
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 01/11 pp135–145
DOI: 10 .26599 /TST.2019 .9010052
Volume 26, Number 2, Apri l 2021


C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

LTSA-LE: A Local Tangent Space Alignment
Label Enhancement Algorithm

Chao Tan�, Genlin Ji, Richen Liu, and Yanqiu Cao

Abstract: According to smoothness assumption, local topological structure can be shared between feature and label

manifolds. This study proposes a new algorithm based on Local Tangent Space Alignment (LTSA) to implement

the label enhancement process. In general, we first establish a learning model for feature extraction in label space

and use a feature extraction method of LTSA to guide the reconstruction of label manifolds. Then, we establish an

unconstrained optimization model based on the optimal theory presented in this paper. The model is suitable for

solving problems with a large number of sample points. Finally, the experiment results show that the algorithm can

effectively improve the training speed and multilabel dataset prediction accuracy.
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1 Introduction

Multi-Label Learning (MLL) is a major topic in recent
machine learning and pattern recognition studies. In
an MLL framework, each instance is represented by a
feature vector that can belong to multiple labels. MLL[1]

deals with the case where an instance is associated with
multiple labels, and its goal is to learn a multilabel
predictor that maps an instance to a relevant label set.
With the introduction of MLL, many scholars have
conducted extensive research on this basis and proposed
many effective algorithms.

This learning process works by mapping an instance
and then assigning a label[2]. However, with the
increase in the number of labels, the standard MLL
methods that work in the original label space become
impractical easily when training multilabel classifiers.
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For example, a large number of labels require a
large amount time to train and test; thus, establishing
an effective classification system is difficult. Usually,
redundant information occurs in the label space, and
the labels are generally related to each other. Therefore,
some researchers have begun to study the method of
dimensionality reduction in label space by using label
correlations. The expectation is to improve classification
accuracy and reduce training and prediction time for the
entire model[3].

Some researchers have considered low-dimensional
embedded label space and proposed many label
space reduction methods. For example, Tai and Lin[4]

attempted to reduce the amount of computation by
seeking a major correlation between labels, especially
for the datasets with numerous labels. Sun et al.[5]

mapped the feature space and label space into the new
space, where the correlation between the mapping of the
two spaces is maximized. In these cases, the dimension
of the label space is reduced to digest the information
between the labels and learn more effectively.

However, some existing methods perform label space
embedding without considering feature information,
and a few methods can effectively utilize the local
structure or label correlation of the feature space. Thus,
these methods tend to lose some of the information,
thereby seriously affecting the effectiveness of multilabel
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classification[3].
According to the aforementioned questions, we

propose a new manifold-based label enhancement
algorithm. First, we connect the feature and label
spaces according to the smoothness assumption,
and preserve the local geometry of the feature
space by Local Tangent Space Alignment (LTSA).
Then, reconstruction is conducted by a least squares
programming problem from the feature manifold to
the label space under the guidance of the feature
information. The reconstruction can be achieved by a
quadratic programming process. The mapping from the
feature manifold to the label manifold is a regression
process. The reconstruction process establishes an
unconstrained optimization model based on Multi-output
Support Vector Regression (MSVR)[6]. This method
transforms the original optimization problem into an
unconstrained optimization problem by introducing the
maximum entropy function instead of a regularization
term. Furthermore, the method avoids the difficulty of
solving the MSVR constrained optimization problem
in a large number of samples. However, the standard
maximum entropy function method may lead to data
overflow. In this paper, we improve the maximum
entropy function and propose an MSVR model based on
adaptive adjustment of Shannon entropy function, which
guarantees convergence and uses quasi-Newton method.
This algorithm is particularly suitable for problems with
a large number of samples.

The main contributions of this paper are as follows:
� A learning model is established for feature

extraction in label space by using a feature extraction
method of LTSA to guide the reconstruction of label
manifolds.
� Based on the MSVR constrained optimization

model, the maximum entropy function is transformed
into an unconstrained optimization problem instead of
regularization term in the reconstruction process of least
squares programming.
� An MSVR model is proposed on the basis of

adaptive adjustment of the Shannon entropy function
to improve the maximum entropy function.

This paper is organized as follows. First, the
formulation of label enhancement and label
enhancement based on manifold is discussed in
Section 2. Then, the details of our algorithm are
proposed in Section 3. Thereafter, the experiment results
of the comparative study are reported in Section 4, and
the conclusion is provided in Section 5.

2 Related Work on Label Enhancement

2.1 Formulation of label enhancement

First of all, the main notations used in this paper are
listed as follows: the instance variable is denoted by x,
the particular i-th instance is denoted by xi , the label
variable is denoted by y, and the particular j -th label is
denoted by yj . The logical label vector of xi is denoted
by Li D .l1i ; l2i ; : : : ; lci /, where Li 2 f0; 1gc and c is
the number of possible labels. The description degree
of y to x is denoted by d

y
x , where d

y
x 2 Œ0; 1� andP

y d
y
x D 1. The label distribution of xi is denoted

by Di D .d1
i ; d2

i ; : : : ; dc
i /, where Di 2 Œ0; 1�c .

