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TW-Co-MFC: Two-Level Weighted Collaborative Fuzzy Clustering
Based on Maximum Entropy for Multi-View Data

Jie Hu�, Yi Pan, Tianrui Li, and Yan Yang

Abstract: In recent years, multi-view clustering research has attracted considerable attention because of the rapidly

growing demand for unsupervised analysis of multi-view data in practical applications. Despite the significant

advances in multi-view clustering, two challenges still need to be addressed, i.e., how to make full use of the

consistent and complementary information in multiple views and how to discriminate the contributions of different

views and features in the same view to efficiently reveal the latent cluster structure of multi-view data for clustering. In

this study, we propose a novel Two-level Weighted Collaborative Multi-view Fuzzy Clustering (TW-Co-MFC) approach

to address the aforementioned issues. In TW-Co-MFC, a two-level weighting strategy is devised to measure the

importance of views and features, and a collaborative working mechanism is introduced to balance the within-view

clustering quality and the cross-view clustering consistency. Then an iterative optimization objective function based

on the maximum entropy principle is designed for multi-view clustering. Experiments on real-world datasets show

the effectiveness of the proposed approach.
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1 Introduction

Multi-view data are nearly omnipresent in real-world
applications, because large amounts of data are collected
from diverse domains using different measurement
methods and represented by different feature groups that
contain specific information about these data[1, 2]. For
instance, in image analysis, images can be represented by
local shape, color descriptors, and local binary patterns.
In web page classification, web pages consist of text
content, embedded pictures, and hyperlink connecting to
other pages. With the goal of revealing the latent group
structures in multi-view datasets, multi-view clustering
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has become a promising direction in machine learning
and numerous multi-view clustering methods have been
proposed.

Generally, on the basis of the view fusion position
during the clustering process, view fusion strategies
can be classified into three types, namely, prior
fusion, posterior fusion, and middle fusion methods[2, 3].
The prior fusion method usually refers to the direct
concatenation of each feature of all views into one
unique representation or the indirect addition of the
similarity matrix derived from each view and the
use of single-view clustering algorithms to obtain the
final result[4, 5]. However, this kind of view fusion
method does not improve the clustering performance,
because the concatenation operation leads to not only
the overfitting phenomenon on a small training sample
but also the loss of specific statistical properties and
complementary nature of different views. In addition,
the concatenation operation may also lead to the
dimensionality problem. The posterior fusion method is
also known as the clustering ensemble method, which
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is applied to achieve consensus clustering assignment
among the set of clustering results obtained from the
individual clustering process of each view[6]. The main
shortcoming of this approach is the lack of consideration
of the complementary and consistent information
between views in the previous base clustering phase,
which may result in an unstable performance.

By contrast, the middle fusion method uses
information from various views simultaneously in the
clustering process to obtain the clustering results. On the
basis of the specific fusion mechanism of multiple views
during the clustering process, middle fusion methods
can be divided into two categories. The first category
considers the hypothesis that the clustering results
in different views should be unique[7–12]. Therefore,
in the execution process of a multi-view cluster, the
multi-view information acts on common and consistent
results sequentially. During this process, nearly no
interaction occurs between views. The second category
involves clustering the information in each view while
collaboratively integrating the information from other
views and adopting the clustering ensemble method
to combine the previous single-view clustering results
to obtain a final consensus result[3, 5, 13–17]. In these
approaches, the consistency between views and the
uniqueness of each view are both considered. For
example, Jiang et al.[5] proposed a weighted view
collaborative Fuzzy c-Means (FCM), which incorporated
two penalty terms to improve the result, where the
first term was designed to automatically reward or
suppress the corresponding fuzzy membership degrees
of a fixed sample point for the current view and the
other views and the second term was designed to reduce
the differences of different view partitioning results
in a collaborative manner. On the basis of the max-
product belief propagation, Wang et al.[14] established
a collaborative multi-view clustering objective function
consisting of two components, in which one component
was used to measure the within-view clustering quality
and the other component was introduced to assess the
explicit clustering consistency across different views.
Zeng et al.[17] proposed a unified collaborative multi-
kernel fuzzy clustering for multi-view data by unifying
the local partitions and global clustering result in a
collaborative learning framework. Firstly, all of the
features were projected on the common multi-kernel
space. Then a single fuzzy clustering objective function
with two parts, i.e., one part was the joint local partition
clustering method and the other part was the classic

weighted multi-kernel clustering method, was proposed.
Although the proposed algorithm showed excellent
performance, the computational cost of constructing
the combined kernel expression for each view was
relatively large and remarkable. Given that collaborative
multi-view clustering not only fully considers the
characteristics of target objects in multiple angles, but
also takes full advantage of the consistency between all
of the views involved, the final decision is usually more
reliable than that of the other two strategies in terms
of the principle of retaining differences while seeking
common ground.

