D space, as show in Fig.
3). If the distance measure is set to 2, the co-occurrence
relationship can be extended to Slice 1, and the voxel-
value-related characteristics of Slices 3 and 1 can be
described. By selecting different distance measures and
spatial directions, the statistical laws of the textures
inside the 3D tumor can be more comprehensively
represented, and the texture information can be utilized
to a greater degree[19].

We extracted 12 texture features from the 3D-
GLCM, including energy, entropy, correlation, contrast,
homogeneity, variance, global average, moment of
inertia of an area, clustering shadow, clustering
significance, maximum probability estimation, and
inverse difference moment.

3.4 Statistical analysis and classifications

Using the Mann-Whitney U test, we calculated the
p-values of all the texture features in two types of
samples, and selected all features with p-values less
than 0.01 (defined as having significant differences) for
subsequent classification experiments[20]. We used an
SVM for classification (medium-differentiation and high-
differentiation) and the leave-one-out method for model
training. To evaluate the classification performance, we
used seven indictors, including the Receiver Operating
Characteristic (ROC) curve, Area Under the ROC

z

i

j

x

y

Fig. 3 Example of the construction of multi-scale 3D-
GLCM.
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Curve (AUC), ACCuracy (ACC), SENsitivity (SEN),
SPEcificity (SPE), Positive Predictive Value (PPV), and
Negative Predictive Value (NPV)[21].

4 Results and Discussion

Based on the trained SRGAN tumor migration learning
model, an original SHCC CT image can be reconstructed
to generate an SR-SHCC image with four times the
resolution of the original image. Figures 4a and
4b show the SR-HCC and original SHCC images,
respectively. From Fig. 4, we can see that the
reconstructed HCC image has a larger lesion area than
the original image and the textural details have high
similarity to the original HCC lesion texture, thereby
effectively solving the limitations associated with small
ROIs in tumor segmentation, texture analysis, and
classification. Moreover, the texture of the lesion and the
quantitative analysis based on the texture features can
play an auxiliary role in early diagnosis by physicians.
An ROI that is too small will cause the extracted texture
features to lack authenticity and comprehensiveness,
which results in inaccurate experimental results, and
makes it difficult to effectively perform texture-based
segmentation and classification.

To compare our results with the super-resolution
reconstruction method based on the SRGAN tumor
migration model, we also performed bilinear
interpolation[22, 23] and bicubic interpolation[24] to
reconstruct the super-resolution ROIs with details,
shown in Figs. 5a and 5b, respectively. Figure 5c shows
the part reconstructed using our proposed method,
which is visually clearer and has more textural details,
and image distortion can be prevented when magnifying
the ROI.

To segment the tumor regions, i.e., the ROIs, we
used the GLCM-based texture clustering method on
the original and SR-SHCC images. Figure 6a shows
an original HCC image, in which the tumor region is

(a) (b)
Fig. 4 Example of super-resolution reconstruction. (a)
Reconstructed super-resolution image and (b) an original
image.

(a) (b) (c)
Fig. 5 Comparison of super-resolution reconstructions. (a)
Bilinear interpolation, (b) bicubic interpolation, and (c)
SRGAN migration learning model.

(a) (b) (c)

(d) (e) (f)
Fig. 6 Segmentation based on the GLCM texture clustering
method. (a) Original image, (b) texture clustering result, (c)
image after extraction of clustering markers, (d) result after
morphological processing, (e) mapping of markers on the
original image, and (f) tumor region.

encircled by a black wire frame, plaque-like shadows
uneven in density, and slightly lower gradation than the
surrounding region can be observed. Figure 6b shows the
clustering result, from which it can be observed that the
GLCM texture differences can be used to successfully
distinguish the tumor region from normal liver tissue.
Figure 6c shows the image after the extraction of the
clustering markers. We removed the small holes that
should not exist in the binary image by morphological
operations, which generated the clustering marks shown
in Fig. 6d. We then mapped the modified markers to
the original image to obtain a tumor image with cluster
markers, as shown in Fig. 6e, in which the tumor region
is well distinguished from the surrounding normal liver
tissue. Finally, we removed the connected regions and
scatters smaller than 10 pixel�10 pixel in the marked
image and processed it using the watershed immersion
method to extract the whole tumor region, as shown in
Fig. 6f.

Table 1 presents the segmentation performances of
10 cases that were randomly selected from the 105
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Table 1 Accuracy comparison of segmentation algorithms.