Then, the label distribution learning for label
enhancement can be defined as follows: given a
training set S D f.xi ; Li /j1 6 i 6 ng, the goal of label
enhancement is to transform the logical label vector Li of
xi to the label distribution Di according to the correlation
between labels contained in S , thereby obtaining a
Label Distribution Learning (LDL) training set " D

f.xi ; Di /j1 6 i 6 ng[7].

2.2 Label enhancement based on manifold

The label enhancement algorithm based on manifold[8]

assumes that the data are distributed in the feature
and label manifolds. This algorithm connects the
manifolds of the two spaces according to the smoothness
assumption, so that the label manifold is reconstructed
with the topological structure from the feature manifold
and the logical label of this instance is enhanced to the
label distribution on this basis.

As many graph-based learning methods do, the
topological structure from the feature space of multiple
label training set S can be represented by a graph
G D .V; E; Ŵ/, where V is the vertex set, E is the
edge set, and Ŵ D .ŵij /n�n is the weight matrix
with the edge. First, we assume that the manifold of
the instance distribution satisfies local linearity, that
is, each instance xi can be optimally reconstructed
using a linear combination of its k-nearest neighbors.
The reconstructed weight matrix is to induce the
minimization of

˝.Ŵ/ D

nX
iD1

kxi �

X
i¤j

ŵij xj k
2 (1)

where ŵij D 0 unless xj is one of xi ’s k-nearest
neighbors. The constraint is 1TŴT

i D 1 for translation
invariance, where 1T represents the vector consisting
of all 1 and ŵi is the i-th row of Ŵ. According to the
smoothness assumption[9], the instances with similar
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features are likely to have similar labels. Thus, one can
migrate the topological structure of the feature space into
the label space, that is, the feature and the label space
share the same local linear reconstruction weight matrix
Ŵ. Therefore, the label distribution of the label space
can infer to the minimization of

˚.D/ D

nX
iD1

kDi �

X
i¤j

ŵij Dj k
2 (2)

where Di D .d 1
i ; d 2

i ; : : : ; d c
i / denotes the distribution

of xi . A constraint is added on di to introduce logical
label Li D .l1

i ; l2
i ; : : : ; lc

i /,
81 6 i 6 n; 1 6 li 6 c; lc

i d c
i > �.� > 0/ (3)

To facilitate the construction of the aforementioned
constraints, the logical label vector defined in Ref.
[8] is Li 2 f�1; 1gc , instead of Li 2 f0; 1gc , which
is commonly used in other methods. However, no
difference exists between these two vectors. After
solving the preceding quadratic programming problem,
we can obtain the label distribution Di by normalization,
and thereafter obtain the label distribution training set
" D f.xi ; Di /j1 6 i 6 ng.

The manifold-based method reconstructs the feature
and space manifolds according to the smoothness
assumption that migrates the topological relationship of
the feature space into the label space. Then, the method
establishes the relationship between the correlation
between the instances and the correlation between the
labels, thereby establishing the logic. Finally, the logical
labels are enhanced to label distribution[1].

2.3 Label enhancement for label distribution
learning

To solve the Label Enhancement (LE) problem, Xu et
al.[10] introduced an existing algorithm that can be used
for LE and proposed a new method of label enhancement
called label distribution learning. The label distribution
is recovered from the logical labels in the training set by
utilizing the topology information of the feature space
and the correlation between the labels.

2.4 Label embedding based on multi-scale locality
preservation

Peng et al.[11] proposed a new label distribution learning
algorithm by using local sample correlation. Label
distribution is learned by leveraging sample correlation
locally.

2.5 Multi-label learning with label enhancement

Shao et al.[12] proposed an effective MLL method

called label-enhanced MLL, which is based on label
enhancement. Through this approach, problems were
developed by combining numerical label and label-
enhanced regression into a unified framework, in which
numerical labels and predictive models are learned
jointly.

3 Proposed Algorithm

3.1 Preprocessing on training set: Establish the
correlation between manifolds and label spaces

In this section, we explore multilabel manifold learning.
To study the label manifold, we have to extend the label
space to the Euclidean space, because the traditional
label space is logical and the label vector is a logical
label. Here we extend the label vector from logic to real
numbers called numerical labels. Hou et al.[8] mentioned
that numerical labels carry more semantic information
and can describe instances more comprehensively than
logical labels. To reconstruct the label manifold, we
first preprocess the training set, and then establish
the association between the manifold and label spaces.
Finally, we extend the feature space to the label space
and obtain the numerical label.

Inspired by the LTSA algorithm proposed by Zhang
and Zha[13], we approximate the feature manifold by
overlapping local linear neighborhoods and obtain the
topological structure of the feature space by using LTSA.

To obtain the mapping coordinates of the high-
dimensional data set X in the low-dimensional space,
we use the LTSA algorithm to determine the global
coordinates by applying LTSA. The dataset is denoted by
X D Œx1; : : : ; xN � with N high-dimensional coordinates.