In addition, the importance of each view should also
be assessed in real clustering applications, because the
view of data has either strong or weak discrimination
capability in essence, and some views acquired
by unreliable physical measurements may be even
damaged by noise. Several scholars addressed this issue
and proposed the corresponding strategies[5, 17–20]. For
example, Xia et al.[18] presented a robust multi-view
spectral clustering method that learned a shared low-
rank transition probability matrix by separating noise
from each graph and utilized the classic Markov
chain method for clustering. Jiang et al.[5] developed
a collaborative fuzzy clustering algorithm, which
introduced a term to punish the single sample point
that had an ambiguous membership degree upon
clustering and added a weight parameter to measure
the importance of various views. Xu et al.[20] proposed a
re-weighted discriminative embedded k-means, which
can effectively mitigate the influence of outliers and
achieve dimension reduction while adaptively weighting
diverse views using a multi-view least absolute residual
model. However, their work only considered the
importance of views, not the importance of different
features in the same view, which may result in a
significant decrease in clustering performance when the
uncorrelated, interactive, redundant or noisy features
were blended in the feature space. Therefore, several
researchers proposed bi-level weighting multi-view
clustering methods. For example, Chen et al.[8] presented
a strategy of simultaneous weighting of views and
features to accomplish a multi-view clustering task
under the classical k-means framework. They used a
fuzzy weighting strategy to represent the importance
of views and features. A similar idea was adopted
by Jiang et al.[9] Given that the high dimensionality
of features may lead to a high-complexity and low-
stability clustering performance, Xu et al.[10] proposed a
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multi-view clustering method with feature selection that
can simultaneously provide the weights of views and
features. Zhang et al.[15] presented a collaborative multi-
view k-means clustering method, which considered
the importance of views and features and worked
in a collaborative manner to take advantage of the
complementary and consistent information across
different views.

Recently, fuzzy clustering analysis approaches, as
important complex data analysis methods used to deal
with uncertain, imprecise, and incomplete information,
have triggered extensive research[21]. The representative
works of fuzzy clustering analysis can be divided
into four categories, namely, FCM and its derivatives,
Maximum Entropy Clustering (MEC), hybrid rough-
fuzzy clustering approaches, and other fuzzy clustering
models as well as applications[22]. Although FCM
has been widely considered as the most representative
of fuzzy partition clustering methods, its weighted
index that is used to generate the fuzzy membership
function lacks physical meaning[23]. Therefore, the
weighted index is neither mathematically natural nor
necessary[23, 24]. Different from FCM, MEC applies
the maximum entropy principle to generate the fuzzy
membership function. The parameter of MEC reflects
a clear physical meaning by adding an entropy term
to the objective function[23]. Many MEC-based fuzzy
clustering methods have been proposed[22, 23, 25]. For
instance, Qian et al.[26] proposed a multi-view MEC by
jointly leveraging inter-view collaborations and intra-
view- weighted attributes. However, their work has not
taken into account the weighting of views.

The previously presented discussion indicates that the
existing methods are far from being able to completely
solve the problems encountered in multi-view cluster
analysis. In this study, we propose a novel Two-level
Weighted Collaborative Multi-view Fuzzy Clustering
(TW-Co-MFC) approach based on maximum entropy
to address the aforementioned issues. In TW-Co-MFC,
a two-level weighting strategy, which is designed to
simultaneously measure the importance of views and
features in each view, is devised in an iterative re-
weighted manner to examine the difference between
views and the difference between features in the same
view to improve the clustering performance. On the
basis of the maximum entropy principle, an iterative
optimization objective function is designed to balance
the within-view clustering quality and the cross-view
clustering consistency in a collaborative manner.

The main contributions of the proposed approach are
summarized as follows:

� A new fuzzy multi-view clustering objective
function is proposed under the MEC framework, which
provides a good explanation for the fuzzy partition.

� Both the importance of views and features in each
view are considered in the objective function.

� The consistent and complementary information
between views are fully utilized in a collaborative
manner.

� Extensive experiments on a variety of real-world
datasets show the effectiveness of the proposed method.

The remainder of this paper is organized as follows:
The related works on collaborative fuzzy clustering and
MEC are outlined in Section 2. The basic idea, key steps,
and proposed algorithm are described in Section 3. The
experimental results and the corresponding parameter
analysis are discussed in Section 4. The conclusions and
future research topics are presented in Section 5.

2 Related Work

In this section, we briefly review collaborative fuzzy
clustering and MEC.

2.1 Related notation

In this study, we consider a set of data X D fx1; : : : ;

xi ; : : : ; xN g with N samples, T views, and K clusters,
where 1 6 i 6 N: For 1 6 t 6 T and 1 6 k 6 K, in
the t -th view, Gt denotes the number of the features and
xij; t denotes the j -th feature value of the i-th sample
in the t-th view with j 2 Gt . In the fuzzy clustering
framework, to cluster the sample set X into K classes,
uik; t 2 Œ0; 1� denotes the fuzzy membership degree of xi

to cluster k in view t , vk; t denotes the center of cluster k

in view t , dik; t denotes the Euclidean distance between
xi and vk in view t , vkj; t denotes the j -th feature value
of k-th cluster center in t-th view, wt represents the
weight of t-th view, and mj; t denotes the j -th feature
weight in the t -th view.

2.2 Collaborative fuzzy clustering: Co-FKM
algorithm

FCM[27] is a well-known classical fuzzy clustering
algorithm. Using the conventional FCM framework,
Cleuziou et al.[28] developed a multi-view clustering
approach, i.e., Co-FKM, which has become the basis
of the collaborative multi-view fuzzy clustering method.

In Co-FKM, each view has a specific partition and a
penalty term is introduced to reduce the inconsistency
between partitions from different views. The objective
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function is defined as the minimization of the distance
between samples and cluster centers in each view while
penalizing the disagreement between any pairs of views.

