
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/10 pp112–134
DOI: 10 .26599 /TST.2019 .9010043
Volume 26, Number 1, February 2021

�C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Behavior Model Construction for Client Side of
Modern Web Applications

Weiwei Wang, Junxia Guo, Zheng Li, and Ruilian Zhao�

Abstract: Most of the behavior models with respect to Web applications focus on sequencing of events, without

regard for the changes of parameters or elements and the relationship between trigger conditions of events and

Web pages. As a result, these models are not sufficient to effectively represent the dynamic behavior of the Web

2.0 application. Therefore, in this paper, to appropriately describe the dynamic behavior of the client side of Web

applications, we define a novel Client-side Behavior Model (CBM) for Web applications and present a user behavior

trace-based modeling method to automatically generate and optimize CBMs. To verify the effectiveness of our

method, we conduct a series of experiments on six Web applications according to three types of user behavior

traces. The experimental results show that our modeling method can construct CBMs automatically and effectively,

and the CBMs built are more precise to represent the dynamic behavior of Web applications.

Key words: web applications; client-side behavior model; user behavior trace

1 Introduction

Web applications have been the most widespread

applications because they can offer rich interactivity

and responsiveness with the help of multiple languages

and interaction manipulations on the client and server

side. As is known, model-based testing is one of the

most effective techniques to ensure the quality and

reliability of Web applications[1–4]. However, existing

dynamic inter-dependencies among different languages,

distributed asynchronous client/server nature, and event-

driven property pose many challenges in analyzing

and modeling Web applications[5–9], including the

following: (1) JavaScript (JS) and Document Object

Model (DOM) are widely employed in modern Web 2.0

applications such that the variations of user interfaces

are determined dynamically through runtime changes

� Weiwei Wang, Junxia Guo, Zheng Li, and Ruilian Zhao are with

the College of Information Science and Technology, Beijing

University of Chemical Technology, Beijing 100029, China.

E-mail: vivioe wang@163.com; gjxia@mail.buct.edu.cn;

lizheng@mail.buct.edu.cn; rlzhao@mail.buct.edu.cn.

�To whom correspondence should be addressed.

Manuscript received: 2019-07-28; accepted: 2019-08-28

in DOM trees[10, 11]; (2) in Web 2.0 applications, a

user event may result in different Web pages due

to different execution conditions and cause different

changes on parameter(s) or DOM elements. Thus, the

changes on Web pages are related to the conditions

triggered by events and the follow-up operations on

parameter(s) or DOM elements. However, the existing

modeling techniques cannot capture such changes and

further represent the relationship between the execution

conditions and Web pages completely.

Obviously, a precise behavior model for Web

applications helps to reduce testing costs and

improve software quality. To date, many models

have been proposed to portray the behavior of Web

applications[12–14]. For instance, Schur et al.[15, 16] mined

explicit behavior models of Web applications as a Finite

State Automaton (FSA), where nodes denote abstract

states of an application whereas transitions indicate

actions that are performed by users acting in different

roles to change the state. Qi et al.[11] and Haraty et al.[17]

constructed a state flow graph for Web applications,

where states refer to Web pages and edges between

states stand for the associated events. However, these

models focus on Web pages and associated events only,

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 113

neglecting the event-handlers, which process events and

implement client side functions. Thus, these models

omit a large amount of valuable information about Web

applications such that further analyzing and testing Web

applications based on the models are difficult.

Moreover, Alimadadi et al.[5, 10] proposed a graph-

based behavior model for Web applications, which

considers the client-side event-handlers. In this model, a

node is a set of the trigger event, related event-handlers,

and DOM changes, while an edge signifies the execution

order of two events. Mao et al.[18] defined a function

behavior model on the basis of state machine for JS/Web

applications, in which states correspond to internal

JS functions or the calls to application programming

interfaces, and transitions correspond to the trigger

events. Although these models consider event handlers,

they have no insight into the relationship between

trigger conditions of events and Web pages. As a result,

these models are insufficient to accurately represent the

dynamic behavior of Web 2.0 applications. Furthermore,

the test cases generated from these models tend to be

infeasible because the conditions for event triggering

and follow-up operations are unknown. Thus, a novel

behavior model is essential to depict dynamic behaviors

of Web 2.0 applications completely.

Therefore, this paper defines a novel Client-side

Behavior Model (CBM) for Web 2.0 applications, and

presents a model construction approach based on the

user behavior traces. The user behavior trace contains

Web pages, related events, the trigger conditions, and

follow-up operations to depict users’ dynamic behaviors

in Web applications. Furthermore, a user behavior trace

acquisition method for Web application was discussed

in detail in our previous work[19]. This paper focuses on

a CBM construction and optimization based on user

behavior traces. The contributions of this work are

summarized as follows:

(1) It presents a CBM to represent dynamic behaviors

for Web 2.0 applications, involving not only Web pages

and events, but also the trigger conditions and follow-up

operations.

(2) It proposes a user behavior trace-based CBM

construction approach to create and optimize CBMs

for Web applications. Furthermore, this study proves

that the optimized and original CBMs have the same

reactions to users’ operations.

(3) It implements a prototype tool to automatically

generate CBMs from collected user behavior traces and

evaluate our method on six Web applications according

to three types of user behavior traces. The results show

that our model construction method is practical and

efficient.

The rest of this paper is organized as follows: Section

2 describes the background of related concepts and

techniques. Section 3 introduces the definition of CBM

for Web applications. Section 4 details our CBM

construction method for Web applications automatically.

Section 5 depicts and analyzes the experiment results on

six Web applications. Section 6 reviews the related work.

Finally, we conclude our work in Section 7.

2 Background

This section describes several concepts that are

associated with Web applications, such as Web page,

event, and user behavior trace.

2.1 Basic concepts of Web applications

A typical workflow of Web applications is that users

trigger events, such as clicking buttons on the browser

of the client side, to update the content of Web pages,

and the triggered events send requests to a server that

processes the requests and replies to the client. Then,

the client updates the content of the current Web page

according to the received responses. As a result, the

client-side browser and Web server can exchange data

with each other.

Evidently, dynamic behaviors of Web applications

are activated by triggered events and processed by client-

side and server-side code, resulting in Web page changes.

Thus, Web pages and events are two essential factors

concerning the dynamic behaviors.

