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Visual Perception-Based Fault Diagnosis in Froth Flotation Using
Statistical Approaches

Jin Zhang, Zhaohui Tang�, Yongfang Xie, Mingxi Ai, and Weihua Gui

Abstract: Froth flotation is an important mineral concentration technique. Faulty conditions in flotation processes may

cause the huge waste of mineral resources and reagents, and consequently, may lead to deterioration in terms of

benefits of flotation plants. In this paper, we propose a computer vision-aided fault detection and diagnosis approach

for froth flotation. Specifically, a joint Gabor texture feature based on the Copula model is designed to describe froth

images; a rejection sampling technique is developed to generate training sets from the quality distribution of real

flotation products, and then an isolation forest-based fault detector is learned; and a fault diagnosis model based

on spline regression is developed for root cause identification. Simulation experiments conducted on the historical

industry data show that the proposed strategy has better performance than the alternative methods. Thereafter, the

entire framework has been tested on a lead-zinc flotation plant in China. Experimental results have demonstrated

the effectiveness of the proposed method.
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1 Introduction

Fault detection and diagnosis are important and
challenging problems in many disciplines, such as
hot strip mill rolling[1], bearing in rotary machinery
systems[2, 3], minerals processing[4], and wireless sensor
networks[5]. According to Ref. [6], a fault in a process
is defined as a deviation of an observed output or
operating variable from an acceptable range. In the
present paper, a case in point is the froth flotation, which
is extensively used in the processing of mineral ore
deposits as a method of separating the desired mineral
components from their associated gangue materials. In
the flotation industry, two extreme conditions are viewed
as abnormal process behaviors. The first one is related
to a situation when froth is overloaded with mineral
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particles (hereinafter, denoted as Fault 1). The other one
is observed when several mineral particles are covered on
a bubble surface (denoted as Fault 2). These two flotation
conditions may cause large losses of time and reagents
to rectify the fault and reduce production efficiency
due to the waste of raw materials. If a fault can be
quickly detected and identified, appropriate controls
can be applied in a timely manner. Therefore, a well-
designed fault analysis approach can improve efficiency
and save costs[7]. To accomplish this kind of work, the
authors in Ref. [8] introduced a non-parametric kernel
estimator to approximate the Probability Distribution
Function (PDF) of a bubble size after the froth image
segmentation, and then a dynamic weight model for
bubble size PDF was built. Based on this model, the
Lyapunov stability condition was considered to perform
the fault detection. In Ref. [9], an equivalent bubble size
feature was designed by calculating the white area of
each binary image after applying the wavelet transform
and reconstruction, and the flotation fault detection was
performed by determining the range of a normal froth
image. In Ref. [10], the authors proposed to use kernel
machines to extract nonlinear features from froth images,
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and a one-class support vector machine was used to
define a confidence region for normal instances based on
the extracted features. Instances outside the confidence
region were considered as faults.

As shown in Fig. 1, the froth surface appearances
of the two kinds of faults are extremely different. An
individual bubble can be easily identified in the case
of Fault 2, whereas it is impossible to segment a froth
image of Fault 1 into individual bubbles. An image
feature based on the size of a bubble is not able to
distinguish Fault 1 from the normal working conditions.
Moreover, in the case of binary transform, it is difficult
to obtain discriminative descriptions for Fault 2 and
normal instances. The Gabor functions[11, 12], in which
kernels are similar to responses of two-dimensional
receptive field profiles of a mammalian simple cortical
cell, have been demonstrated a great success being
applied to the bauxite flotation working condition
recognition[13]. In the present study, we attempt to apply

the Gabor transform to the fault detection and diagnosis
task. Generally, the Gabor texture is represented by
a distribution of magnitude (Magnitude-based Gabor
Texture Representation (MGTR)) and a phase (Phase-
based Gabor Texture Representation (PGTR))[14, 15].
However, when applying PGTR to the froth texture
representation, we find that it is not possible to describe
froth images, as demonstrated in Fig. 2. To mitigate this
deficiency, we propose to replace PGTR with the Real
part of the Gabor Texture Response (RGTR) and the
Imaginary part of the Gabor Texture Response (IGTR).
However, in Ref. [13], the interscale and intrascale
statistical dependencies across MGTR, RGTR, and
IGTR were neglected due to the univariate density
modeling approach. To provide a complete statistical
description for the Gabor texture, we construct a joint
model including MGTR, RGTR, and IGTR based on the
multivariate Copula approach[16–18].

Generally, the model-based approaches require a

Fig. 1 Illustration of froth flotation working conditions: (a) Fault 1-froths were heavily loaded with minerals; (b) normal
working condition; and (c) Fault 2-froths contained the small amount of gangue minerals.