CT scan
Original image SR image

ACC SEN SPE ACC SEN SPE
Patient 1 0.9472 0.9746 0.9315 0.8706 0.9238 0.8840
Patient 2 0.8507 0.8623 0.8243 0.8503 0.8865 0.8423
Patient 3 0.8949 0.9056 0.8746 0.8457 0.8326 0.8547
Patient 4 0.9091 0.9042 0.9166 0.8340 0.8876 0.8762
Patient 5 0.9376 0.9451 0.9023 0.7824 0.8023 0.8390
Patient 6 0.8995 0.9433 0.8842 0.9317 0.8951 0.8766
Patient 7 0.9029 0.9150 0.8827 0.8245 0.8329 0.7826
Patient 8 0.9058 0.8820 0.9152 0.8675 0.8464 0.8440
Patient 9 0.8819 0.8543 0.9476 0.9016 0.9451 0.8970
Patient 10 0.9201 0.9315 0.9018 0.8821 0.9016 0.8642

Mean 0.9049 0.9117 0.8980 0.8590 0.8753 0.8560

HCC cases. Using the manual segmentation results of
senior physicians at the West China Hospital of Sichuan
University as the gold standard, the GLCM-based texture
clustering method achieved segmentation accuracies of
0.9049 and 0.8590 in the HCC original images and SR
images, respectively. The segmentation performance of
this algorithm for the SR image, however, is worse than
that for the original image, which may be due to the
noise generated by the super-resolution reconstruction
and the loss of some texture information.

In this study, we extracted GLCM texture features
from 2D ROIs, 3D ROIs, and SR-2D ROIs, which we
refer to as 2D-GLCM features, 3D-GLCM features, and
SR-2D GLCM features, respectively. Table 2 shows the

results of the Mann-Whitney U test, which shows that
for the SR-2D-GLCM features, the p-values of energy
and entropy features (in the directions 0ı, 45ı, and 135ı)
are less than 0.01. The results of this study indicate that
when the selected distance measure is too long, it is
difficult to obtain a better classification effect, and the
characteristics are not significantly different in the two
types of SHCC.

In this study, there is no significant difference between
the high- and medium-differentiation SHCC in contrast
feature of image extracted based on SR-2D-GLCM
method. This may be related to the fact that we used
the lung tumor regions of CT images for the migration
learning of the SRGAN, and these lung tumor regions
had a higher overall brightnesses and lower contrast than
the liver tumor regions of the CT images. Therefore,
this feature is also reflected in the generated super-
resolution images. However, the entropy and energy
features show strong differences in the two types of
SHCC, which has a better result than in the original
images. In the original image, when the ROI is small,
it is often difficult to fully obtain the internal texture
statistics of small liver cancers with different levels of
differentiation. Due to the reduction in the number of
pixels, the texture differences are also more subtle, which
makes it difficult to perform statistical and quantitative
analyses. However, by preserving the original texture
style, the reconstructed image increases the number of

Table 2 Results of the Mann-Whitney U test (including mean value and standard deviation).

Method Feature
Mean˙ SD

p-value Feature
descriptionMedium-differentiation SHCC High-differentiation SHCC

2D-GLCM
G1 8.0200˙2.5300 9.6700˙2.7800 0.0080 Contrast(0ı)
G2 5.9800˙1.9600 6.9300˙2.0500 0.0090 Contrast(0ı)

SR-2D-GLCM

SR1 0.0360˙0.0080 0.0320˙0.0060 0.0030 SR-Energy(0ı)
SR2 5.2700˙0.3000 5.4400˙0.2700 0.0060 SR-Entropy(0ı)
SR3 0.0280˙0.0060 0.0240˙0.0040 0.0050 SR-Energy(45ı)
SR4 5.6600˙0.2900 5.8200˙0.2500 0.0080 SR-Entropy(45ı)
SR5 0.0270˙0.0060 0.0240˙0.0040 0.0050 SR-Energy(135ı)
SR6 5.6800˙0.2900 5.8300˙0.2400 0.0070 SR-Entropy(135ı)

3D-GLCM

T1 0.9960˙0.0030 0.9940˙0.0040 0.0010 Homogeneity(1; Œ0 1 0�)
T2 0.0340˙0.0100 0.0370˙0.0100 0.0020 Contrast.1; Œ0 1 � 1�/