2.1.1 Web pages
Traditional Web applications are based on the multi-page

interface paradigm. Each Web page is bound to a unique

Uniform Resource Locator (URL), which can signify a

Web page. However, in Web 2:0, JS and DOM are widely

used on the client side for achieving rich interactivity

and responsiveness, where DOM represents a Web page

as a tree structure and JS code can mutate the DOM tree

at runtime seamlessly. In this manner, the changes on

Web pages are determined dynamically by the changes

in DOM trees[20].

More concretely, a DOM tree of a Web page holds

the content and structure represented by text and

HTML elements, which are rendered using the style

information defined in HTML attributes or Cascading

Style Sheets (CSS)[16]. Thus, the types of DOM nodes

mainly include element, attribute, and text nodes, where

114 Tsinghua Science and Technology, February 2021, 26(1): 112–134

element nodes represent HTML elements, such as

hyperlinks and buttons, text nodes describe the text of

element nodes, and attribute nodes define attributes for

element nodes. For example, an instance of DOM is

shown in Fig. 1, corresponding to the Web page in

Fig. 2a, where text=“manage teacher” is a text node,

id=“add/edit/delete”, class=“dylist”, and name=“teacher”

are attribute nodes, and the others are element nodes,

such as <title>, <form>, and <table>. All nodes in

a DOM tree can be dynamically modified through the

execution of client-side JS code, thereby changing the

Web page. Thus, Web pages in modern Web applications

can be represented by DOM trees.

Additionally, although DOM is a tree representation

for Web pages, it has low navigation capability.

Moreover, an XPath is a path expression that possesses

better navigation capability to locate elements, texts,

and attributes in DOM trees. For example, the element

node <title> in Fig.1 can be situated by the XPath

“/HTML/head/title”. Furthermore, a Web page can be

represented by the set of all XPaths[21] from the root node

to the leaf nodes of the DOM tree. An XPath is called an

equality XPath if all terms in an XPath containing only

equality predicates that indicate the position of the nodes.

For instance, the “edit” button can be expressed by an

HTML

<head> <body>

<meta> <title> <style> <div>

< form> <button><button> <button>

id= edit"

text= manag
e teacher"

name= teacher"
<table>

<tr> <tr>…class= dylist" id= delete"

id= add"

Fig. 1 A DOM instance.

(a) Manage teachers

(b) Manage announcements

Fig. 2 Example of different Web pages in SchoolMate.

equality XPath “/HTML/body/div/button[2]”, where the

predicate of term button[2] is position()=2. In contrast

to equality XPath, generalized XPath is where some of

the terms in the XPath contain generalized predicates,

such as “/HTML/body/div/button[position()<3]” which

represents the first two buttons, i.e., the “add” and

“edit” buttons in Fig. 1. The generalized XPath can be

generated based on pairs of equality XPaths.

2.1.2 Event of Web application
Web applications belong to event-driven software whose

behavior is activated by incoming events. The triggering

of events causes the execution of client-side or server-

side code, making Web application transfer from the

current page to a new one. Furthermore, in modern

Web applications, a set of JS functions, i.e., event

handlers, are registered to handle the events, coping

with user operations and implementing the client-side

functions. That is to say, when an event is triggered,

the executed conditions in event handlers determine

which Web page (DOM) is reached and what follow-

up operations are conducted on parameters or DOM

elements. Thus, dynamic behaviors of modern Web

applications are associated with not only Web pages

and events but also trigger conditions and follow-up

operations.

We take an open-source Web application called

SchoolMate for example, which is a school

administration system. We pay attention to the

“add users” functionality in the users’ management

module. The corresponding HTML code is shown in

Fig. 3, and the JS code is shown in Fig. 4. In this

example, the event handler validate() in Fig. 4 deals

with the event of clicking the “AddUser” button to verify

whether the inputs of Password and Confirm-Password

are equal. If the condition at Line 3 is triggered, then

this request will be submitted to server-side code

“./index.php” for processing. Otherwise, this page

1 <form name= ’ adduse r ’ a c t i o n = ’ . / i n d e x . php ’ method = ’POST’>

2 <t a b l e c l a s s = ’ d y n a m i c l i s t ’ a l i g n = ’ c e n t e r ’>

3 <t r c l a s s = ’ header ’>

4 <t h>Username</ t h> <t h>Password</ t h>

5 <t h>Confirm Password</ t h> <t h>Type</ t h> </ t r>

6 <t r c l a s s = ’ even ’>

7 <t d><i n p u t t y p e = ’ t e x t ’ name= ’ username ’ /></ t d>

8 <t d><i n p u t t y p e = ’ password ’ name= ’ password ’ /></ t d>

9 <t d><i n p u t t y p e = ’ password ’ name= ’ password2 ’ /></ t d>

10 <t d> <s e l e c t name= ’ type ’>

11 <o p t i o n v a l u e = ’Admin ’>Admin</ o p t i o n>

12 <o p t i o n v a l u e = ’ Teacher ’>Teache r</ o p t i o n>

13 <o p t i o n v a l u e = ’ S t u d e n t ’>S t u d e n t</ o p t i o n>

14 <o p t i o n v a l u e = ’ P a r e n t ’>P a r e n t</ o p t i o n> </ s e l e c t></ t d></ t r>

15 <t r> <t d> <i n p u t t y p e = ’ b u t t o n ’ v a l u e = ’ AddUser ’

16 o n C l i c k = ’ v a l i d a t e () ; ’> </ t d>

17 <t d> <i n p u t t y p e = ’ b u t t o n ’ v a l u e = ’ Cancel ’

18 o n C l i c k = ’ document . a d d u s e r . sub mi t () ; ’> </ t d> </ t r> </ t a b l e> </ form>

Fig. 3 HTML code of AddUser.php in SchoolMate.

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 115

1 <s c r i p t>

2 f u n c t i o n v a l i d a t e () f
3 i f (document . a d d u s e r . password . v a l u e ==

4 document . a d d u s e r . password2 . v a l u e &&

5 document . a d d u s e r . password . v a l u e != ’ ’)f
6 document . a d d u s e r . sub mi t () ;

7 g e l s e f
8 a l e r t (’ Passwords do n o t match ! ’) ;

9 document . a d d u s e r . password . v a l u e = ’ ’ ;

10 document . a d d u s e r . password2 . v a l u e = ’ ’ ;

11 document . a d d u s e r . password . s e l e c t () ; gg
12 </ s c r i p t>

Fig. 4 JavaScript code of AddUser.php in SchoolMate.

shows an alert that passwords do not match. This

evidence demonstrates that events with different trigger

conditions result in different Web pages and follow-up

operations.