JCo-FKM.U; V / D

TX
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NX
iD1

KX
kD1

um
ik; td

2
ik; tC

�
1

T � 1

TX
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2
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and � is a parameter used to control the penalty
associated with the disagreement. The term

1

T � 1

TX
t 0D1; t 0¤t

NX
iD1

KX
kD1

.um
ik;t 0 � um

ik; t /d
2
ik; t is a

disagreement term, which can be considered as the
divergence between partitions from different views, i.e.,
the lower the value of .um

ik;t 0 � um
ik; t

/, the lower the
disagreement.

In Co-FKM, the idea of clustering ensemble is adopted
to combine individual view fuzzy partition uik; t and
obtain the global clustering result Ouik . The consensus
function is defined as the geometric mean of uik; t for
each view and expressed as follows:

Ouik D
T

vuut TY
tD1

uik; t (2)

Co-FKM improved the performance of multi-view
clustering, and as indicated in Eq. (1), Co-FKM
considered that each view and each feature contributed
equally to clustering, which may decrease the clustering
performance when the views and features had different
importance.

2.3 MEC

Actually, MEC is a kind of fuzzy clustering method
that includes some form of maximum entropy term
in the objective function[22]. The most classic MEC
model[23, 29] can be expressed as follows:

min
V;U

 
KX

kD1

NX
iD1

uikkxi � vkk
2

C ˇ

KX
kD1

NX
iD1

uik ln uik

!
;

s.t.
KX

kD1

uik D 1 and 0 6 uik 6 1;

1 6 i 6 N; 1 6 k 6 K (3)

where the fuzzy membership
X
i;j

uij ln uij is derived

from Shannon entropy and ˇ is the regularization
parameter.

3 A Two-Level Weighted Collaborative
Fuzzy Clustering Based on Maximum
Entropy for Multi-View Data

In this section, firstly, the objective function of the
proposed TW-Co-MFC is formulated. Then the updating
rules are derived by applying the Lagrangian multiplier
method to the iterative clustering process to minimize
the objective function. Subsequently, the TW-Co-MFC
algorithm and its steps are introduced in detail. Finally,
the time complexity of the algorithm is discussed.

3.1 Objective function

The collaborative multi-view fuzzy clustering process to
partition X into K clusters with weights for both views
and individual features is modeled as the minimization
of the following objective function:
JTW-Co-MFC.U; V; W; M/ D
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tD1
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0@ NX
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euik;t;�

X
j 2Gt
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wt ln wtC

�3

TX
tD1

X
j 2Gt
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s.t.8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

KX
kD1

uik; t D 1; uik; t 2 Œ0; 1�; 16 i 6N; 16 t 6T I

TX
tD1

wt D 1; wt 2 Œ0; 1�IX
j 2Gt

mj; tD 1 ; mj; t 2 Œ0; 1� ; 1 6 t 6 T I

where euik;t;� is the weighted membership degree
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obtained from each view, which is defined as follows:

euik;t;� D .1 � �/uik; t C
�

T � 1

TX
t 0D1; t 0¤t

uik;t 0 (5)

The parameter � is a trade-off factor used to control the
penalty associated with the disagreement of cross-view
clustering results. Three parameters, i.e., �1, �2, and �3,
are set to control the distributions of fuzzy membership
U , view weighting variable W , and feature weighting
variable M , respectively.

The objective function expressed in Eq. (4) consists
of four terms. The first term collaboratively measures
the total deviation between all samples and all cluster
centers in all views using the “with a two-level
weighting strategy” (i.e., the first level is used to
weight view importance and the second level is
used to weight feature importance). The remaining

terms, i.e., ˛

TX
tD1

NX
iD1

KX
kD1

uik; t ln uik; t ; ˇ

TX
tD1

wt ln wt ;

and 

TX
tD1

X
j 2Gt

mj; t ln mj; t , are three maximum entropy-

based terms adopted to search for the unbiased
probability assignments for fuzzy membership, view
weighting, and feature weighting throughout the
clustering process, respectively.

To obtain the overall fuzzy partition matrix U , the
idea of clustering ensemble is adopted to calculate the
summation of the weighted fuzzy partition matrix from
each view.

U D

TX
tD1

wtUt (6)

where Ut is the fuzzy membership matrix of the t-th
view.

3.2 Clustering optimization

To minimize the objective function expressed in Eq.
(4), we adopt an iterative optimization strategy that
includes four steps. In each step, we determine the
optimal variable by fixing the three other variables. Note
that the variable optimization order does not affect the
output. We decide to update cluster centroid V firstly just
because we randomly select and initialize U , M , and W

before the iteration. The optimizations of U , M , and W

are independent. Under the convergence condition, the
difference between the value of the objective function
in current iteration and that of the last iteration is less
than a minimal value like 10�6 or reaches the maximum
iteration. The detailed description of the optimization

process is provided in the following subsections.
3.2.1 Cluster centroid optimization
In this step, we update the cluster centroid of the j -th
feature vkj; t by fixing variables U , W , and M in each
view.

We seek to derive the optimal prototypes as follows.
By setting @JTW-Co-MFC

ı
@vkj; t D 0, we obtain the

following expression:

@JTW-Co-MFC
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D�2wt
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�
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(7)
JTW-Co-MFC reaches the local minimum if and only if
vkj; t meets the following condition:

vkj; t D

NX
iD1

euik;t;�mj; txij; t

NX
iD1

euik;t;�mj; t

(8)

3.2.2 Feature weight optimization
In this step, we update the feature weight of the j -th
feature of the t-th view vkj; t by fixing variables U , W ,
and M in each view.