T3 0.0510˙0.0100 0.0560˙0.0130 0.0080 Inertia.1; Œ�1 � 1 � 1�/

T4 0.0160˙0.0100 0.0220˙0.0100 0.0050 Entropy.1; Œ1 0 � 1�/

T5 0.0600˙0.0200 0.0800˙0.0300 0.0030 Contrast.2; Œ1 � 1 � 1�/

T6 0.0170˙0.0100 0.0200˙0.0100 0.0060 Entropy.2; Œ�1 1 � 1�/

T7 0.9500˙0.0030 0.9300˙0.0050 0.0030 Max probability.2; Œ�1 1 0�/

T8 0.0019˙0.0010 0.0027˙0.0040 0.0060 Inverse variance.2; Œ�1 0 0�/

T9 0.9000˙0.0060 0.9800˙0.0090 <0.0010 Energy.3; Œ0 0 � 1�/

T10 0.0100˙0.0110 0.0200˙0.0160 <0.0010 Entropy.3; Œ1 1 � 1�/
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pixels in the original ROI, and the textural laws are
clearer and more comprehensive. This confirms that
when the ROI in a complex image is small, the texture
analysis of its super-resolution image may be better than
that of the original image.

To perform classifications, we used an SVM classifier
(polynomial kernel) and the leave-one-out method[25, 26].
Table 2 shows the three sets of features. We performed
classifications based on each set of features, on two
combined sets of features, and on three combined sets
of features. Thus, seven classification experiments were
performed, which are abbreviated as S1 – S7.

Table 3 shows the classification results of the single-
set features (S1 – S3). The SR-2D-GLCM feature set
yields the best experimental results, which indicates that
the processing of the SR reconstruction significantly
improved the experimental results. The experimental
results of the 3D-GLCM features are better than those
of the 2D-GLCM features, which demonstrates the
advantages of 3D texture features in expressing the
internal texture characteristics of tumors.

Table 4 shows the classifications of the combinations
of two sets of features (S4 – S6) and three sets of features
(S7), for which S7 achieved the best performance. The
combination of the SR-2D-GLCM features, 2D-GLCM
features, and 3D-GLCM features for the medium- and
high-differentiation in SHCC yields a better result than
using a single set of features.

The limitations of this study are as follows. (1) Being a
single-center study, it was difficult to extend the results to
other institutions; (2) Cross training and validation were
performed to adjust the parameters of the model, but
these were limited by the difficulty in obtaining grading
results of the SHCC data, and we used no other subsets
to further evaluate the generalizability of the model; (3)
Because we were limited by the number of samples, this

study lacked a test part, and may suffer from overfitting;
(4) Because we extracted 18 features from 105 data,
there may be some overfitting. In future studies, we will
expand the sample size and test more methods.

In the past, gene sequencing has been used to identify
and grade HCC or other types of cancer, and some
positive research results have been achieved. Recently,
this kind of research has again become a research
hotspot. In subsequent work, on the one hand, we will
focus on the relationship between PD-L1 expression
level, patient genotype, and CT image features. On the
other hand, we will also committed to finding new and
fully automated methods for the diagnosis of small liver
cancer and other liver cancers[27–30].

5 Conclusion

This paper presented the results of our radiomic study[31]

on the grading of medium-differentiation and high-
differentiation SHCC in nonenhanced CT images. The
proposed scheme trained an SRGAN migration learning
model on an LUNA dataset to perform SR reconstruction,
designed a texture clustering method based on GLCM
to extract tumor regions from original and SR images,
then extracted multiple dimensional texture features
and performed classifications. This proposed grading
scheme can effectively reduce the poor impacts on the
texture analysis of SHCC ROIs and may play a guiding
role for physicians in the early diagnoses of medium-
differentiation and high-differentiation in SHCC. The
proposed scheme can also be extended to other types of
differential diagnoses of liver lesions.
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Table 3 Performance comparison of single set features.
Set Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) AUC
S1 2D-GLCM 65.71 72.05 (49/68) 54.05 (20/37) 74.24 51.28 0.64
S2 SR-2D-GLCM 78.09 85.29 (58/68) 64.86 (24/37) 81.69 70.58 0.80
S3 3D-GLCM 74.28 77.94 (53/68) 67.56 (25/37) 81.53 62.50 0.75

Table 4 Performances comparison of texture classification models.
Set Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) AUC
S4 SR-2D-GLCM&2D-GLCM 80.95 86.76 (59/68) 70.27 (26/37) 84.28 74.28 0.82
S5 2D-GLCM&3D-GLCM 78.09 80.88 (55/68) 72.97 (27/37) 84.61 67.50 0.79
S6 SR-2D-GLCM&3D-GLCM 80.00 77.94 (53/68) 83.78 (31/37) 89.83 67.39 0.83
S7 ALL 83.80 88.23 (60/68) 75.67 (28/37) 86.95 77.77 0.84
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