2.2 User behavior trace for Web applications

Dynamic analysis techniques are widely used to monitor

the execution process of Web applications and capture

the pivotal behavior information as traces[14]. Generally,

a typical user behavior trace consists of sequences

of events or function calls accompanied by variable

values. For example, Ricca and Tonella[22] captured

the trace containing information about the DOMs and

event sequences. Schur et al.[15] also applied the event

sequences as the traces to record the behavior of

enterprise Web applications. Unlike them, the authors

in Refs. [5, 10, 23] used a detailed trace that included

events, DOM mutations, and all event-handler functions

that were executed either directly or indirectly after an

event occurred to indicate a Web application behavior.

Most of the traces record Web pages and related

event sequences to indicate the behavior of Web

applications. Alimadadi[10] considered event handlers

but had no insight into the relationship between

execution conditions and Web pages as well as the

follow-up operations. However, these components

are crucial for dynamic behaviors of modern Web

applications. Thus, adopting a novel trace to accurately

record the dynamic behavior information for Web

applications is necessary.

In our previous work[19], we defined a kind of

user behavior trace and designed a corresponding

instrumentation code to capture users’ dynamic

behaviors. A trace represents a user’s visit process that

begins when a user from a new IP address sends a request

to the server and ends when the user leaves the Web

application. This concept is similar to user sessions[24],

but the trace contains more information than traditional

user sessions extracted from Web server logs[25]. During

a user’s visit process, once a user interacts with the

Web application, causing the client-side or server-side

code to execute, the interaction information together

with relevant Web pages are recorded. The interaction

sequence and Web pages constitute a trace, which is

made up of multiple Web pages and interactions by a

user for a time. The trace is defined as follows:

Definition 1 User behavior trace. A trace is

composed of Web pages and associated user interactions

with Web application, this is, trace D< wp0; ia0; wp1;

ia1; : : : ; wpn�1; ian�1; wpn >, where WP D fwp0; : : : ;

wpj ; : : : ; wpng refers to the Web page sequence and

IA D fia0; : : : ; iaj ; : : : ; ian�1g stands for the user

interaction sequence of a visiting user. Each element

wpj 2 WP corresponds to a two-tuple <URL, DOM>,

and each element iaj 2 IA is a triple <event, cond,

oper>, where event represents the trigger event by

users, cond represents the conditions executed in event

handlers when handling the event, and oper is the

follow-up operations on parameters or DOM elements

caused by the user event callback or server messages.

In a trace, an interaction means that a user interacts

with a Web application once. That is, a user triggers an

event of a Web application, resulting in code execution

on the client or server side. At this time, relevant

information is recorded, such as the event type, relevant

input parameters, element binding this event, current

URL and DOM before executing the event, condition

triggered by the event, follow-up operations on the

parameters or DOM element, and reaching URL and

DOM.

To ensure the integrity of the CBM model and make

modeling process more effective, the collected traces are

complemented based on three adequacy criteria, mainly

considering the coverage of events, JS branches, and

DOM. Meanwhile, an optimal minimal trace set was

generated in the previous work[19]. Thus, this paper

focuses on how to leverage the minimal trace set to

construct the CBM model for Web applications.

3 Client-Side Behavior Model Definition for
Web Applications

Web pages and events are two primary components that

reflect the dynamic behavior of Web applications. An

event execution may transfer to different Web pages due

to various execution conditions and cause changes in

parameter(s) or DOM elements. That is, the changes

of Web pages are related to the conditions triggered by

events and follow-up operations on the parameter(s) or

116 Tsinghua Science and Technology, February 2021, 26(1): 112–134

DOM elements. Thus, besides Web pages and events,

the trigger conditions and follow-up operations are

also essential to depict the dynamic behaviors of Web

applications. However, the existing models can only

express partial information. To adequately represent

the dynamic behavior of Web applications, we propose

a novel CBM model based on Extended Finite State

Machine (EFSM) to correspond the information related

to behaviors with states and transitions of the model.

3.1 Client-side behavior model

For Web applications, the new client-side behavior

model is defined as follows:

Definition 2 CBM. The client-side behavior model

named CBM is defined as a 4-tuple .S; I; O; T /, where

S is a finite set of states, I is a finite set of input

declarations, O is a finite set of output declarations,

and T is a finite set of transitions. Each member of S

is represented as a URL and corresponding DOM, each

member of I expresses an input parameter, each member

of O represents an output parameter, and each member

of T signifies a migration from one state to another,

remarking the change of URL or DOM. Furthermore, a

transition t is denoted by a 5-tuple <src, event, cond, act,

trgt>, where src.t/ and trgt.t/ represent the source and

target state of transition t , respectively; event.t/ signifies

the event triggered on current source state by users;

cond.t/ describes the triggered conditions in associated

event handler functions; and act.t/ indicates the follow-

up operations on the parameters or DOM elements

caused by user event callbacks or server responses.

Specifically, an event.t/ can be further expressed as

event.t; InputList/, meaning event occurs with a list of

input parameters, and an act.t/ can be further described

as act.t; paraList/, implying action implements with a

list of input or output parameters.

A transition occurs when its event is triggered and

condition is satisfied. This is, for transition t , if its

event.t/ is triggered and cond.t/ is met, then act.t/ is

performed, and the state transfers from src.t/ to trgt.t/.

The event, cond, and act parts of a transition t are

optional. Essentially, the CBM of Web applications

is an EFSM model.

3.2 State representation in CBM

In modern Web applications, the alterations of user

interfaces are determined by changes in DOMs. Thus,

DOMs can be used to represent Web pages. However, if

a DOM is mapped directly to a state of the CBM, it may

lead to state space explosion because minor changes in

DOMs may result in an expansion of states. Thus, we

consider an appropriate abstraction of concrete DOMs,

which does not affect the semantics of the CBM model,

that is, preserving the behavior of Web applications.