Through Lagrangian optimization, the minimum value
of JTW-Co-MFC in Eq. (4) can be obtained by solving the
following optimization problem about mj; t :
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where rt is a Lagrange multiplier.
From Eq. (9), we obtain the optimal value of mj; t

by setting @JTW-Co-MFC
�
mj; t ; t

�ı
@mj; t D 0 and

@JTW-Co-MFC
�
mj; t ; t

�ı
@t D 0. Thus, we have
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�
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From Eq. (10), mj; t is acquired as follows:
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With the constraint of Eq. (11), we have
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Then by substituting Eq. (13) into Eq. (12), we acquire
the solution of alternative optimal weight for the j -th
feature in the t -th view as
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3.2.3 View weight optimization
In this step, we update the weight wt of t-th view by
fixing variables U , V , and M in each view.

By the Lagrangian optimization, the minimum of
JTW-Co-MFC in Eq. (4) can be solved by finding the
following:
JTW-Co-MFC .wt ; ˇ/ D
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From Eq. (15), we can obtain the optimal value
of wt by setting @JTW-Co-MFC .wt ; ˇ/=@wtD 0 and

@JTW-Co-MFC .wt ; ˇ/=@ˇD 0. Thus, we derive the
following expressions:
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@wt

D

NX
iD1

KX
kD1

euik;t;�

X
j 2Gt

mj; t

�
xij; t � vkj; t

�2
C

�2 .ln wt C 1/ � ˇD 0 (16)
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From Eq. (16), wt is acquired as follows:
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Using the constraint of Eq. (17), we derive the
following expression:
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Then by substituting Eq. (19) into Eq. (18), we can
derive the solution of the alternative optimal weight for
the t -th view as follows:
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3.2.4 Partition matrix optimization
In this step, we update the partition matrix uik; t by fixing
variables V , W , and M in the t -th view.

With constraint
KX

kD1

uik; t D 1 and through

Lagrangian optimization, the minimization of
JTW-Co-MFC.U; V; W; M/ in Eq. (4) by fixing variables
V , W and M is equivalent to the optimization of uik; t

as follows:
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1A.

Then by setting @JTW-Co-MFC=@uik; t D 0 and
@JTW-Co-MFC=@˛i; t D 0, we obtain the membership
degree of the i-th sample of the j -th cluster center in
the t -th view as follows:
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where dik; t D

X
j 2Gt

mj; t

�
xij; t � vkj; t

�2.

3.3 TW-Co-MFC algorithm

On the basis of the aforementioned inference, a TW-Co-
MFC based on maximum entropy is designed. In each
iteration, we update V , M , W , and U alternatively, and
calculate the objective function value. We repeat this

procedure until convergence or the number of iterations
reaches the predefined maximum number of iterations.
The procedure is described in detail in Algorithm 1.

The convergence of Algorithm 1 can be proven
as follows. The clustering analysis task expressed in
Eq. (4) is divided into four convex subproblems and
each subproblem includes only one variable. After
solving each subproblem alternatively to derive the
optimal solutions, i.e., Eqs. (8), (14), (20), and (22), our
algorithm can derive the optimal solution and converge
to a local optimal solution.

3.4 Analysis of parameters ���1, ���2, and ���3

Thus far, the fuzzy weighting strategy can be classified
into two categories, namely, entropy weighting and fuzzy
weighting methods[30]. In our proposed method, we not
only adopt the entropy weighting approach to measure
the importance of views and features but also use the
maximum entropy principle to calculate the degree of
the sample point belonging to a certain cluster. Given
that the mathematical principle is the same, we only take
the analysis of �1 as an example to show the influence
of parameter variation on the fuzzy distribution.

The value range of parameter �1 is .0; 1/. Then we
rewrite Eq. (22) as follows:

Algorithm 1 TW-Co-MFC based on maximum entropy
Input:

The dataset X D fx1; x2; : : : ; xN g with N samples and T

views, the three regularization parameters �1, �2, and �3, the
number of clusters K, the trade-off factor �, the threshold �,
and the maximum iteration time itermax.

Output:
The overall clustering membership matrix U , the cluster
centroid set V , the view weighting set W , and the feature
weighting set M .

1: Initialization: Set JTW-Co-MFC.0/ D 0; randomly generate
initialize assignment membership matrix Ut 8t , initialize
view weight as Wt D 1=T ; initialize feature weight as
mj; t D 1=jGt j 8j 2 Gt ; and set iter D 1.

2: repeat
3: Compute the cluster center Vt 8t via Eq. (8).
4: Update the feature weight Mt , 8t via Eq. (14).
5: Update the view weight Wt , 8t via Eq. (20).
6: Update the membership matrix Ut , 8t via Eq. (22).
7: iter D iter C 1.
8: until jJTW-Co-MFC .iter/ � JTW-Co-MFC .iter � 1/j<� or iter >

itermax

9: Compute the overall membership matrix U via Eq. (6).
10: return The overall clustering membership matrix U , the

view weighting set W , and the feature weighting set M .
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�
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TX
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�2.