We minimize

min
x;L;�

kXi � .NxieT
C L���/k2 (4)

where Xi D Œxi1; : : : ; xik� is a matrix consisting of its k-
nearest neighbors including xi , in terms of the Euclidean
distance, Nxi is the average of Xi , ��� D Œ���1; : : : ; ���k�

is the weight matrix, L is the optimal alignment
matrix consisting of d -dimensional orthogonal column
vectors Li , given by the eigenvectors of Xi .I � eeT=k/

corresponding to d eigenvalues in descending order, e is
the k-dimensional column vector whose element are all
ones, and I is the k-dimensional identity matrix. Thus,

Xi D Nxi C Li��� i C ei (5)

where ei D .I � Li LT
i /.xi � Nxi/ is the reconstruction

error.
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The objective of this study is to recover the low-
dimensional coordinate Yi from the least squares
and reconstruct the topological structure of the label
manifold from the feature manifold and the existing
logical labels. Furthermore, the study aims to determine
that a reasonable label distribution di can be generated
for the instance xi .

Our model is described as follows:

Yi D
1

k
Yi eeT

C Li���
T
i C Ei (6)

where Ei D Œei1; : : : ; eik� is the local reconstruction
error matrix. To minimize the reconstruction error, we
utilize quadratic programming on the model to obtain
the following optimization function,

min
16i6N

NX
iD1

�
kEik

2
F D




Yi

�
Ik�

1

k
eeT

�
�Li���

T
i




2

F

�
(7)

To obtain a unique solution, we express the
reconstruction error as

NX
iD1
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�
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F
D trace

�
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(8)

where ���
�
i is the Moor-Penrose generalized inverse of

���i , T is a matrix composed by the low-dimensional
embeddings, ˚̊̊ D

PN
iD1 Si Hi HT

i ST
i , Si is the 0-1

selection matrix, such that TSi D Ti , and Hi is given by

Hi D

�
Ik �

1

k
eeT

��
Ik � Qi Q

�
i

�
(9)

The low-dimensional embeddings that minimize the
reconstruction error can be solved by the eigenvectors
corresponding to the d largest eigenvalues of the matrix ˚̊̊ .

3.2 Unconstrained optimization model

The feature manifold is represented by a graph and
approximated by overlapping local linear neighborhood
patches. The edge weights in each patch can be calculated
by a least squares programming method. The label manifold
and transferred local topological reconstructed structure can
be reconstructed based on the feature manifold and existing
logical labels. The reconstruction can be accomplished
through a quadratic method.

As shown in the previous section, in the manifold
space, the feature manifold is represented by a graph and
approximated by overlapping local linear neighborhoods.
An optimization model that can solve the edge weight in
each patch is expressed as Eq. (6).

We propose a new LE algorithm called LTSA Label
Enhancement (LTSA-LE) in this paper. Given a training
set, we construct a feature matrix X D Œx1; x2; : : : ; xN �

and a logical label matrix L D Œl1; l2; : : : ; lN �. Our

goal is to recover the label distribution matrix D D
Œd1; d2; : : : ; dN � 2 Rc�N from the logical label matrix
L. To solve this problem, we consider the model:

Di D W��� i C r (10)

where W D Œw1; : : : ; wd � 2 Rc�d , ��� i 2 Rd is the
nonlinear transformation of the sample point in the low-
dimensional space Rd and is the optimal solution of Eq.
(6), r 2 Rc is the model parameter.

As the information in the label distribution is inherited
from the initial logical label, we choose the least
squares loss function, which is actually a multiple
output regression problem in the case of multiple
labels. After determining di by solving the quadratic
programming problem, the label distribution is obtained
by normalization,

F.W; r/ D
1

2

cX
j D1

kwj k
2
C C

NX
iD1

Loss.ui / (11)

where Loss( ) is the loss function and ui D yi �W��� i � r,
C is the model parameter.

Then, yi 2 f�1;C1gc represents a numeric label
vector, where we use �1 instead of 0 to indicate that
it is independent of the instance. This study explores
manifolds in label space and treats labels as numbers.
The label set contains additional semantic information,
which is beneficial for the learning process.

The multilabel manifold learning algorithm proposed
by Hou et al.[8] solves a quadratic programming problem
with constraints and obtains the label distribution
through optimization. Constraints are utilized to express
constraints on problems, such as structural features in
the real dataset, local neighborhood relationships, and
manifold structure information. However, the solution to
the quadratic programming problem with constraints will
face limitations in time and memory when the number
of samples is large.

Based on the MSVR constrained optimization model,
we establish an unconstrained optimization model based
on the optimal theory. By introducing the maximum
entropy function, we transform the original optimization
problem into an unconstrained optimization problem,
which solves the difficulty that the MSVR constrained
optimization problem seeks the solution from a large
number of samples. However, the standard maximum
entropy function method may lead to data overflow. In
this study, we improve the maximum entropy function
and propose an MSVR model based on adaptively
adjusting the Shannon entropy function, which ensures
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convergence and utilizes the quasi-Newton method to
obtain the model. In particular, the model is suitable for
problems with a large number of sample points.

3.3 Multi-output regression adaptive weighting
strategy based on Shannon entropy

The existing multi-output regression algorithm almost
defaults to the same premise, that is, the weight
parameter of each sample contributes equally to the
final classification result. In fact, some sample spaces
often have serious spatial overlaps and are inseparable.
The suitable treatment should give different degrees
of importance according to the divisible characteristics
of the sample, so that the classification results can be
optimal. However, artificially setting importance weights
is unreasonable. Thus, using the Shannon entropy
theory[14], we propose an adaptive weighted term with
multi-output regression technique, and then introduce
the viewing angle weight coefficient wk . Finally, we
reconstructed objective function formula according to
the condition

PN
kD1 Qwk D 1 and Qwk > 0.