At present, most DOMs abstraction methods focus on

the structure or content of DOMs, namely, abstracting

DOMs by extracting their element nodes or content

nodes[23, 26]. However, a pair of DOMs with the same

structure are likely to indicate different functionalities

and cannot be treated as one. For example, Figs. 2a and

2b show two different function pages of SchoolMate:

One is the teacher management page and the other is the

announcement management page. These two pages have

the same DOM structure as Fig. 1, but they cannot be

regarded as one state in the CBM. Thus, the methods

that abstract the DOM structures are prone to fail in

distinguishing this type of DOMs, making the model of

Web applications inaccurate. The methods that abstract

DOM contents can differentiate these two pages, but they

may result in over-differentiation, that is, identifying the

same page into different ones. As shown in Fig. 2a, if

the data in the teacher form of two Web pages vary, these

two pages will be misjudged as two states. Therefore,

the existing abstraction methods are not suitable for

representing DOMs.

Thus, to abstract DOMs accurately, this paper presents

a new abstraction method that considers the DOM

structure and attributes. In a DOM tree, attribute nodes

define attributes to customize the style for elements, such

as id, name, and class, while element nodes are used

to bind events. As a result, they are closely related to

events and Web pages. In other words, attribute nodes are

indispensable to distinguish DOMs that imply different

behaviors. For example, as shown in Fig. 2a, the form

name of Fig. 2a is “teacher” and that of Fig. 2b is

“announcements”. Although these two Web pages have

the same DOM structure, their attributes indicate that

they are used to implement distinct functions. Thus,

these two pages can be distinguished by their attributes.

As shown from the preceding analysis, if only the

structure of DOMs is considered, then inaccuracy may

occur in identifying different DOMs, thereby breaking

the primitive semantics of the model. Considering that

attribute nodes in DOMs are essential to distinguish

different behaviors, we define an abstract DOM to

represent the state of CBMs. As discussed in Section

2.1.1, DOM can be expressed by a set of equality XPaths

corresponding to all leaf nodes of the DOM tree. An

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 117

abstract DOM is defined in the following.

Definition 3 Abstract DOM. An abstract DOM

consists of a set of 2-tuples < elei ; .attr0; attr1; : : : ;

attrn/ > corresponding to all leaf nodes, where elei is

the i -th leaf node of DOM expressed by equality XPaths

and .attr0; attr1; : : : ; attrn/ are the associated attributes.

For example, in Fig.1, a 2-tuple instance for

the edit button is <“/HTML/body/div/button[2]”,

<id=“edit”>>. Another 2-tuple for the element title

is <“/HTML/head/title”,< ; >>.

3.3 Transition representation in CBM

In a Web application, some particular events may only

be triggered with a sequence of user operations. For

instance, in the “add users” module of SchoolMate,

as shown in Fig. 3, if an administrator adds a new

user, he/she needs to input the username and password

first, select the role of the new user, and click the

AddUser button to complete adding a new account. In

this process, a single user operation can not cause the

execution of event handlers and lead to the change of

states. As a result, the sequence of user operations

that induce the execution of client-side or server-side

code should be combined into one event in transitions

of the CBM. The sequence of user operations of

adding a new user can be expressed by one event as

<click, Xpath:(//input[@value=“AddUser”])(username,

password, password2, type)>, where the username,

password, password2, and type are regarded as the

external inputs for the event of clicking the AddUser

button.

Furthermore, the JS conditions in associated event

handlers triggered by events are expressed as conditions

of transitions, and the follow-up operations on the

parameters or DOM elements are signified as actions

of transitions.

3.4 Illustrative example

We take SchoolMate as an example, which includes

12 functional modules and 4 user roles. The functional

modules allow users to perform school-related tasks,

including user management, school information

updating, class management, registration, and so on.

Four user roles are administrator, teacher, parent, and

student, respectively. Now, if the administrator wants

to add a new user account, firstly, he/she has to enter

the login page (i.e., S0) in Fig. 5, and then logs into the

system as an administrator by inputting his/her username

and password and clicking the login button to submit

0
Login

1
Homepage

2
Manage

sers

…
…

1 3

3
Edit
sers

6
Delete

sers

4
Add
sers

4

5

0

5
Failed

6

8

7

/ 2

Fig. 5 Partial behavior model of SchoolMate.

the login request to the server. If the username and

password are not empty and have passed the server-side

verification, then the administrator is allowed to access

his/her personal homepage (S1). Otherwise, this system

prompts an error message and returns to the login page.

On the personal homepage, the administrator selects

the user management module by clicking “manage users”

link, and enters into the “manage users” page (S2), where

three operations, namely, add, edit, and delete a user

account, are provided. At this time, the administrator

chooses the add operation by clicking the add button, and

reaches the “add users” page (S4). On this page, a new

user account can be added by inputting the username,

password, and role, and sending “add a user” request to

the server by clicking the “add user” button. In particular,

if the passwords entered twice are inconsistent or the

password is empty, then the system prompts an error

message and enters the failed page (S5). Otherwise, the

server deals with the “add a user” request. Specifically, if

the server determines that the new user account is invalid,

then the system enters the failed page (S5). Otherwise,

the new user account is added successfully, and the

system returns to “manage users” page (S2).

The partial behavior model of user management

module is depicted in Fig. 5, which mainly illustrates

the process by which an administrator adds a new user

account. For ease of understanding, the states are labeled

with corresponding Web pages, and the transitions

are labeled with corresponding migrations between

pages. For example, if the administrator does not input

his/her username and password but clicks the login

button at the login page (S0), then the “invalid params”

is alerted and the page remains at S0. That is, the source

and target states of this transition are all S0. Moreover,

inputting the username and password and clicking the

login button can be taken as event with no input, which

mean that input empty can be regarded as condition, and

alerting the “invalid params” can be seen as action. As a

result, the transition, denoted by T0, can be expressed as

<S0; click, Xpath: //input [@value=“Login”](username,

118 Tsinghua Science and Technology, February 2021, 26(1): 112–134

password); username. value== “jjpassword. value==”;

alert(“in-valid params”); S0>. The details of other

transitions are shown in Table 1.