Notably, Dik; t represents the weighted distance from
sample i to cluster k in the t-th view. For any two
randomly selected clusters l and s in the t -th view, l ¤ s,
from Eq. (23), we derive the following equation:

uil; t

uis; t

D

exp
�

Dil; t

��1

�
exp

�
Dis; t

��1

� D exp
�

Dil; t � Dis; t

��1

�
(24)

From Eq. (24), we observe that the fuzzy membership
distribution of the sample in the t-th view becomes
uniform as the parameter �1 increases. In particular,
when �1 ! 1, we derive the following expression:

lim
�1!1

uil; t

uis; t

D lim
�1!1

exp
�

Dil; t

��1

�
exp

�
Dis; t

��1

� D

lim
�1!1

exp
�

Dil; t � Dis; t

��1

�
D 0 (25)

In this case, the fuzzy membership of sample i in
the t-th view will become uniform, which is not the
result that we are expecting. When �1 ! 0, the fuzzy
membership of sample i in the t-th view will become
sharp, which is also not the desired result because it will
lose the advantage of fuzzy partition.

Therefore, from the aforementioned analysis, we
observe that the values of the three parameters can
neither be too large nor too small.

3.5 Computational complexity analysis

In this subsection, we analyze the time complexity of
the proposed algorithm. In each iteration, the sequential
structure of TW-Co-MFC is divided into four key steps,
which consist of the calculation of the cluster center,
feature weight, view weight, and membership matrix for
each view. For a dataset with N objects, D features, K

clusters, and T views, the time complexity of each step
is O.NKD/, which has nothing to do with the number
of views in dataset. Assuming that TW-Co-MFC needs
P iterations to converge, the overall time complexity is
O.PNKD/.

4 Experimental Result and Discussion

In this section, extensive experiments are conducted on
five benchmark datasets to evaluate the performance
of the proposed algorithm. Firstly, TW-Co-MFC is
compared with five existing baseline algorithms. Then
the parameter impact analysis is conducted, i.e.,
the distribution of view weight W and clustering
performance with different �2 values, the feature weight
distribution M and clustering performance with different
�3 values, and the influence of � on the clustering result.
All of the experiments are conducted in MATLAB 2016a
on a PC with 2 Intel 1.6 GHz CPU, 12 GB RAM, and
Windows 10 64 bit.

4.1 Dataset

The experiments are performed on five real-world multi-
view datasets. The statistics of these datasets are shown
in Table 1. We briefly introduce the five datasets as
follows:

� Handwritten (HW) is a handwritten digit dataset
from the UCI machine learning repository[31]. The
dataset contains 2000 samples classified into 10 classes.
Each sample is one of the handwritten digits (0–9)
described by 649 features divided into six views, namely,
profile correlations (HW-fac), Fourier coefficients of the
character shapes (HW-fou), Karhunen-loève coefficients
(HW-kar), morphological features (HW-mor), pixel
averages in 2 � 3 windows (HW-pix), and Zernike
moments (HW-zer).

� Image Segmentation (IS) is a collection of
outdoor images available at the UCI machine learning
repository[31]. The dataset includes 2310 samples
classified into 7 classes. Each sample is described by 19
features categorized into two views, i.e., shape and RGB
(Red, Green, and Blue) views.

� Handwritten 2 sources (HW2sources) is a dataset
consisting of 2000 samples collected from two
sources[12], i.e., MNIST Handwritten Digits (0–9) and
USPS Handwritten Digits (0–9).

� BBCSport contains 544 sport news articles
collected from the BBC Sports website[32]. Each article

Table 1 Summary of the benchmark datasets.

Dataset
Number

of
objects

Number
of

views

Number
of

clusters
View structure

HW 2000 6 10 216-76-64-6-240-47
IS 2310 2 7 9-10
HW2sources 2000 2 10 784-256
BBCSport 544 2 5 3183-3203
Newsgroups 500 3 5 2000-2000-2000
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was split into two segments (two views) and manually
assigned to one of the five topical labels.

� Newsgroups consists of 500 documents obtained
from the well-known 20-Newsgroup dataset[33]. Each
raw document is classified into one of five topical labels
after being preprocessed with three different feature
extraction methods (considered as three views).

4.2 Evaluation measure

To evaluate the clustering performance, three widely
used clustering performance measures are adopted on the
basis of the ground-truth labels of the instances, which
are Clustering Accuracy (ACC)[34], Normalized Mutual
Information (NMI)[35], and Rand Index (RI)[36]. Note
that the values of ACC, NMI, and RI vary from 0 to 1,
with a higher value corresponding to a better clustering
performance.