We consider weights as probability distributions
expressed with Shannon entropy as

f . Qw/ D

cX
j D1

Qwj ln Qwj (12)

According to the definition of the unconstrained
optimization model in Section 3.2 and the multi-output
regression adaptive weighting strategy, the objective
function in this section is reconstructed as follows:

� .W; e/ D F.W; e/C f . Qw/ (13)
We define the adaptive adjustment Shannon entropy

function as an adaptive weighting part based on Shannon
entropy theory,

� .W; e/D
1

2

cX
j D1

k Qwj k
2
CC

NX
iD1

Loss.ui /C

cX
j D1

˛ Qwj ln Qwj

(14)

where ˛ is an adaptive adjustment factor. We use an
iterative quasi-Newton method called IRWLS[6, 8] to
optimize Eq. (14). In terms of convergence, we know
that the Newton algorithm is convergent; thus, the entire
algorithm has convergence.

The main procedure of the LTSA-LE algorithm is
presented in Algorithm 1.

4 Experiment

4.1 Experimental setup

4.1.1 Comparing algorithms
We select two well-established MLL algorithms to
compare with the performance of LTSA-LE: an
MLL algorithm based on a neural network model
(called BP-MLL)[15] and multilabel manifold learning
(called ML2)[8]. We also selected three types of
LDL algorithms: Label Distribution Support Vector
Regressor (LDSVR)[16], Conditional Probability Neural
Network (CPNN)[17], and Algorithm Adaptation k-
Nearest Neighbors (AA-KNN)[7].

Algorithm 1 Procedure of LTSA-LE
Input: A training sample matrix X D Œx1; : : : ; xN � 2 Rd�N , a

numeric label vector yi 2 f�1;C1gc ; where �1 indicates it
is independent of the instance xi .

Output: Label distribution D for the multilabel sample set X.
1: i  1, j  1.
2: Compute the optimal solution of Eq. (6), and obtain ��� i 2 Rd ,

which is the nonlinear transformation of the sample point in
the low-dimensional space Rd .

3: repeat
4: Optimize � .W; e/ according to Eq. (14).
5: Update f . Qw/ according to Eq. (12).
6: Update Eq. (14) via the Iterative Re-Weighted Least Square

(IRWLS) procedure.
7: j  j C 1, i  i C 1.
8: until convergence is reached.
9: Return D according to Eq. (10).

Table 1 Characteristic of multilabel datasets.
Dataset S T dim.S/ L.S/ LCard.S/ LDen.S/ DL.S/ F.S/

Emotions 415 178 72 6 1.869 0.311 27 numeric
Medical 645 333 1449 45 1.245 0.028 94 nominal
Cal500 250 252 68 174 26.044 0.150 502 numeric
Birds 320 325 260 19 1.014 0.053 133 numeric
Enron 1123 579 1001 53 3.378 0.064 753 nominal
Yeast 1200 1217 103 14 4.237 0.303 198 numeric
Image 1000 1000 294 5 1.236 0.247 20 numeric
Scene 1211 1196 294 6 1.074 0.179 15 numeric

Corel5k 2500 2500 499 374 3.522 0.009 3175 nominal
Bibtex 3700 3695 1836 159 2.402 0.015 2856 nominal
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4.1.2 Datasets
To compare our algorithm with the state-of-the-art MLL
algorithms, we selected 10 real-world multilabel datasets
for performance evaluation. Table 1 summarizes the
detailed features of these datasets selected from the
Mulan website (http://mulan.sourceforge.net/datasets-
mlc.html, 2019-03-01) and sorted in ascending order. S

is the number of examples, T is the number of testing
samples, dim.S/ denotes the feature dimensions, L.S/

represents the number of class labels, and LCard.S/ is
the label cardinality. Other multilabel statistics include
the label density LDen.S/, distinct label sets DL.S/,
and feature type F.S/. Half of them are regular-sized
and half are large-scale; thus, the dataset covered a wide
range of multilabel attributes.

4.1.3 Evaluation metrics
When comparing LTSA-LE to traditional MLL methods,
we selected five widely used evaluation metrics for
multilabel learning: Hamming loss, one error, coverage,
ranking loss, and average precision[18]. For average
precision, the larger the value, the better the performance.
For the other four metrics, the smaller the values, the

better the performance.
When comparing LTSA-LE with LDL

algorithms[7, 16, 17], we used six representative label
distribution evaluation indicators[7]: Chebyshev distance
(Cheb), Clark distance (Clark), Canberra distance
(Canber), Kullback-Leibler divergence (KL-div), Cosine
coefficient (Cosine), and intersectional similarity
(Intersec). The first four are distance measures and the
last two are similarity measures.