Fig. 2 Polar plots of the phase part of the Gabor froth textures in five scales and eight orientations. There is almost no obvious
orientation specificity in the phase of Gabor responses.
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priori mathematical knowledge of the process. However,
the dynamic behavior of the flotation process is difficult
to understand. Therefore, it is a challenging task to build
a dynamic weight model for bubble size PDF. In turn,
the data-driven schemes serve as an efficient alternative
way, which only depends on the measured process
variables[19, 20]. A general structure of computer vision-
aided fault detection and diagnosis method implies
defining an image feature extraction model together with
a classifier methodology[21, 22]. In the flotation industry,
the property and grade of raw ore are two primary
disturbances that cause serious deviation in the flotation
working conditions. At the same time, the fluctuation
magnitude of the property and grade of raw ore is small.
Even though it is possible to collect a large number
of production data in a day, the number of working
condition types is very small. Therefore, it is difficult
to learn a robust fault classifier based on the industry
data collected in a short period of time. Instead of
training a classifier, in this study, we propose to build
an isolation forest model (iForest) considering that it is
well applicable to the cases with the insufficient amount
of fault training data[23]. In iForest, faulty conditions
are detected as the instances that have short average
path lengths on the isolation trees (iTrees). Therefore,
it is important to construct a training set that has a
prevailing majority of normal instances and only a small
number of fault instances. From the mathematical point
of view, flotation conditions are random variables that
obey stochastic distribution, and the probability of fault
conditions in this distribution is small. Based on these
observations, in this study, we propose to generate
training sets from the real distribution of the flotation
working conditions.

Once a fault is successfully detected, the root cause
should be identified as soon as possible. As the flotation
process mechanics are still difficult to understand,
it is almost impossible to diagnose flotation faults
based on the kinetic mechanisms. From the data-driven
perspective, if we have the root cause label for each fault
instance and obtain a considerable number of real fault
instances, a data-driven based fault diagnosis model can
be trained on the labeled historical data[19, 24]. However,
in real application, it is difficult to collect a large number
of fault instances with a manual root cause label. In this
setting, a Thin-Plate Spline Regression (TPSR)[25, 26]

model is developed to learn the relationship between a
fault root cause (e.g., a manipulation variable, such as
a foaming agent and an activator) and a product visual

appearance.
Therefore, contributions of the present paper are as

follows:
� The Gabor texture feature based on a Copula model

is designed to describe the froth surface appearance.
� To detect flotation faults using an isolation forest

approach, a rejection sampling technique is developed
to generate training sets from the distribution of the real
flotation working conditions.
� A flotation fault diagnosis model based on spline

regression is developed and confirmed to perform well
in the cases when only a small number of training sets
are available.

2 Description of Froth Flotation

Froth flotation is a vital mineral concentration process. It
takes advantage of hydrophobicity of liberated minerals
and separates these minerals one from another and from
slurry they are in. Specifically, in the flotation process,
the ore is firstly ground to a size sufficient to liberate
desired minerals from the gangue, and then liberated
minerals are conditioned as slurry by using moderate
reagents, which make their surfaces hydrophobic and
provide them with the tendency to get attached to air
bubbles. After that, the conditioned mineral slurry is
projected to flotation banks. A schematic of a flotation
bank is shown in Fig. 3. During stirring of an agitator,
hydrophobic minerals get attached to the air bubbles and
float to the top of the flotation bank, thereby forming a
froth layer. The froth is skimmed off as a product of this
bank. The remaining unfloated particles are discharged
as tailings. As the morphologic structure of froth is
largely influenced by mineral particles attached to air
bubbles, in industry, the visual appearance of the froth
layer serves as an indicator of the flotation performance.
Furthermore, chemical reagents can be changed when
observing the froth surface. Let us consider an example
of zinc froth flotation concentrator in Shaoguan, China.

Fig. 3 Schematic of flotation bank.
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To achieve the designed metallurgical performance, the
parameters of a foaming agent (used to stabilize foams),
an activator (attaches itself to the surface of minerals to
facilitate other reagents reacting to it), and a collector
(used to change the mineral surface hydrophobicity)
need to be carefully controlled. Within this plant, if
the concentrate grade is smaller than 52%, the flotation
condition will be recognized as Fault 2. If the concentrate
grade is larger than 56%, it will be recognized as Fault
1. Root causes and the corresponding fault type are
summarized in Table 1.

If the amount of the injected foaming agent is
superfluous, the flotation bank will produce excessive
bubbles, and thereby, this may lead to Fault 2 (a small
number of mineral particles are covered on the froth
layer). On the contrary, if the amount of the injected
foaming agent is insufficient, the number of bubbles
to support mineral particles is too small as well, and
thereby, this may cause Fault 1 (froth is overloaded
with mineral particles). If the amount of the injected
collector/activator is excessive, not only fine particles
can get attached to air bubbles, but also coarse particles
may get attached to bubbles. Consequently, Fault 1
occurs. However, if the insufficient amount of the
collector/activator is injected, only a small portion of fine
particles will get attached to air bubbles, causing Fault
2. To achieve the accurate fault detection and diagnosis,
the industrial field data were collected for a period of
approximately three months at a sampling interval of
20 min. There were 6335 concentrate grade records
collected. Histogram distribution of the concentrate
grade data is summarized in Fig. 4. The ratio of the
normal concentrate grade in the collected data is 0.8524,
the ratio of Fault 1 is 0.0955, and the ratio of Fault 2 is
0.0521.