4.3 Baseline algorithm and other setting

The proposed algorithm is compared with three single-
view and three multi-view clustering methods on the five
real-world datasets mentioned in the previous subsection.
To obtain comparable inertia for all views, we normalize
all of the values of each feature in the dataset within
the range Œ�1; 1� before we perform any clustering.
We select the standard FCM algorithm as the single-
view counterpart of our method. The fuzzy degree
parameter is set in the interval [1.05,1.5] with the step of
0.05, and the three other parameter values are adopted
as the default settings. Firstly, we employ the FCM
code available in the tool-box of MATLAB on every
single view of the datasets and record the worst and

best clustering results among different views. Then we
apply the FCM to the concatenated features of all views.
Co-FKM[28] is a fuzzy centralized method for multi-
view clustering, which enables the collaboration between
views following the disagreement-based strategy by
generalizing the three fusion strategies, i.e., before,
during or after the clustering process. MVKKM[37] is a
kernel-based weighted multi-view clustering algorithm,
in which each view is expressed in terms of given
kernel matrices and a weighted combination of the
kernels is learned in parallel to partitioning. TW-Co-k-
means[15] is a two-level weighted collaborative k-means
algorithm for multi-view clustering analysis, which
works in a collaborative manner to take advantage of
the complementary and consistent information across
different views while simultaneously computing the
weights for views and features. In our proposed method,
the grid search strategy is adopted to identify the best
parameters within the range of the candidate parameters,
i.e., we take turns to fix three of the four parameters to
obtain the optimal values and gradually vary the fourth
parameter until TW-Co-MFC achieves the optima by
grid search. The setting of the candidate parameters
in these algorithms is given in Table 2. For all of the
other approaches involved, the grid search strategy is
also adopted to identify the optimal core parameters. To
guarantee the reliability of the experimental results, we
run each approach 10 times using random initialization
and report the best average scores because all of the
clustering algorithms depend on initialization. The
optimal parameters of these methods that correspond

Table 2 Optimal parameter values for different algorithms on different datasets.

Algorithm Candidate parameter
Optimal parameter

HW IS HW2sources BBCSport Newsgroups
Worst single view m W Œ1:05 W 0:05 W 1:50� 1.50 1.10 1.35 1.05 1.20
Best single view m W Œ1:05 W 0:05 W 1:50� 1.05 1.30 1.05 1.40 1.05

Concatenated view m W Œ1:05 W 0:05 W 1:50� 1.25 1.05 1.10 1.35 1.45

Co-FKM
m W Œ1:10 W 0:05 W 1:50� 1.25 1.35 1.05 1.45 1.45

� W Œ0:1 W 0:05 W .T � 1/=T � 0.15 0.10 0.30 0.30 0.60
MVKKM p D Œ1; 1:3; 1:5; 2; 4; 6� 6.0 2.0 1.3 1.3 1.3

TW-Co-k-means
˛ W Œ10 W 10 W 100� 45 70 40 50 30

ˇ W Œ1 W 10� 10 10 8 1 9
� W Œ0:1 W 0:05 W 1� 0.45 0.45 0.35 0.20 0.20

TW-Co-MFC

x W Œ�9 W 0:5 W 3�

�1 W exp.x/ exp(�8) exp(�6) exp(�4:5) exp(�8:5) exp(�8)
�2 W exp.x/ 240 340 620 2 exp(5)
�3 W exp.x/ exp(7) 390 7500 60 exp(8)

� W Œ0:1 W 0:05 W .T � 1/=T � 0.25 0.50 0.40 0.50 0.40
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to the best results are outlined in Table 2.

4.4 Comparison result

In this section, we evaluate the performance of our
approach against five baseline approaches in terms of
three clustering measurements, i.e., ACC, NMI, and
RI on five benchmark datasets. Tables 3–5 show the
comparison results where the values in bold indicate the
best performance results among the seven algorithms.

From Tables 3–5, we observe that concatenating the
features of all views directly to clustering analysis cannot
guarantee that better clustering results than the best
single-view results can be generated. For instance, the
result of the concatenated IS dataset is worse than its best
single-view result. The reason for this phenomenon can
be the different discriminatory capabilities of different
features and views. TW-Co-MFC is based on the
two-level weight mechanism, which helps explore
the different partitioning capabilities of views and

features for the data containing compatible or
incompatible views. In addition, TW-Co-MFC improves
Co-FKM by adding two kinds of weights. We observe
that TW-Co-MFC exhibits a better performance than
the concatenating method and Co-FKM and even
outperforms the TW-Co-k-means, which is a crisp two-
level weight collaborative multi-view clustering method.

4.5 Parameter analysis

In this subsection, we conduct the parameter analysis of
the proposed method, which consists of the view weight
parameter �2, the feature weight parameter �3, and the
collaborative factor �. In the process of analyzing one of the
four parameters, all other parameters are fixed. Given the
limitation in terms of the length of the paper, we only report
the results of the HW and IS datasets. Table 6 summarizes
the characteristics of these two datasets in detail.
4.5.1 View weight parameter ���2

To investigate the influence of parameter �2 on the view

Table 3 Clustering performance comparison of each algorithm in terms of ACC on five real-world datasets.

Algorithm
ACC

HW IS HW2sources BBCSport Newsgroups
Worst single view 0.4577 0.5958 0.1860 0.3311 0.3180
Best single view 0.5704 0.6432 0.4533 0.3719 0.3280

Concatenated view 0.9080 0.6395 0.8920 0.5070 0.3632
Co-FKM 0.9116 0.6692 0.8970 0.4906 0.3834
MVKKM 0.8750 0.5706 0.9320 0.3621 0.2100

TW-Co-k-means 0.8063 0.6222 0.4987 0.4542 0.2904
TW-Co-MFC 0.9214 0.6859 0.8880 0.5915 0.5120

Table 4 Clustering performance comparison of each algorithm in terms of NMI on five real-world datasets.