4 Trace-Based CBM Modeling Approach
for Web Applications

In the previous section, we have defined CBMs to

articulate the dynamic behaviors for Web applications,

including Web pages, events, and trigger conditions

as well as follow-up operations on the parameters or

DOM elements. In this section, we discuss the CBM

construction and optimization approach based on user

behavior traces. The framework of our CBM modeling

approach is shown in Fig. 6.

The overall process consists of the following two

stages:

• An original client-side behavior model is

constructed based on user behavior traces, including

obtaining states and transitions of CBM from traces,

identifying and merging identical ones, and finding and

removing noise ones.

• The original CBM is further optimized by

identifying equivalent states and transitions and merging

them to refine the model. Furthermore, this optimized

CBM is proved to be equivalent to the original CBM,

namely, these two models have the same reactions to

users’ operations.

In the following, the CBM construction and

optimization approaches are discussed in detail.

4.1 Original CBM construction based on traces

According to the definition of CBM, a state s 2 S

race set

Web pplication

Browser
Alice

Bob

Http
equest

Http
esponse

optimizer

 constructor

aabb ttrraaccttiioonn

optimizer

Fig. 6 Framework of CBM construction and optimization.

represents the current URL and corresponding DOM

during the execution of Web applications. A transition

t 2 T indicates an interaction that enables migration

from a state to another. In contrast to the CBM, a trace

consists of Web pages WP and interaction information

IA, in which each wp 2 WP is made up of the URL

and DOM, and each ia 2 IA involves the trigger event

and conditions triggered by the event and follow-up

operations. Thus, a Web page wpD<URL, DOM> in a

trace can be regarded as a state of the CBM. However,

as discussed in Section 3.2, an abstract DOM is more

appropriate for representing the state of the CBM.

Thus, in the CBM, <URL, abstract DOM> is taken

as a state instead of <URL, DOM>. Furthermore, an

interaction ia = <event, cond, oper> is considered as

the event[cond]/act of a transition, and two associated

states <URL, abstract DOM> with wpi and wpiC1 are

taken as the states before and after the event event(ia)

is triggered. In other words, for a sub-sequence < wpi ;

ia; wpiC1 > of a trace, the corresponding transition t

can be created, namely, event[cond]/act of transition t

corresponds to the event, cond, and oper of interaction

ia, and src.t/ and trgt.t/ refer to the <URL, abstract

DOM> of wpi and wpiC1, respectively.

Table 1 Details of transitions on the behavior model of SchoolMate.
Trans src event cond act trgt

T0 S0 click, Xpath://input[@value=‘Login’]

(username, password)

username.value==00jj
password.value==00

alert(‘invalid params’) S0

T1 S0 click, Xpath://input[@value=‘Login’]

(username, password)

username.value!=00&&

password.value!=00
document.login.value=1 S1

T2 S0 click, Xpath://input[@value=‘Login’]

(username, password)

username.value!=00&&

password.value!=00
document.login.value=1 S0

T3 S1 click, link=Users – – S2

T4 S2 click, Xpath://input[@value=‘Add’] – document.users.submit() S4

T5 S4 click, Xpath://input[@value=‘Cancel’] – document.adduser.submit() S2

T6 S4 click, Xpath:(//input[@value=‘AddUser’])

(username, password, password2, type)

password.value!=password2.

valuejjpassword.value == 00)

alert(‘Passwords do not match!’) S5

T7 S4 click, Xpath:(//input[@value=‘AddUser’])

(username, password, password2, type)

password.value==password2.

value&&password.value !=00
document.adduser.submit() S5

T8 S4 click, Xpath:(//input[@value=‘AddUser’])

(username, password, password2, type)

password.value==password2.

value&&password.value !=00
document.adduser.submit() S2

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 119

However, in the acquired traces, the same Web pages

and interactions often exist in different traces because

users may visit the same Web pages or trigger the same

events. Even in only one trace, the same Web pages or

interactions may exist because a user may access one

Web page or trigger one event more than once. These

situations result in duplications in states and transitions

of the CBM to be constructed. Thus, the identical states

and transitions need to be merged to build the CBM for

a Web application from traces.

Moreover, the noise information, such as navigation

links, out-of-site links, and advertisements, usually

appear when users access a Web application. Traces

collected inevitably contain noise information, which

leads to noise states and transitions in the CBM built.

Thus, noise states and transitions should be further

eliminated.

According to the preceding analysis, to construct

CBMs for Web applications, first model components,

namely, states and transitions, are obtained from

user behavior traces, and then identical states and

transitions are identified and merged. Meanwhile, to

avoid interference from noise information, the noise

states and transitions are further identified and removed.

The details on how to construct the CBM are discussed

in the following.

4.1.1 Obtaining model components from a trace set
States and transitions are fundamental components

of the CBM model. To construct a CBM for a

Web application, we first have to obtain states and

transitions from a trace set. That is, for a trace D
< wp0; ia0; wp1; ia1; : : : ; wpn�1; ian�1; wpn> in the

trace set, we can take each Web page wpj as a state

sj in CBM, denoted by sj D<URL, abstract DOM>,

where the abstract DOM is a compact representation

of the DOM tree. Each user interaction iaj can be

associated with the event, condition, and action of

transition tj in CBM, i.e, event.tj /; cond.tj /, and act.tj /.

The src.tj / and trgt.tj / of transition tj can be tied to the

corresponding states of sj and sj C1, respectively. As a

result, a state list S and a transition list T can be acquired

when all traces in a trace set are traversed.

4.1.2 Identifying and merging identical states and
transitions

Identical states and transitions exist within one trace or

among traces. Therefore, how to distinguish identical

states and transitions is a critical problem in the CBM

construction.

A state of CBM is expressed by <URL, abstract

DOM>, so the similarity or difference between states

can be determined by their URLs and abstract DOMs.

Distinguishing whether two URLs are equal by string

comparison is easy with the help of distance metrics,

such as edit distance. However, for abstract DOMs,

comparison techniques used on traditional DOMs are

unsuitable because they mainly focus on structure

or content similarity between DOMs[27–29], whereas

abstract DOMs are made up of element and attribute

nodes. Thus, the similarity between abstract DOMs

should be estimated from the structures and attributes of

DOM trees.