3 Feature Extraction Using Statistical
Method

3.1 Gabor wavelet texture

In the spatial domain, a two-dimensional Gabor filter

Table 1 Froth flotation faults and three kinds of root causes.
“+” means that the corresponding reagent is excessive and “–”
means that the corresponding reagent is insufficient.

Fault
Root cause

Foaming agent Activator Collector
Fault 1 (concentrate

grade>56%) � C C

Fault 2 (concentrate
grade<52%) C � �

Fig. 4 Histogram distribution of the concentrate grade data.
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normal strips to the parallel ones of the Gabor function,
� is the phase offset, � is the standard deviation of
the Gaussian envelope, and  is the spatial aspect ratio,
which specifies the ellipticity of the support of the Gabor
function. Forty Gabor filters in five scales and eight
orientations are considered in the present study. The
Gabor representation of a froth image can be obtained by
convolving the image with Gabor kernels. Let I .x; y/
be the gray-level froth image, then the convolution of
the image and a Gabor kernel G .x; y/ are defined as
follows:
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directions of the Gabor kernels, respectively. The output
Os; d .x; y/ is a complex. Usually, the Gabor texture
information are captured from the magnitude and phase
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The Gamma distribution (�D/ is introduced to model
the magnitude part of the Gabor wavelet transform in



176 Tsinghua Science and Technology, April 2021, 26(2): 172–184

which the PDF can be expressed as follows[13–15, 27]:8̂̂<̂
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where ˛ is the scale parameter, which controls the
width of the PDF peak and ˇ is the shape parameter,
which is inversely proportional to the decreasing rate
of the peak. The two parameters can be estimated
by the maximum likelihood estimation method. Let
X D fx1; x2; : : : ; xng be a random sample with the
assumption that the data are mutually independent. Then
the log-likelihood function is defined as follows:
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After obtaining the estimate of b̌, b̨ can be derived
directly by using Eq. (8). As MGTR statistically follows
the gamma distribution, the texture information from
the Gabor magnitude can be characterized using model
parameters

�b̨; b̌� as follows:
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To model the real and the imaginary parts of the Gabor
texture response (RGTR and IGTR, respectively), the
t location-scale distribution is utilized. PDF of the
two-parameter t location-scale distribution is defined
as follows:
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where � is the location parameter and ! is the scale
parameter. Here, v controls the shape of the distribution
(kurtosis). Given �, v, and !, a typical student t
distribution is then exhibited with v degrees of freedom.
The corresponding log-likelihood function can be written
as follows:
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The maximum likelihood estimation approach can be
used to determine the value of . O�; Ov; O!/. Therefore,

. O�; Ov; O!/ D arg max
.�;v;!/

f� .X j�; v; !/g (13)

Equation (13) is not a close-form solution. An
iterative procedure is performed to numerically manage
the search of the maximum value of the log-likelihood
function. Details can be found in our previous work[13].
As RGTR and IGTR statistically follow the t location-
scale distribution, the texture information obtained from
the real part and the imaginary part can be described
using .b�;bv; b!/:
RGTRD
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3.2 Copula model for texture representation

A copula is a B-dimensional distribution function
C W Œ0; 1�B ! Œ0; 1� with uniform marginals satisfying
certain regularity conditions. The results in Ref.
[28] showed that given a B-dimensional random
vector with a Cumulative Distribution Function
(CDF) H .x1; : : : ; xB/ and continuous marginal CDFs
F1 .x1/ ; : : : ; Fn .xB/, there exists a B-dimensional
copula C such that:
H .x1; : : : ; xB/ D C .F1 .x1/ ; : : : ; FB .xB// (16)

This theorem represents the fact that every random
variable can be transformed into a uniform one by
applying the probability integral transform. In other
words, a copula can be considered as a distribution
function of marginal CDFs. Moreover, if the function C
is continuous and differentiable, then the copula density
is given as follows:
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In this case, the joint PDF of x can be written as
follows:

f .x1; : : : ; xB/ D c .F1 .x1/ ; : : : ; FB .xB//
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iD1

fi .xi /
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where fi .�/ .i D 1; : : : ; B/ are the marginal PDFs.
Thereby, a joint multivariate PDF is uniquely defined
given marginal PDFs and the copula density.

Several common-used copulas include the Gaussian
copula, t-copula, and Archimedean copulas. It has
been widely accepted that the Gaussian copula and
t-copula can finely fit the sub-bands of the wavelet-
based transform[29]. In the present study, the following
Gaussian copula is used, as it can be easily implemented,
and its dependence structure is intuitive based on
correlation coefficients:
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where #i D '�1 .Fi .xi // and ' represents the CDF
of the normalized Gaussian distribution N .0; 1/. The
matrix I is the B-dimensional identity matrix and ˙
denotes the correlation matrix. From this, we can derive
the joint model as follows:
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where � D .�;˙/ denotes the hyperparameters of the
joint model and � D .�1; : : : ; �B/ represents a set of the
marginal parameters.