4.2 Experiment results on MLL
The first part of the experiment compares LTSA-LE with
traditional MLL algorithms on 10 real-world multilabel
datasets. Half the examples on each dataset were selected
randomly as a training set, and the remaining half were
used to form a test set. We used 10-fold cross-validation
on each dataset, set C D 0:5 and ˛ D 0:5. We recorded
the average performance of each algorithm on five MLL
evaluation metrics in Tables 2, 3, 4, 5, and 6. Table 7
shows the time complexity comparison. The # after the
evaluation index means the smaller the better, and the "
means the larger the better. Bold font indicates the best
performance among the algorithms.

Table 2 Comparison of MLL and multilabel distribution algorithms on Hamming loss ###.

Algorithm
Dataset

Average rank
Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex

BP-MLL 0.4500 0.2987 0.0290 0.1472 0.0683 0.3056 0.2904 0.0682 0.0094 0.0160 3.000
ML2 0.2267 0.2865 0.3405 0.3701 0.1330 0.2450 0.1803 0.2049 0.3922 0.0747 3.600

LDSVR 0.3037 0.2996 0.9721 0.1488 0.0517 0.7516 0.1810 0.0677 0.9907 0.0149 3.450
CPNN 0.6964 0.7097 0.9732 0.8522 0.9491 0.7522 0.8194 0.9339 0.9907 0.9853 5.950

AA-KNN 0.2297 0.3006 0.0184 0.1814 0.0748 0.2158 0.1134 0.0705 0.0114 0.0165 3.100
LTSA-LE 0.1958 0.3024 0.0145 0.1400 0.1705 0.1656 0.0962 0.0558 0.0096 0.0127 1.900

Table 3 Comparison of MLL and multilabel distribution algorithms on ranking loss ###.

Algorithm
Dataset

Average rank
Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex

BP-MLL 0.4450 0.4803 0.2445 0.1996 0.3964 0.7956 0.5992 0.3738 0.2695 0.4764 2.800
ML2 0.3325 0.3579 0.4984 0.4981 0.4051 0.2470 0.1915 0.4493 0.5101 0.2199 2.900

LDSVR 0.4974 0.5899 0.5000 0.5005 0.4374 0.5000 0.6556 0.4741 0.5000 0.5012 4.300
CPNN 0.9708 0.8511 0.8982 0.8621 0.3132 0.8892 0.8609 0.9621 0.4990 0.6954 5.100

AA-KNN 0.5054 0.4283 0.5039 0.7750 0.7335 0.3139 0.1838 0.8563 0.9444 0.7416 4.600
LTSA-LE 0.3244 0.2426 0.1453 0.4648 0.3158 0.1406 0.0713 0.3509 0.4393 0.1052 1.300

Table 4 Comparison of MLL and multilabel distribution algorithms on one error ###.

Algorithm
Dataset

Average rank
Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex

BP-MLL 0.7034 0.7022 0.4024 0.1071 0.7989 0.6710 0.8269 0.2642 0.9716 0.4547 4.300
ML2 0.4286 0.6667 0.4737 0.0827 0.9474 0.2000 0.6667 0.8846 0.9564 0.6792 4.000

LDSVR 0.4286 0.6667 0.5000 0.8563 0.4990 0.5000 0.4999 0.9615 0.4890 0.9497 4.500
CPNN 0.0714 0.3333 0.4290 0.3333 0.8421 0.5470 0.3333 0.5050 0.4400 0.9874 3.400

AA-KNN 0.4999 0.4899 0.1579 0.5862 0.4737 0.4990 0.5000 0.4808 0.4419 0.7688 3.100
LTSA-LE 0.0000 0.5000 0.3947 0.7816 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.700
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Table 5 Comparison of MLL and multilabel distribution algorithms on coverage ###.

Algorithm
Dataset

Average rank
Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex

BP-MLL 0.8990 0.3089 0.2955 1.3386 0.4415 2.1460 2.0761 0.2369 0.1980 0.7356 5.100
ML2 0.8950 0.1723 0.7684 0.2313 0.3031 0.9962 1.0617 0.5029 0.1912 0.3513 4.200

LDSVR 0.8982 0.1568 0.2087 0.2284 0.3014 0.9608 1.0843 0.4936 1.5023 0.3382 3.250
CPNN 0.8845 0.1703 0.2081 0.2316 0.2309 0.9648 1.0773 0.5028 1.5023 0.3598 3.650

AA-KNN 0.8794 0.1661 0.1374 0.2315 0.2899 0.9644 1.0505 0.4956 1.5126 0.3585 3.300
LTSA-LE 0.8846 0.1586 0.0598 0.2275 0.2523 0.9538 0.1048 0.4456 0.1502 0.2596 1.500

Table 6 Comparison of MLL and multilabel distribution algorithms on average precision """.

Algorithm
Dataset

Average rank
Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex

BP-MLL 0.4297 0.5161 0.2081 0.4783 0.2460 0.5111 0.4200 0.2057 0.2012 0.0659 2.600
ML2 0.4366 0.4442 0.4683 0.1644 0.1407 0.4905 0.3078 0.1234 0.2930 0.3872 3.200

LDSVR 0.3965 0.4900 0.0480 0.1676 0.0759 0.2729 0.7859 0.0747 0.0141 0.0226 4.750
CPNN 0.3064 0.3123 0.0467 0.1598 0.1013 0.2645 0.2954 0.0828 0.0141 0.0182 5.750

AA-KNN 0.4779 0.4926 0.3692 0.1705 0.1131 0.5954 0.7649 0.1201 0.0252 0.1111 3.100
LTSA-LE 0.4825 0.5567 0.5631 0.1829 0.1602 0.7105 0.7957 0.1843 0.0278 0.3678 1.600

Table 7 Comparison of MLL and multilabel distribution algorithms on time (s) ###.