Algorithm
NMI

HW IS HW2 sources BBCSport Newsgroups
Worst single view 0.4528 0.6175 0.1442 0.0290 0.1323
Best single view 0.5396 0.6410 0.4458 0.1229 0.1455

Concatenated view 0.8267 0.6093 0.8078 0.2454 0.2163
Co-FKM 0.8542 0.6268 0.8195 0.2516 0.2277
MVKKM 0.8116 0.6246 0.8716 0.0244 0.0230

TW-Co-k-means 0.8501 0.6180 0.4814 0.1857 0.1176
TW-Co-MFC 0.8954 0.6715 0.8302 0.4352 0.4186

Table 5 Clustering performance comparison of each algorithm in terms of RI on five real-world datasets.

Algorithm
RI

HW IS HW2sources BBCSport Newsgroups
Worst single view 0.8606 0.8600 0.5351 0.5094 0.4723
Best single view 0.8936 0.8769 0.8690 0.6089 0.5205

Concatenated view 0.9658 0.8730 0.9602 0.6811 0.5761
Co-FKM 0.9665 0.8778 0.9619 0.6761 0.5851
MVKKM 0.9578 0.8594 0.9745 0.2530 0.2129

TW-Co-k-means 0.9602 0.8662 0.8732 0.4587 0.3815
TW-Co-MFC 0.9767 0.8879 0.9641 0.7385 0.6588
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Table 6 Detailed information of the HW and IS datasets.

Dataset View
Number

of
features

Number
of

clusters

Number
of

instances

HW

HW-fac 216 10 2000
HW-fou 76 10 2000
HW-kar 64 10 2000
HW-mor 6 10 2000
HW-pix 240 10 2000
HW-zer 47 10 2000

IS
Shape 9 7 2310
RGB 10 7 2310

weight vector distribution and clustering performance,
we set the range of the parameter �2 as Œ60; 340� with
intervals of 40 by fixing the other parameters as the
optimal values listed in Table 2.

Figure 1 shows the distribution of the view weight
as a function of �2 on the HW and IS datasets, with �2

ranging from 60 to 340. From Fig. 1, we observe that the
smaller value of �2 leads to the sparser distribution of
the view weight. With the increase in the value of �2, the
distribution of view weight becomes more even, which
indicates that the view weights become more uniform. In
real-world application, if we have some prior knowledge
about the usefulness of the data views, then we can select
a relatively appropriate value of �2. Figure 2 shows the
effect of parameter �2 in the range of Œ60; 340� with the
interval of 40 on the clustering performance in terms of
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Fig. 1 Influence of ���2 on distribution of view weights.
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Fig. 2 Influence of ���2 on clustering performance.

ACC, NMI, and RI. From Fig. 2, we observe that the
clustering performance will be improved dramatically
with the increase in the value of �2. However, when
the parameter �2 exceeds a certain value, the clustering
performance will decrease. For the HW dataset, the
value is approximately 220. By contrast, for IS dataset,
the value is approximately 140. The reason for this
phenomenon is that, when �2 is set to have a small value,
only one view is selected, resulting in the sparsest view
selection and the loss of some useful view information.
In another extreme case, when �2 is set to have a large
value, the clustering performance will decrease because
the view information with more noises will take part
in the clustering assignment. Therefore, in real-world
applications, we need to use a small �2 value for the
dataset with incompatible views and a large �2 value for
the dataset with compatible views.

4.5.2 Feature weight parameter ���3

Following the method used to conduct weight parameter
analysis, we set the range of parameter �3 as exp.x/,
where x 2 f4:5; 5:5; 6:5; 7:5; 8:5g for the HW dataset
and x 2 f2; 3; 4; 5; 6; 7g for IS dataset by fixing the other
parameters to have the optimal values listed in Table 2
to investigate the influence of �3 on the distribution of
feature weight and clustering performance.

Figures 3 and 4 illustrate that the smaller the value
of �3, the sparser the distribution of feature weights.
Meanwhile, the larger the value of �3, the more
uniform the distribution of feature weights. In practical
applications, we need to set �3 to have appropriate values
to balance the distribution of features on the basis of the
characteristic of the features.

Figure 5 depicts the effect of parameter �3 on the
clustering performance on the HW and IS datasets in
terms of ACC, NMI, and RI. As shown in Fig. 5, on the
two datasets, the clustering performance improves more
dramatically when varying �3 from the defined smallest
value to a certain value, e.g., exp(5) for the HW dataset
and approximately exp(4) for the IS dataset. When
exceeding the set value, compared with the situation
when varying the parameter �2, the clustering results
relatively fluctuate. The clustering performance is good
when the parameter �3 is set in the range of exp.5/–
exp.8:5/ for the HW dataset and exp.4/–exp.6:5/ for
the IS dataset. However, when the parameter �3 is set to
have a large value, the clustering performance shows a
downward trend.

Furthermore, by combining the results of Figs. 3–5,
we observe that a small �3 value is beneficial to the
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Fig. 3 Influence of ���3 on distribution of feature weights on
HW dataset.
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Fig. 4 Influence of ���3 on distribution of feature weights on
IS dataset.
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Fig. 5 Influence of ���3 on clustering performance.

dataset with noise features, making the distribution of
feature weights sharper. Meanwhile, a large �3 value
makes the distribution of feature weights more equal so
that more features contribute to the clustering. Therefore,

on the basis of the comparison of the results of view
weight analysis, we suggest that extreme discrimination
of views and moderate discrimination of features can
help achieve a good clustering performance.