As shown in Fig. 5, in this study, the copula
models corresponding to MGTR, RGTR, and IGTR are
constructed and integrated in three ways:
� For each orientation, the interscale statistical

dependence of MGTR, RGTR, and IGTR in all scales is
investigated.
� For each scale, the intrascale statistical dependence

of MGTR, RGTR, and IGTR in all orientations is
investigated.
� For each scale and each orientation, the dependence

of MGTR, RGTR, and IGTR is investigated.
A simple procedure to estimate the full set of unknown

hyperparameters of a copula joint distribution can be
summarized as follows:

(1) The Gamma Distribution (GD) is used as the
marginal distribution for MGTR and the t location-
scale distribution is used as the marginal distribution
for RGTR and IGTR.

(2) Parameters of MGTR, RGTR, and IGTR are
estimated using the maximum likelihood method. For
simplicity,b� is used to represent the estimated marginal
parameters. Specifically, the GD parameters of MGTR
in scale si and orientation dj are denoted asb� D �b̨; b̌�,
and the t location-scale distribution parameters of RGTR
(IGTR) are denoted asb� D .b�;bv; b!/.

(3) The cumulative distributions of MGTR, RGTR,
and IGTR are computed.

(4) Each observation xi is transformed into #i using
#i D '

�1 .Fi .xi //.
(5) Parameter ˙ of the joint distribution is estimated

by maximizing the following log-likelihood function:
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Fig. 5 Copula model for Gabor wavelet texture.
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4 Improved Isolation Forest for Fault
Detection and Diagnosis

4.1 Isolation forest with Monte Carlo sampling

According to the definition of the iTree approach[23, 30],
the node of an isolation tree is either an external node
with no child, or an internal node with one test and
exactly two daughter nodes (Tl , Tr/. A test consists
of an attribute q and a split value p, such that the test
q < p divides the data points into Tl and Tr . Thereby,
an iTree can be built as follows. Given a training set
X D fxig

N
iD1 ; xi 2 Rm, the instance xi can be divided

recursively by randomly selecting an attribute q and a
split value p until any of these conditions holds: (1)
the tree reaches a height limit, (2) jX j D 1 or (3) all
data items in X have the same values. This approach is
summarized in Algorithm 1.

As the frequency of fault conditions is low, visual
features of these conditions are different from the
normal ones, and therefore, they are more susceptible
to be isolated. In an iTree, it will produce noticeable
shorter paths for faulty conditions comparing with the
normal instances. Hence, when a forest of isolation
trees (isolation forest) collectively produce shorter
path lengths for some particular instances, then these
instances are highly likely to be faulty. The anomaly
score of an instance is defined as follows[23]:

s .x;N / D 2�
E.h.x//

c.N / (21)

where N is the number of training instances, h .x/ is
the path length of x, which is measured by the number
of edges that x traverses an iTree from the root node to
the terminated external node, E .h .x// is the average

Algorithm 1. iTree .X; e; l/
Inputs: X–input data, e–current tree height, l–height limit
Output: an iTree
1: if e > l or jX j 6 1 then
2: return exNode fSize jX jg
3: else
4: let Q be a list of attributes in X
5: randomly select an attribute q 2 Q
6: randomly select a split point p from max and min value
of attribute q in X
7: Xl  filter .X; q < p/
8: Xr  filter .X; q > p/

9: return inNode fLeft iTree .Xl ; e C 1; l/

10: Right iTree .Xr ; e C 1; l/

11: SplitAtt q

12: SplitValue pg

13: end if

of h .x/ in a collection of isolation trees, and c .N / is
defined as

c .N / D 2H .N � 1/ �
2 .N � 1/

N
(22)

where H .i/ is the harmonic number, which can
be estimated by ln .i/ C 0:577 215 664 9 (the Euler’s
constant).

As stated in the original work related to the isolation
forest method in Ref. [23], training sets should have
a prevailing majority of normal instances and a small
number of fault instances, as a higher number of fault
instances may reduce the ability of iForests to isolate
faults from normal instances. Therefore, we propose
using the Monte Carlo sampling method to generate
training samples for iForest from a concentrate grade
probability distribution. Rejection sampling is one of
Monte Carlo methods[31]. It is based on the observation
that, to sample a random variable, one can sample
uniformly from the region under the graph of its density
function, specifically, from the probability distribution
function f .x/. Another distribution function g .x/ is
defined such that sampling from g .x/ becomes an easy
task. Then the envelope

M D sup
f .x/

g .x/
(23)

is computed. From Eq. (23), it is seen that f .x/ < M �
g .x/. Thereafter, rejection sampling can be performed
as described in Ref. [32]:
� Sample x from g.x/ and u from a uniform

distribution U (0, 1).
� Check whether u < f .x//Mg(x/ or not.
� If this holds, accept x as a realization of f .x/.
� If not, reject the value of x and repeat the sampling

step.
Figures 6b–6d show that three training sets were

randomly generated using Algorithm 2 (a comprehensive
description of rejection sampling). The improved
isolation forest using Rejection Sampling (RS-iForest)
is described in Algorithm 3. Specifically, 512 samples
were generated for each training set. It can be observed
that the distribution of these generated training sets is
the same as in the database shown in Fig. 6a. It satisfies
the condition that the number of faulty instances needs
to be small, and the majority of instances are normal.