Algorithm
Dataset

Average rank
Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex

BP-MLL 4.6563 0.7020 6.7080 10.2337 1.5625 1.5288 1.6380 13.2757 218.3234 122.6948 5.600
ML2 0.4836 0.0005 0.1716 0.1404 0.0469 0.2500 0.3438 0.1875 1.5444 4.5625 3.300

LDSVR 0.1406 0.0001 0.1872 0.0780 0.0001 0.2496 0.2652 0.1716 1.0156 3.5781 2.300
CPNN 0.1092 0.0001 0.5616 0.2496 0.0468 0.1404 0.0780 0.9048 15.0385 25.6466 3.100

AA-KNN 3.9936 0.2340 9.8593 0.2184 0.5460 3.9624 5.7876 14.7109 21.4345 107.28 5.300
LTSA-LE 0.0938 0.0001 0.0781 0.0469 0.1404 0.0938 0.0624 0.1406 0.7969 2.9531 1.400

The experimental results show that on the regular-
sized and large-scale datasets, LTSA-LE ranks first in
more than half of the evaluation metrics. Particularly
on large-scale datasets, these metrics fully validate the
effectiveness of LTSA-LE for MLL.

4.3 Time performance comparison

As Table 7 shows, our algorithm LTSA-LE performs
effectively among the well-established MLL algorithms,
especially on large-scale datasets. Although the accuracy
of some algorithms (such as BP-MLL, ML2, and AA-
KNN) have improved, their time complexity increases
rapidly as the sample set size increases. Combined
with the recognition accuracy experiments in the
previous section, LTSA-LE maintains a good average
performance and is remarkably adept in the label
manifold learning of a large-scale dataset.

4.4 Friedman test

The Friedman test[19] is a nonparametric equivalent
of repeated measurement ANOVA. The test separately

ranks the algorithm for different datasets, and the
algorithms with best performances get the first rank,
the second rank, and so on, as shown in the average rank
in Tables 2, 3, 4, 5, 6, and 7.

Let r
j
i represents the rank of the j -th of the k

algorithms on the i -th of the N data sets. The Friedman
test compares the average rank of the algorithm,
i.e., Rj D

P
i r

j
i =N . Under the null hypothesis, this

condition means that all the algorithms are equivalent;
thus, their ranks Rj should be equal. The Friedman
statistic is calculated as follows:

�2
F D

12N

k .k C 1/

24X
j

R2
j �

k.k C 1/2

4

35 (15)

which obeys the �2
F distribution with a freedom degree

of k � 1, where N and k are large enough (generally
N > 10 and k > 5). The exact threshold for a small
number of algorithms and data sets has been calculated.

Demsar[19] showed that Friedman estimate of �2
F is

conservative and suggested a better statistic that satisfies
the F -distribution with k�1 and .k�1/.N �1/ degrees
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of freedom as follows:

FF D
.N � 1/ �2

F

N .k � 1/ � �2
F

(16)

If the null hypothesis is rejected, then we can proceed
with a post-hoc test. The Bonferroni-Dunn test is used
in this study. The test method controls the overall error
level by dividing ˛, to one of the original k � 1 points.
Thus, we only need to test whether the new algorithm
is better than the existing algorithm. We do not need a
two-two pairwise comparison, and we only need to set
the new algorithm as the control algorithm. Whenever
the performance between an existing algorithm i and
the new algorithm j is significantly different, we only
need to compare whether the difference between their
corresponding average ranks (i.e., jRj �Ri j) is greater
than the significant difference. If greater, the algorithms
are considered different; otherwise, they are considered
similar.

Table 8 denotes the Friedman statistics FF and the
corresponding critical value on each evaluation metric.

The significance level CD is defined as follows:

CD D q˛

r
k .k C 1/

6N
(17)

where q˛ is a critical value for post-hoc tests after the
Friedman test.

Owing to the existence of 6 algorithms and 10 datasets,
FF obeys the F -distribution with degrees of freedom of
6�1 D 5 and .6 � 1/�.10 � 1/ D 45. F.5; 45/ D 2:42

at ˛ D 0:05. Thus, we reject the original null hypothesis,
i.e., the six algorithms are considered to be significantly
different.

Then, we use the Bonferroni-Dunn test with LTSA-LE
as the control algorithm to test whether other algorithms
are significantly different from LTSA-LE. From Table
9 we can find that when six algorithms exist, q0:05 D

2:576; thus CD D 2:576

r
6 � .6C 1/

6 � 10
D 2:155.

In Table 2, the difference between the average ranks
between CPNN and LTSA-LE is 5:950 � 1:900 D

4:050 > 2:155. Thus, we think that CPNN and LTSA-
LE are significantly different. The difference between

Table 8 Friedman statistics FF in terms of each evaluation
metric, the critical value is 2.42 when the significance level
is 0.05 (the number of comparing algorithms, k, is 6 and the
number of datasets, N, is 10).