The structural similarity is reflected in the similarity

of the element nodes in DOMs. Bag of XPath model is

widely used to measure the structural similarity between

DOMs[21]. Thus, this model is also adopted in evaluating

the structural similarity between abstract DOMs as

follows:

Struct sim.Doi ; Doj / D e C s

n C m � e
(1)

where Doi and Doj represent a pair of abstract DOMs;

n and m are the number of element nodes expressed

by XPaths, i.e., the number of XPaths in Doi and Doj ,

respectively; e is the number of common XPaths of Doi

and Doj ; and s is the number of XPaths that do not

exactly match in Doi and Doj but are subsumed by at

least one of the generalized XPaths of the other DOMs.

Considering only the structural similarity between

two abstract DOMs is insufficient, as shown in Fig. 2.

Thus, whether their attributes are similar should also be

considered. The more elements with the same attributes,

the more similar the two DOMs are. The attribute

similarity can be measured as follows:

Attribute sim.Doi ; Doj / D e � adiff

e
(2)

where adiff indicates the number of element nodes in e

whose attributes (e.g., id, class, and name) are different.

In general, Web pages with different URLs are

definitely different; thus, given two states s1 and s2,

whether they are the same is firstly determined by their

URLs. That is, if the distance between s1:URL and

s2:URL is not equal to 0, then States s1 and s2 are

regarded as different. Otherwise, their abstract DOMs

are compared to decide whether States s1 and s2 are

equal or not. In this case, considering the structure of

DOM represents all elements of the page while attributes

are appended to elements, we firstly estimate the

structural similarity between two abstract DOMs. That

is, if the structures of two abstract DOMs are similar,

namely, the structural similarity Struct sim.s1.dom,

120 Tsinghua Science and Technology, February 2021, 26(1): 112–134

s2.dom) computed by Eq. (1) exceeds a preset threshold,

then the similarity of their attributes is considered to

further decide whether these two states are identical

or not. In other words, if the attributes of the two

abstract DOMs are similar, which means that the

Attribute sim(s1.dom, s2.dom) calculated by Eq. (2)

exceeds the preset threshold, then these two states are

regarded as identical. Otherwise, they are different. The

pseudo code of judging whether a pair of states are

identical is shown in Algorithm 1.

According to the definition of CBM, a transition

t 2 T is made up of src.t/; trgt.t/, and associated

event. /Œcond�=act, which is labeled in terms of lbl.t/.

To identify identical transitions in transition list T , we

define identical transitions as follows:

Definition 4 Identical transitions. Given transitions

t1=<src.t1/; lbl.t1/; trgt.t1/> and t2=<src.t2/; lbl.t2/;

trgt.t2/>, we say that:

Transition t1 is identical to t2 iff src.t1/ and src.t2/,

trgt.t1/ and trgt.t2/, and lbl.t1/ and lbl.t2/ are identical.

Here, lbl.t1/ and lbl.t2/ being identical means that every

member of them is the same.

Algorithm 1 Similarity comparison of states
Input: State s1; s2

Output: true or false

1: Procedure Similarity (s1; s2) begin

2: NodeList1; NodeList2 D ∅

3: SimilarStruct D thrs1I SimilarAttribute D thrs2I thrs1 and

thrs2 are preset threshold

4: count D 0I SameAttr D 0I
5: NodeList1 D NodeXpath.s1:dom)I
6: NodeList2 D NodeXpath.s2:dom)I
7: struct sim D Bag of Xpath(NodeList1; NodeList2)

8: if .s1:URL DD s2:URL & struct similarity > SimilarStruct/

then
9: for (i D 0I i < NodeList1.lengthI i C C) do

10: if (NodeList1[i] in NodeList2) then
11: count C CI
12: if (Attribute(NodeList[i]; NodeList2)) then
13: SameAttr C CI
14: end if
15: end if
16: end for
17: if (SameAttr/count > SimilarAttribute) then
18: return trueI
19: else
20: return falseI
21: end if
22: else
23: return falseI
24: end if

Identifying identical transitions by comparing each

component of transitions is easy. In other words, any

two transitions are judged to be different as long as one

component of them is different.

Therefore, based on the state list S and transition

list T obtained in Section 4.1.1, the identification and

merging of identical states and transitions are roughly

divided into following steps. Firstly, for the states in

list S , any pairs of states are compared according to

Algorithm 1. If two states are identical, then one of

them is preserved by randomly removing one. The

transition whose source (target) state is the one removed

is modified, namely, the source (target) state of this

transition is replaced by the reserved one. As a result,

a new state set S 0 without duplicate states is obtained,

and a corresponding transitions list T 0 is formed. Then,

identical transitions are removed from the transition list

T 0. As a result, a transition set T 00 without duplicate

transitions is obtained.

4.1.3 Identifying and eliminating noise states and
transitions

Noise information causes redundant states and

transitions in the CBMs built and reduces the efficiency

of automated testing. Thus, this subsection aims to find

and remove noise states and transitions in the CBMs.

The noise information in Web applications

generally includes navigation links, out-of-site links,

advertisements, and so on. The navigation links can be

identified by Vision-based Page Segmentation (VIPS)

algorithm, which is extensively used in segmenting

elements of a Web page into different parts[30, 31]. In

further detail, the VIPS algorithm divides the homepage

of a Web application into different visual blocks. When

the proportion of hyperlinks in a particular block

exceeds a preset threshold, the hyperlinks in this block

are determined as navigation links. Without loss of

generality, a Web application possesses more than one

navigation link, and each navigation link corresponds

to a navigation event. As a result, for a navigation

link nal, the transitions whose events belong to the

navigation event of nal can be obtained, named as Tnal.

That is, the transitions in Tnal are associated with the

same hyperlink event, and can be regarded as redundant

except one. Then, to further reduce the size of the CBM

built, we only reserve the transition in Tnal that is the

nearest to the start state of the CBM, which generally

refers to the entrance of a Web application, and other

transitions in Tnal are eliminated from the transition

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 121

set T 00.
Furthermore, multiple out-of-site links or

advertisements usually exist in a Web application,

each out-of-site link ties to an event, and so do the

advertisements. Consequently, for an out-of-site link

outl, the transitions whose events pertain to the event of

outl can be obtained, called Toutl. The transitions in Toutl

are associated with the event of outl and can be treated

as redundant because they are irrelevant to the state

space of a Web application. Thus, we directly eliminate

those transitions in Toutl from the transition set T 00 to

achieve CBM refinement. Furthermore, the transitions

Tads related to the events of the advertisements ads are

processed in the same manner as Toutl.