4.5.3 Trade-off factor ���

The trade-off factor � is used as a penalty associated with
the disagreement between the membership matrices of
different views, which would also affect the performance
of our method. By fixing the three other parameters to
have the optimal values listed in Table 2, we evaluate the
performance of our algorithm with the trade-off factor
� varying in the range of � D Œ0:1 W 0:05 W .6 � 1/=6�

for the HW dataset and � D Œ0:1 W 0:05 W .2 � 1/=2�

for the IS dataset. The results are displayed in Fig. 6.
When the trade-off factor � tends to 0, the second term
of Eq. (5) will tend to 0 and the algorithm will lose
the view collaborative mechanism to fuse assignments
during the clustering procedure. In another extreme
situation, when the parameter equals .T � 1/=T , all of
the other views will have the same clustering assignment
work to the objective function. Moreover, poor clustering
assignment will occur during the calculation of the
objective function, which will decrease the clustering
performance. Hence, the trade-off factor � should
have a moderate value, e.g., in the interval Œ0:3; 0:6�,
which will help to obtain the most satisfactory clustering
performance.

5 Conclusion

In this study, we propose a two-level collaborative
multi-view soft clustering method based on maximum
entropy to address the issue of uncertain clustering
analysis. The proposed method has the following
advantages compared with conventional multi-view
clustering methods: (1) An adaptive two-level weighting
process is designed to emphasize the importance of
views and features within the same view simultaneously
to express the inherently strong or weak discriminating
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power of different views and features; (2) it utilizes
a collaborative working mechanism to balance the
quality of clusters in each view with the explicit
clustering consistency between different views; and (3)
a maximum-entropy based fuzzy multi-view clustering
objective function is designed, which provides a better
physical explanation for soft clustering partition than
fuzzy c-means. Experiments on real-world multi-view
datasets have demonstrated the effectiveness of our
approach. In the future, we will consider the integration
of rough set theory into the multi-view soft clustering
process to effectively reduce the effect of outliers further.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (Nos. 61603313, 61772435,
61976182, and 61876157).

References

[1] J. Zhao, X. J. Xie, X. Xu, and S. L. Sun, Multi-view learning
overview: Recent progress and new challenges, Inf. Fusion,
vol. 38, pp. 43–54, 2017.

[2] Y. Yang and H. Wang, Multi-view clustering: A survey, Big
Data Mining and Analytics, vol. 1, no. 2, pp. 83–107, 2018.

[3] S. Bettoumi, C. Jlassi, and N. Arous, Collaborative multi-
view K-means clustering, Soft Comput., vol. 23, no. 3, pp.
937–945, 2019.

[4] J. Yu, Z. C. Qin, T. Wan, and X. Zhang, Feature integration
analysis of bag-of-features model for image retrieval,
Neurocomputing, vol. 120, pp. 355–364, 2013.

[5] Y. Z. Jiang, F. L. Chung, S. T. Wang, Z. H. Deng, J. Wang,
and P. J. Qian, Collaborative fuzzy clustering from multiple
weighted views, IEEE Trans. Cybern., vol. 45, no. 4, pp.
688–701, 2015.

[6] B. Abu-Jamous, R. Fa, D. J. Roberts, and A. K.
Nandi, Paradigm of tunable clustering using binarization
of consensus partition matrices (Bi-CoPaM) for gene
discovery, PLoS One, vol. 8, no. 2, p. e56432, 2013.

[7] X. Cai, F. P. Nie, and H. Huang, Multi-view K-means
clustering on big data, in Proc. 23rd Int. Joint Conf.
Artificial Intelligence, Beijing, China, 2013, pp. 2598–
2604.

[8] X. J. Chen, X. F. Xu, J. Z. Huang, and Y. M. Ye, TW-k-
means: Automated two-level variable weighting clustering
algorithm for multiview data, IEEE Trans. Knowl. Data
Eng., vol. 25, no. 4, pp. 932–944, 2013.

[9] B. Jiang, F. Y. Qiu, and L. P. Wang, Multi-view clustering
via simultaneous weighting on views and features, Appl.
Soft Comput., vol. 47, pp. 304–315, 2016.

[10] Y. M. Xu, C. D. Wang, and J. H. Lai, Weighted multi-view
clustering with feature selection, Pattern Recognit., vol. 53,
pp. 25–35, 2016.

[11] S. D. Huang, Z. Kang, I. W. Tsang, and Z. L. Xu,
Auto-weighted multi-view clustering via kernelized graph
learning, Pattern Recognit., vol. 88, pp. 174–184, 2019.

[12] H. Wang, Y. Yang, B. Liu, and H. Fujita, A study of graph-
based system for multi-view clustering, Knowl. Based Syst.,
vol. 163, pp. 1009–1019, 2019.

[13] W. Pedrycz, Collaborative fuzzy clustering, Pattern
Recognit. Lett., vol. 23, no. 14, pp. 1675–1686, 2002.

[14] C. D. Wang, J. H. Lai, and P. S. Yu, Multi-view clustering
based on belief propagation, IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 4, pp. 1007–1021, 2016.

[15] G. Y. Zhang, C. D. Wang, D. Huang, W. S. Zheng, and Y. R.
Zhou, TW-Co-k-means: Two-level weighted collaborative
k-means for multi-view clustering, Knowl. Based Syst., vol.
150, pp. 127–138, 2018.
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