4.2 Fault diagnosis based on classification

The iForest can distinguish faults from normal working
conditions, however, it is not able to differentiate a
specific fault type. To recognize whether the current
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Fig. 1 Illustration of froth flotation working conditions: (a) Fault I-froths 
were heavily loaded with minerals; (b) Normal working condition; (c) 

Fault II-froths contained the small amount of gangue minerals.

Fig. 2.  Polar plots of the phase part of the Gabor froth textures in five 
scales and eight orientations. There is almost no obvious orientation 

specificity in the phase of Gabor responses.

Fig. 3.  Schematic of flotation bank.

Fig. 4.  Histogram distribution of the collected concentrate grade data.

Fig. 5.  Copula model for Gabor wavelet texture.

Fig. 6.  Training sets generated using the rejection sampling technique. (a) 
shows the kernel probability fitting of the grade histogram and the 

constructed Gaussian proposal distribution; (b)-(d) are the three random 
sampling results.

Fig. 7.  Illustration of fault diagnosis.

Fig. 8.  Correlation between subsampling size and detection accuracy.

Fig. 9.  Comparative analysis on detection accuracy of faulty condition for 
froth flotation.
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Fig. 6 Generated training sets using the rejection sampling technique. (a) Kernel probability fitting of the grade histogram and
the constructed Gaussian proposal distribution. (b)–(d) Results of three random sampling.

Algorithm 2. RejectionSample .X; t; �/
Inputs: X–input data, t–number of trees, �–subsampling size
Output: sampled data X 0

1: Model the probability distribution of historical concentrate
grade X using kernel method

f .x/ D 1
Nh

nP
iD1

K
�

x�xi

h

�
K
�

x�xi

h

�
D

1p
2 

exp
�

..x�xi /=h/
2

2

�
2: a normal PDF function g .x/ is constructed

g .x/ D
1

p
2 �init

exp

 
�
.x � �init/

2

2�2
init

!
where �init and �init are set by trial-and-error

3: set M D max
x2X

f .x/=g .x/

4: for i D 1 to t do end if
5: while size

�
X 0

i

�
< �

6: x  g .x/

7: u U .0; 1/

8: if u < f .x/=Mg .x/
9: X 0

i
 X 0

i
[ x

10: end if
11: end while
12: end for
13: return X 0

fault belongs to Fault 1 or 2, a Fuzzy C-Means (FCM)[33]

clustering method is applied to diagnose a fault type.
To identify the root cause for a flotation fault, we

Algorithm 3. iForest .X; t; �/
Inputs: X–input data, t–number of trees, �–subsampling size
Output: a set of t iTrees
1: Initialize Forest
2: set height limit l D ceiling .log2 �/

3: X 0  RejectionSample .X; t; �/
3: for i D 1 to t do
4: Forest Forest [ iTree

�
X 0

i
; 0; l

�
6: end for
7: return Forest

need to construct a diagnosis model for each type of
fault, as shown in Fig. 7. In general, fault diagnosis
methods in an industrial process can be divided into
model-based and data-driven ones. Among them, the
latter ones that are developed by using the process
measurements have drawn more attention over past
decades, as the first principle models are rather difficult
to be constructed. In the present study, we seek to
construct a data-driven based diagnosis model in which
the inputs contain the feed condition (e.g., feed grade in
froth flotation), manipulation variables (e.g., reagents,
such as foaming agent and activator in froth flotation),
and the Copula-Gabor texture feature. According to the
statistical analysis of the historical data, the probabilities
of occurring Faults 1 and 2 are 0.0955 and 0.0521,



180 Tsinghua Science and Technology, April 2021, 26(2): 172–184

180

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

0

500090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

500090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

1000090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

0180

1000090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

2000090

270

180 0

500090

270

180 0

500090

270

180 0

500090

270

180 0

2000090

270

180 0

500090

270

180 0

500090

270

180 0

500090

270

180 0

PDF CDF

MGTR, RGTR, and IGTR Gaussian 
copulas along five scales

MGTR, RGTR, and IGTR Gaussian 
copulas along eight orientations

Gaussian copulas which combine MGTR, 
RGTR, and IGTR along five scales and

eight orientations

Sc
al

e

RGTR

IGTR

MGTR

Orientation

Copula joint model

Copula-Gabor Gabor Froth Velocity Bubble Size
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

RS-iForest
iForest
RF
FNN

(a) (b) (c)
42 44 46 48 50 52 54 56 58

Concentrate Grade (%)

0

50

100

150

200

250

300

350

400

450

500

Fr
eq

ue
nc

y

Fault II

Fault I

Normal

Gabor 
copula 
model

Manipulation variables

Yes

Feed condition

Gabor 
texture

iForest Is it a fault?