After processing all the transitions involved in noise

information, the final transition set T1 is formed. Then,

the states that do not appear in the T1 are deleted from

state set S 0, thereby forming the final state set S1. Thus

far, the original CBM has been built from the state set

S1 and transition set T1.

4.1.4 Algorithm of building CBMs for Web
applications

The core idea of the CBM construction is to

create a highly accurate model on the basis of user

behavior traces for Web applications. According to the

preceding discussions, the pseudo-code is summarized

in Algorithm 2.

In Algorithm 2, the function BuildModel() (Lines

1–10) shows the basic steps of the CBM construction.

In further detail, first, a state list S and a transition

list T are obtained with the help of the function

ObtainST(traces) by traversing the user behavior traces

set and matching Web pages and interactions in traces

with the states and transitions of the CBM. Then, the

same states in state list S are identified and merged by

comparing their similarity and combining the same ones

to form a new state set S 0 by means of the function

MergeIdenticalStates(S). Meanwhile, transitions whose

source or target state is merged are handled by the

function CorrectTrans(T; S 0). That is, their original

source or target states are corrected with the states in

S 0. As a result, a new list T 0 is obtained. Next, the

function MergeIdenticalTrans(T 0) is applied to identify

and merge identical transitions in T 0 to form a transition

set T 00, by comparing each component of transitions.

Thereafter, the function IdentifyNoiseVIPS(S 0) is used

to distinguish noise information according to state set

S 0 with the aid of the VIPS algorithm. Associated

Algorithm 2 Construct Web application’s CBM model
Input: a trace set traces
Output: CBM<S1; T1>//The Web application’s behavior model

1: function CORRECTTRANSBuildModel()

2: S; T D ObtainST.traces/I
3: S 0 D MergeIdenticalStates.S/I
4: T 0 D CorrectTrans.T; S 0/I
5: T 00 D MergeIdenticalTrans.T 0/I
6: Nav; OutAd D IdentifyNoiseVIPS.S 0/I
7: T1 D RemoveNoiseTrans.T 00; Nav; OutAd/I
8: S1 D RemoveNoiseStates.T1; S 0/I
9: Return S1; T1I

10: end function
11: function CORRECTTRANSMergeIdenticalStates (S)

12: set S 0 D ∅I
13: boolean flagŒ0; : : : ; .S:length � 1/�I
14: for (i D 0I i < S:lengthI i C C) do
15: flagŒi � D falseI
16: end for
17: for (i D 0I i < S:lengthI i C C) do
18: if (ŠflagŒi �) then
19: S 0:add.SŒi �/I
20: for (j D i C 1I j < S:lengthI j C C) do
21: if (ŠflagŒj �) then
22: if (Similarity.SŒi �; SŒj �/) then
23: flagŒj � D trueI
24: end if
25: end if
26: end for
27: end if
28: end for
29: Return S 0I
30: end function
31: function CORRECTTRANSCorrectTrans (T; S 0)

32: for i D 0I i < T:lengthI i C C do
33: for j D 0I j < S 0:lengthI j C C do
34: if (match.T Œi �:src; S 0Œj �/) then
35: T Œi �:src D S 0Œj �

36: end if
37: if (match.T Œi �:tgt; S 0Œj �/) then
38: T Œi �:trgt D S 0Œj �

39: end if
40: end for
41: end for
42: Return T 0I
43: end function

noise transitions in T 00 are then processed by the

function RemoveNoiseTrans(Nav, OutAd), where Nav

and OutAd are the events belonging to navigation and

out-of-site links as well as advertisements. Thus far,

a reduced set of transitions T1 is obtained. Finally, the

states that do not appear in T1 are eliminated from the

state set S 0 by the function RemoveNoiseStates(T1; S 0),
obtaining a reduced state set S1.

122 Tsinghua Science and Technology, February 2021, 26(1): 112–134

Concretely, function MergeIdenticalStates(S) (Lines

11–30), firstly, initializes a flag false for each state in the

state list S to indicate that all states are different (Lines

13–16). Then, for each state SŒi �, if its flag is false

(Lines 18–27), which means that no state is identical

to SŒi �, then the state is added to the new state set S 0
(Lines 18 and 19) and compared one by one with the

states behind it whose flag is also false (Lines 20–26).

If a subsequent state is recognized as the same as SŒi �,

then its flag is marked as true (Lines 22–24). If the flag

of SŒi � is true, then it is discarded, and the next state is

handled. After the preceding processing, a state set S 0
without duplicate states is produced (Line 29).

In CorrectTrans(T; S 0) (Lines 31–43), for each

transition T Œi � in the transition list T , the source state

and target state are compared with each new state S 0Œj �

in S 0. If the source state T Œi �:src or target state T Œi �:trgt

matches the state S 0Œj �, then it is replaced with S 0Œj �.

As a result, a new transition list T 0 with states merged in

S 0 is generated.

The implementation of the other functions is simple

and similar to the functions described. Thus, the details

of them are not explained in this paper.

4.2 CBM optimization

Equivalent states and transitions exist in the CBM

constructed by the preceding process. Thus, further

refining the original CBM by merging equivalent states

and transitions is necessary. This section discusses how

to identify and merge equivalent states and transitions to

obtain an optimized CBM. To illustrate the existence

of equivalent states and transitions in CBMs, we

introduce the following two common scenarios in Web

applications.

Situation 1: A user in different Web pages may

trigger identical events that may result in identical

subsequent Web pages.

It is a common case that users may trigger the same

event from different Web pages and reach the same target

page. For example, users can submit a login request from

the initial login page in Fig. 7a or an error login page

in Fig. 7b caused by an invalid username or password,

and arrive at the same successful index page shown in

Fig. 7c.

Situation 2: A user on a Web page may trigger the

same event with the different values of parameters that

may lead to different Web pages.

For instance, a user in the index page, as shown in Fig.

8a, may trigger the event of viewing details on different

rows, namely, associated with different values, which

(a) Login page (b) Error login page

(c) Reaching index page

Fig. 7 Example of Situation 1 in SchoolMate.