Evaluation metric FF Evaluation metric FF

Hamming loss 9.50 Coverage 6.25
Ranking loss 12.29 Average precision 16.38%

One error 3.91 Time 2.75 s

Table 9 Critical values for post-hoc tests after the Friedman
test.

Number of
classifiers q0:05 q0:10

Number of
classifiers q0:05 q0:10

2 1.960 1.645 7 2.638 2.394
3 2.241 1.960 8 2.690 2.450
4 2.394 2.128 9 2.724 2.498
5 2.498 2.241 10 2.773 2.539
6 2.576 2.326

the average ranks of the other four algorithms (BP-MLL,
ML2, LDSVR, and AA-KNN) and LTSA-LE < 2:155,
which is not significantly different. Thus, we can
approximate an improvement of these algorithms from
LTSA-LE.

4.5 Experimental results on LDL

We conduct quantitative analysis on the performance of
four LDL algorithms on the datasets in Table 10. Tables
10 – 15 provide the comparison results of various types of
LDL algorithms on six evaluation metrics: Cheb, Clark,
Canber, KL-div, Cosine, and Intersec, respectively. As
described in Section 4.1, we calculate the average ranks
of the corresponding algorithms based on the six metrics
in the last row of each table (bold font indicates the best
performance on each dataset). We obtain the rankings of
the algorithms on six measures according to their average
ranks, LTSA-LE � CPNN � LDSVR � AA-KNN.

As the results show, LTSA-LE performs best on
all six measures. The reason might be that applying
the kernel technique allows LTSA-LE to solve the
problem of higher dimensionality and therefore obtain a

Table 10 Experimental results on the real-world datasets
measured by the Cheb ###.

Dataset LDSVR CPNN AA-KNN LTSA-LE
Yeast-alpha 0.0080 0.0073 0.0090 0.0073
Yeast-cdc 0.0141 0.0138 0.0229 0.0083
Yeast-elu 0.0267 0.0262 0.0189 0.0078
Yeast-diau 0.0414 0.0505 0.0572 0.0194
Yeast-heat 0.0481 0.0504 0.0669 0.0118
Yeast-spo 0.1774 0.1969 0.1830 0.0268
Yeast-cold 0.0773 0.0727 0.0833 0.0172
Yeast-dtt 0.0417 0.0436 0.0543 0.0074

Yeast-spo5 0.1722 0.1751 0.2006 0.0491
Yeast-spoem 0.3369 0.2869 0.1512 0.0125
Human Gene 0.0179 0.0202 0.0140 0.0130
Natural Scene 0.4045 0.1877 0.2473 0.1291

Movie 0.1697 0.1420 0.1544 0.1359
s-JAFFE 0.1300 0.1416 0.1183 0.0576

s-BU 3DFE 0.1790 0.1745 0.2229 0.0794
Average rank 2.97 2.77 3.23 1.03
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Table 11 Experimental results on real-world datasets
measured by the Clark ###.

Dataset LDSVR CPNN AA-KNN LTSA-LE
Yeast-alpha 0.1713 0.1141 0.1262 0.1021
Yeast-cdc 0.2178 0.2005 0.2857 0.1186
Yeast-elu 0.2494 0.2351 0.2386 0.1024
Yeast-diau 0.2890 0.3287 0.3393 0.0927
Yeast-heat 0.2534 0.2492 0.3438 0.0545
Yeast-spo 0.4690 0.5093 0.4928 0.1204
Yeast-cold 0.1979 0.2077 0.2392 0.0452
Yeast-dtt 0.1244 0.1366 0.1363 0.0181

Yeast-spo5 0.4098 0.4233 0.4501 0.0948
Yeast-spoem 0.5671 0.5117 0.3180 0.0176
Human Gene 1.0551 1.0739 1.3913 0.9660
Natural Scene 2.3735 2.1469 2.1008 2.0813

Movie 0.7311 0.6558 0.5541 0.4177
s-JAFFE 0.3860 0.5163 0.3324 0.2401

s-BU 3DFE 0.4379 0.4457 0.5710 0.2573
Average rank 2.87 2.93 3.20 1.00

Table 12 Experimental results on real-world datasets
measured by the Canber ###.

Dataset LDSVR CPNN AA-KNN LTSA-LE
Yeast-alpha 0.5686 0.3792 0.4057 0.3315
Yeast-cdc 0.7528 0.6780 0.9368 0.3230
Yeast-elu 0.7263 0.7003 0.6932 0.3064
Yeast-diau 0.6489 0.7181 0.7262 0.1648
Yeast-heat 0.5499 0.5282 0.7659 0.1114
Yeast-spo 0.9634 1.0667 0.9917 0.2340
Yeast-cold 0.3574 0.3990 0.4401 0.0723
Yeast-dtt 0.2436 0.2709 0.2184 0.0296

Yeast-spo5 0.5826 0.5843 0.6554 0.1505
Yeast-spoem 0.7600 0.6749 0.3972 0.0249
Human Gene 6.2419 6.1261 9.6774 6.1365
Natural Scene 6.8702 5.5629 5.2013 5.2951

Movie 1.2497 1.2530 0.9741 0.7652
s-JAFFE 0.7755 1.0884 0.6243 0.5023

s-BU 3DFE 0.9382 0.9765 1.1770 0.5483
Average rank 2.93 2.93 3 1.13

more discriminative feature space without compromising
computational feasibility. CPNN is based on the
multilayer neural network. LTSA-LE appears steadier
than CPNN with the decrease of training data mainly
because CPNN learns the model from the training data.
Consequently, LTSA-LE relies less on the training data
than CPNN does. AA-KNN is approximate to LDSVR
because AA-KNN keeps the label distribution, thereby
retaining the overall labeling structure for each instance,
whereas LDSVR takes advantage of the large margin of
regression through a support vector machine.