Fault type 
fault cause

Type 1 
TPSR model 1

FCM

Type 2
TPSR model 2

Fault type

Subsampling Size

0.4

0.5

0.6

0.7

0.8

0.9

1

64 256 1024 4096

A
cc

ur
ac

y

32 128 512 2048

Froth

Bubble

Slurry

Agitator
Tailing

Concentrate Launder

Feed

Fig. 1 Illustration of froth flotation working conditions: (a) Fault I-froths 
were heavily loaded with minerals; (b) Normal working condition; (c) 

Fault II-froths contained the small amount of gangue minerals.

Fig. 2.  Polar plots of the phase part of the Gabor froth textures in five 
scales and eight orientations. There is almost no obvious orientation 

specificity in the phase of Gabor responses.

Fig. 3.  Schematic of flotation bank.

Fig. 4.  Histogram distribution of the collected concentrate grade data.

Fig. 5.  Copula model for Gabor wavelet texture.

Fig. 6.  Training sets generated using the rejection sampling technique. (a) 
shows the kernel probability fitting of the grade histogram and the 

constructed Gaussian proposal distribution; (b)-(d) are the three random 
sampling results.

Fig. 7.  Illustration of fault diagnosis.

Fig. 8.  Correlation between subsampling size and detection accuracy.

Fig. 9.  Comparative analysis on detection accuracy of faulty condition for 
froth flotation.
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Fig. 7 Illustration of fault diagnosis.

respectively. Therefore, it is difficult to construct a large
dataset for training of data-driven models. In this kind
of conditions, it is important to develop a data-driven
model that requires only a small amount of training data.

The TPSR function constructed from the Sobolev
space has demonstrated a great success in terms of semi-
supervised learning (a classification task that lacks the
sufficient amount of labeled training data)[25, 26, 34]. Let
r 2 R be the label of the root cause, x 2 Rd1 be the
Copula-Gabor texture feature, m 2 Rd2 be manipulation
variables, and z 2 Rd3 be the feed grade, so that TPSR
attempts to learn a root cause regression model that
satisfies the following condition:

r � G .x;m; z/ D G .�/ (24)

where � D Œx;m; z� 2 <d1Cd2Cd3 . This regression task
can be solved in a generalized optimization framework
with data fitting and function smoothness constraints:

G D arg min
G

(
NX

iD1

kri � G .�i /k
2
C � � S.G/

)
(25)

where S .G/ is the smoothness penalty function of G
defined as a semi-norm. There is a unique solution form
for Eq. (25) when solving it in the Sobolev space, given
as follows:

G .�/ D
dX

iD1

N!ipi .�/C

NX
j D1

�j j̊ .�/ (26)

where d D .d1 C d2 C d3 C s � 1/Š .d1 C d2 C d3/Š

.s � 1/Š, s is the order of the partial derivative of the
semi-norm, fpi .�/g

d
iD1 is a set of primitive polynomials

that span the polynomial space of total degrees less than
s, and ˚.�/ is a Green formula. In real applications, the
linear polynomial space is used and the Green formula
in a radial basis function form is adopted. Therefore, the
TPSR function can be calculated as

G .�/ D N!0 C

d1Cd2Cd3X
iD1

N!i � �i C

NX
j D1

�j �

� � �j

2
� log

� � �j

 (27)

where �j is the j -th entry of �. Parameters of G .�/ can
be learned by substituting Eq. (27) back into Eq. (25)
to generate a group of linear equations as stated in Ref.
[25].

5 Experiment and Result

5.1 Flotation fault detection

Firstly, we examine the impact of the sub-sampling
size on the fault detection performance. The results
provide an insight with regard to optimality of the
sub-sampling. In this experiment, we consider several
different sub-sampling sizes � = 32, 64, 128, 256,
512, 4096. The obtained findings are shown in
Fig. 8. It can be seen that when � is larger than
512, the fault detection performance does not show
further considerable improvement with the increase of �.
Thereby, in the further experiments, � = 512 and t =100
(number of trees) are used unless specified otherwise.

To demonstrate the superiority of RS-iForest, it is
compared to Random Forest (RF), k-Nearest Neighbor
method (kNN), and the original iForest[23]. The
parameter k determines the number of nearest neighbors,
and we set it as k D 20 in this experiment. Considering
RF, we use t D 100 and other parameter values are
set to the default ones. In the case of iForest, we set
� D 512 and t D 100. At the same time, to verify the
superiority of the copula model based on Gabor wavelets
(Copula-Gabor), it is compared to the original Gabor
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Fig. 1 Illustration of froth flotation working conditions: (a) Fault I-froths 
were heavily loaded with minerals; (b) Normal working condition; (c) 

Fault II-froths contained the small amount of gangue minerals.

Fig. 2.  Polar plots of the phase part of the Gabor froth textures in five 
scales and eight orientations. There is almost no obvious orientation 

specificity in the phase of Gabor responses.

Fig. 3.  Schematic of flotation bank.

Fig. 4.  Histogram distribution of the collected concentrate grade data.

Fig. 5.  Copula model for Gabor wavelet texture.

Fig. 6.  Training sets generated using the rejection sampling technique. (a) 
shows the kernel probability fitting of the grade histogram and the 

constructed Gaussian proposal distribution; (b)-(d) are the three random 
sampling results.

Fig. 7.  Illustration of fault diagnosis.

Fig. 8.  Correlation between subsampling size and detection accuracy.

Fig. 9.  Comparative analysis on detection accuracy of faulty condition for 
froth flotation.
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Fig. 8 Correlation between subsampling size and detection
accuracy.
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texture[13], Bubble Size Distribution[35] (BSD, which
has demonstrated a great success in computer vision-
aided mineral processing), and velocity distribution[36]

(which is also an important observation index for
the flotation process control in industry). Figure 9
reports the detection accuracy for all methods in
different combinations, and the following observations
are obtained: Firstly, compared with other classification
methods, RS-iForest consistently achieves the best
performance. For example, the average detection
accuracy can be improved by 13.3%, 5.6%, and 2.3%
compared with kNN, RF, and iForest, respectively. This
observation confirms that utilizing rejection sampling
to obtain a reasonable ratio between normal and
fault instances can further improve the fault detection
performance. Secondly, compared with other image
features, the Copula-Gabor method can achieve the
highest fault detection accuracy.

5.2 Root cause diagnosis

Similarly to the previous section, the performance of the
fault root cause diagnosis using TPSR is compared with
the alternative methods, such as XGBoost[37], Kernel
Partial Least Square (KPLS)[38], and RF. As shown
in Fig. 7, the input of these classifiers contains an
image feature, feed condition, and reagent dosages. The
output of each classifier is the root cause type. In this
experiment, three kinds of root causes for each fault
type are discussed according to Table 1. Specifically,
400 Fault 1 historic instances and 300 Fault 2 ones are
screened by experienced operators. Here, 70% data are
randomly divided into training samples, 10% data are
used as validation samples, and the remaining 20% data
are used as test samples. Table 2 presents the root cause
diagnosis accuracy of the aforementioned methods. The
obtained result confirms the superiority of TPSR.

180

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

0

500090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

500090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

1000090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

0180

1000090

270

180 0

200090

270

180 0

200090

270

180 0

200090

270

180 0

2000090

270

180 0

500090

270

180 0

500090

270

180 0

500090

270

180 0

2000090

270

180 0

500090

270

180 0

500090

270

180 0

500090

270

180 0

PDF CDF

MGTR, RGTR, and IGTR Gaussian 
copulas along five scales

MGTR, RGTR, and IGTR Gaussian 
copulas along eight orientations

Gaussian copulas which combine MGTR, 
RGTR, and IGTR along five scales and

eight orientations

Sc
al

e

RGTR

IGTR

MGTR

Orientation

Copula joint model

Copula-Gabor Gabor Froth velocity  Bubble size
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
et

ec
tio

n 
ac

cu
ra

cy

RS-iForest 
iForest 
RF
kNN

(a) (b) (c)
42 44 46 48 50 52 54 56 58

Concentrate Grade (%)

0

50

100

150

200

250

300

350

400

450

500

Fr
eq

ue
nc

y

Fault II

Fault I

Normal

Gabor 
Copula 
model

Manipulation variables

Yes

Feed condition

Gabor
texture

iForest Is it a fault?

Fault type
Fault Cause

Type 1
TPSR model1

FCM

Type 2
TPSR model2

Fault type

Subsampling Size

0.4

0.5

0.6

0.7

0.8

0.9

1

64 256 1024 4096

A
cc

ur
ac

y

32 128 512 2048

Froth

Bubble

Slurry

Agitator
Tailing

Concentrate Launder

Feed

Fig. 1 Illustration of froth flotation working conditions: (a) Fault I-froths 
were heavily loaded with minerals; (b) Normal working condition; (c) 

Fault II-froths contained the small amount of gangue minerals.

Fig. 2.  Polar plots of the phase part of the Gabor froth textures in five 
scales and eight orientations. There is almost no obvious orientation 

specificity in the phase of Gabor responses.

Fig. 3.  Schematic of flotation bank.

Fig. 4.  Histogram distribution of the collected concentrate grade data.

Fig. 5.  Copula model for Gabor wavelet texture.