Table 13 Experimental results on real-world datasets
measured by KL-div ###.

Dataset LDSVR CPNN AA-KNN LTSA-LE
Yeast-alpha 0.0030 0.0015 0.0018 0.0012
Yeast-cdc 0.0064 0.0054 0.0111 0.0018
Yeast-elu 0.0094 0.0085 0.0080 0.0015
Yeast-diau 0.0198 0.0258 0.0273 0.0023
Yeast-heat 0.0193 0.0187 0.0367 0.0009
Yeast-spo 0.0952 0.1182 0.1047 0.0048
Yeast-cold 0.0201 0.0219 0.0290 0.0009
Yeast-dtt 0.0077 0.0092 0.0096 0.0001

Yeast-spo5 0.0836 0.0934 0.1144 0.0057
Yeast-spoem 0.2484 0.1858 0.0538 0.0003
Human Gene 0.0355 0.0355 0.0594 0.0285
Natural Scene 1.4482 0.6021 0.6874 0.5503

Movie 0.0955 0.1190 0.0994 0.0688
s-JAFFE 0.0619 0.1073 0.0473 0.0206

s-BU 3DFE 0.0925 0.0809 0.1625 0.0252
Average rank 2.83 2.83 3.33 1.00

Table 14 Experimental results on real-world datasets
measured by the Cosine """.

Dataset LDSVR CPNN AA-KNN LTSA-LE
Yeast-alpha 0.9971 0.9985 0.9981 0.9988
Yeast-cdc 0.9935 0.9946 0.9893 0.9982
Yeast-elu 0.9904 0.9913 0.9921 0.9985
Yeast-diau 0.9832 0.9778 0.9766 0.9978
Yeast-heat 0.9821 0.9826 0.9648 0.9990
Yeast-spo 0.9032 0.8815 0.8944 0.9952
Yeast-cold 0.9803 0.9785 0.9710 0.9990
Yeast-dtt 0.9925 0.9909 0.9903 0.9998

Yeast-spo5 0.9310 0.9268 0.9075 0.9945
Yeast-spoem 0.8293 0.8808 0.9556 0.9997
Human Gene 0.9647 0.9639 0.9420 0.9717
Natural Scene 0.4386 0.7315 0.6838 0.7690

Movie 0.9371 0.9225 0.9205 0.9364
s-JAFFE 0.9360 0.8879 0.9482 0.9791

s-BU 3DFE 0.9018 0.9147 0.8432 0.9739
Average rank 2.73 2.80 3.40 1.07

5 Conclusion

We studied a label-enhanced algorithm based on
manifold. According to the optimization theory, we
established the unconstrained optimization model of
MSVR and provided the adaptively adjusted maximum
entropy function to solve the model. The function
is based on the characteristics of the original model
quadratic programming problem and transforms the
original objective function into an unconstrained
optimization problem according to the optimization
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Table 15 Experimental results on real-world datasets
measured by Intersec """.

Dataset LDSVR CPNN AA-KNN LTSA-LE
Yeast-alpha 0.9694 0.9789 0.9771 0.9815
Yeast-cdc 0.9495 0.9546 0.9378 0.9786
Yeast-elu 0.9480 0.9488 0.9502 0.9780
Yeast-diau 0.9136 0.9037 0.9024 0.9769
Yeast-heat 0.9119 0.9154 0.8753 0.9814
Yeast-spo 0.8226 0.8031 0.8170 0.9610
Yeast-cold 0.9108 0.9001 0.8887 0.9819
Yeast-dtt 0.9394 0.9325 0.9444 0.9926

Yeast-spo5 0.8278 0.8249 0.7994 0.9509
Yeast-spoem 0.6631 0.7131 0.8488 0.9875
Human Gene 0.9071 0.9097 0.8567 0.9095
Natural Scene 0.3522 0.5683 0.5008 0.5791

Movie 0.8203 0.7973 0.8183 0.8479
s-JAFFE 0.8603 0.7990 0.8817 0.9102

s-BU 3DFE 0.8210 0.8255 0.7771 0.9048
Average rank 2.93 2.80 3.20 1.07

principle. To avoid the numerical overflow phenomenon
in the standard maximum entropy function, we proposed
an MSVR model for adaptively adjusting the Shannon
entropy function.

We state the convergence of the model and solve it
with the quasi-Newton method, which is particularly
suitable for problems with a large number of sample
points. Extensive experimental results using real-
world multilabel datasets show that the algorithm can
effectively improve the training speed and prediction
accuracy of multilabel datasets.
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