Fig. 6.  Training sets generated using the rejection sampling technique. (a) 
shows the kernel probability fitting of the grade histogram and the 

constructed Gaussian proposal distribution; (b)-(d) are the three random 
sampling results.

Fig. 7.  Illustration of fault diagnosis.

Fig. 8.  Correlation between subsampling size and detection accuracy.

Fig. 9.  Comparative analysis on detection accuracy of faulty condition for 
froth flotation.
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Fig. 9 Comparative analysis on detection accuracy of faulty
condition for froth flotation.

Table 2 Comparative analysis on the root cause diagnosis
accuracy.

Fault Root cause
Root cause diagnosis accuracy (%)
TPSR XGBoost KPLS RF

Fault 1
Foaming agent 91.2 89.8 84.4 86.3

Activator 88.9 87.6 78.7 82.8
Collector 87.7 86.5 77.1 81.9

Fault 2
Foaming agent 92.7 91.3 85.3 87.8

Activator 90.1 88.3 78.9 84.1
Collector 88.3 86.6 78.5 83.2

From the experiment results, we can conclude that
flotation faults caused by an inappropriate dosage of
the foaming agent can be identified easier than other
root types. The diagnosis accuracy corresponding to
an activator is also higher than that of associated with
faults caused by a collector. This result is consistent with
the experience of plant operators. In the real industry,
a foaming agent is the preferred choice to correct a
deviated flotation working condition. If the foaming
agent has already been well-controlled, the activator is
manipulated to change working conditions. In addition,
XGBoost and RF outperform KPLS, and this advantage
can be attributed to the ensemble strategies adopted by
XGBoost and RF. The difference between XGBoost and
RF is significant in this case. The bagging strategy
is used in RF, which allows modeling the residual
and variance by taking a weighted average of different
trees. In its turn, XGBoost trains each subsequent tree
using the difference between the predicted values and
targets and reduces bias more effectively. Compared
with XGBoost, KPLS, and RF, the average accuracy
of TPSR was improved by 1.3%, 9.2%, and 5.6% for
Fault 1, respectively, and by 1.6%, 9.5%, and 5.4%
for Fault 2, respectively. TPSR is constructed from
the Sobolev space comprehensively considering both
interpolation accuracy and spline smoothness. In a
function form, it is defined as a combination of linear
and Greens functions providing the greater adaptability
to the scattered flotation fault data.

6 Industrial Experiment

The visual perception-based flotation fault detection and
diagnosis strategy has been tested and implemented
in the largest state lead-zinc flotation plant in China.
A computer vision-based flotation process monitoring
platform was developed. In this platform, the hardware
systems collect the images of a froth surface by using
an industrial camera and transmit them to an industrial
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computer. The proposed fault detection and diagnosis
strategy has been programmed using Microsoft Visual
C++ and MAT-LAB and embedded in the industrial
computer.

During the two weeks of application, 1008 monitoring
events were recorded. The sampling interval was set
to 5 min. According to the X-Ray Fluorescence (XRF)
analysis results, there were actually 101 Fault 1 events
and 53 Fault 2 events summarized in Table 3. The
proposed fault diagnosis approach detected 90 Fault
1 events and 48 Fault 2 events. Hence, the average
detection accuracy is 89.61%. The verification of
the root cause diagnosis is performed through reagent
changing. If a direction of a reagent changing, which
can facilitate the flotation working condition return to
normal, is consistent with the data from Table 1, we
consider the fault diagnosis results as appropriate. The
average accuracy values corresponding to inferring the
root cause for the foaming agent, activator, and collector
are 90.70%, 88.64%, and 83.33%, respectively, which
demonstrates the high effectiveness of the proposed
method.

7 Conclusion

In most of froth flotation plants in China, chemical
reagents are changed to control the flotation condition
to achieve the designed metallurgical performance.
However, performing the chemical reagent control is
recognized as a very complex problem, as the kinetic
relationships among reagents, inlet air rate, particle size,
feed grade, and concentrate grade are still rather unclear.
It is inevitable that fault conditions may occur when
unreasonable reagents are injected into the flotation
bank. To reduce the damage caused by appearing a fault
condition and set the production process back to normal
working conditions as soon as possible, it is desirable
to diagnose faults in a timely manner. In this paper, we
presented an intelligent visual perception-based fault

Table 3 Industrial application results. The bold numbers
correspond to the actual counts occurred in the experimental
period. The numbers that are not in bold correspond to the
detection or diagnosis results of the proposed method.

Fault Faults detection
Number of faults

Foaming agent Activator Collector

Fault 1
90 56 21 13
101 62 24 15

Fault 2
48 22 18 7
53 24 20 9

diagnosis approach. It was applied to a process within a
lead-zinc flotation plant to diagnose two kinds of faults:
when froth is overloaded with mineral particles and when
froth lacks mineral particles. It was observed that the
proposed framework achieved accurate detection results
and demonstrated the high diagnosis performance. As
a future research work, we consider combining kinetic
mechanisms with intelligent methods to further improve
the diagnosis accuracy.
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