(a) Index page

(b) Details of Jane (c) Details of Shawn

Fig. 8 Example of Situation 2 in Addressbook.

may result in different Web pages, as shown in Figs. 8b

and 8c. Although the Web pages shown in Figs. 8b and

8c are different, they have the same incoming events and

derive from the same Web page.

For these two situations, the corresponding CBMs

are depicted in Fig. 9. CBM-1 refers to Situation

1, where the details of transition t1 are src.t1/=s1,

lbl.t1/=eventŒcond�=act, and trgt.t1/=s3, and transition

t2 means that src.t2/=s2, lbl.t2/=eventŒcond�=act,

and trgt.t2/=s3, respectively. The label and target

state of transitions t1 and t2 are the same, namely,

1

2

3

1

2

(a) CBM-1

1

2

0

1

2

(b) CBM-2

Fig. 9 Corresponding CBMs for Situations 1 and 2.

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 123

lbl.t1/=lbl.t2/ and trgt.t1/=trgt.t2/. CBM-2 refers

to Situation 2, where transition t 0
1 represents

that src.t 0
1/ = s0, lbl.t 0

1/ = event 0Œcond 0�=act 0, and

trgt.t 0
1/ = s1, and transition t 0

2 is that src.t 0
2/=s0,

lbl.t 0
2/=event0Œcond0�=act0, and trgt.t 0

2/=s2. The labels

and source state of transitions t 0
1 and t 0

2 are the same,

namely, lbl.t 0
1/=lbl.t 0

2/ and src.t 0
1/=src.t 0

2/.

Intuitively, if merging states s1 and s2 do not affect the

behavior of the CBM constructed, then these two states

should be merged. Otherwise, they cannot be combined.

To further refine CBMs, we define the following state

equivalence and transition equivalence in CBMs.

4.2.1 Definition of equivalent states and transitions
Definition 5 R-equivalent states. We assume the

outgoing transitions from state s1 is ft10; t11; : : : ; t1ng
and that from s2 is ft20; t21; : : : ; t2mg. The states s1 and

s2 are R-equivalent, if for each transition t1i .0 � i � n/

from s1, a corresponding transition t2j .0 � j � m/

from s2 exists such that their label lbl and target state trgt

are equal, i.e., lbl.t1i / = lbl.t2j / and trgt.t1i / = trgt.t2j /,

and vice versa.

Based on Definition 5, the states s1 and s2 of CBM-1

in Fig. 9a are R-equivalent.

Definition 6 L-equivalent states. We suppose that

the incoming transitions to state s1 is ft10; t11; : : : ; t1ng
and that to s2 is ft20; t21; : : : ; t2mg. The states s1 and s2

are L-equivalent, if for each transition t1i .0 � i � n/

pointing to s1, a corresponding transition t2j .0 � j �
m/ pointing to s2 exists such that their source state src

and label lbl are the same, i.e., src.t1i / = src.t2j / and

lbl.t1i / = lbl.t2j /, and vice versa.

Based on Definition 6, the states s1 and s2 of CBM-2

in Fig. 9b are L-equivalent.

Considering the definition of R-equivalent and L-

equivalent states, we define the equivalent states and

transitions for the CBMs of Web applications.

Definition 7 Equivalent states. Given states s1

and s2 of a CBM, s1 and s2 are equivalent, denoted

by equ<s1; s2 >, if they satisfy either of the following

two conditions:

• For each outgoing transition from s1, a

corresponding transition from s2 meets the requirement

that their label lbl and target state trgt are equal, and

vice versa.

• For each transition pointing to s1, a corresponding

transition pointing to s2 satisfies the requirement that

their source state src and label lbl are the same, and vice

versa.

Definition 8 Equivalent transitions. Given transitions

t1 = <src.t1/; lbl.t1/; trgt.t1/> and t2=<src.t2/; lbl.t2/;

trgt.t2/>, we say that t1 is equivalent to t2 iff src.t1/ and

src.t2/, trgt.t1/ and trgt.t2/, and lbl.t1/ and lbl.t2/ are

identical, respectively.

For an EFSM model, Androutsopoulos et al.[32]

thought that a bisimulation can be formed by merging its

R-equivalent and L-equivalent states. In other words,

the EFSM model after merging equivalent states is

equivalent in behavior to the original EFSM model. In

fact, our CBM is an EFSM model, and L-equivalent

states as well as R-equivalent states exist in our CBM.

Therefore, the CBM can be further optimized by

identifying and merging L-equivalent and R-equivalent

states.

4.2.2 Identifying and merging equivalent states
and transitions in CBMs

The equivalent states are distinguished by comparing

their incoming and outgoing transitions. If for each

incoming or outgoing transition of state si in a CBM,

there exists a corresponding transition pointing to sj or

deriving from sj , then states si and sj are judged to be

L-equivalent or R-equivalent. Thus, they can be merged

by reserving one randomly, such as sj . At the same time,

the transitions associated with the deleted state si are

modified with the reserved sj . Equivalent transitions are

identified by comparing each component of transitions

and merged by reserving one randomly.

Further details of identifying and merging equivalent

states and transitions in a CBM are shown in Algorithm

3. Given an original CBM<S1; T1> with state set S1

and transition set T1, firstly, we consider the state set

S1. For each state S1Œi � 2 S1, all outgoing transitions

whose source state is S1Œi � are extracted from the

transition set T1 and recorded into a two-dimensional

(2D) array outgoTran, where outgoTranŒi �Œj � = T1Œk�

means that the j -th outgoing transition of S1Œi � is T1Œk�

and outgoTranŒi � indicates all outgoing transitions from

S1Œi �. Likewise, all incoming transitions whose target

state is S1Œi � are drawn out from the transition set T1

and stored into another 2D array incomTran, where

incomTranŒi �Œj �=T1Œk� means that the j -th incoming

transition of S1Œi � is T1Œk� and incomTranŒi � presents all

incoming transitions of S1Œi �.

Then, for any two states S1Œi � and S1Œj � in S1,

whether they are equivalent is determined. In further

detail, firstly, consider the R-equivalent, if for each

transition T1Œp� outgoing from S1Œi � in outgoTranŒi �,

124 Tsinghua Science and Technology, February 2021, 26(1): 112–134

Algorithm 3 Optimize CBM model
Input: the original CBM<S1; T1>

Output: the optimized CBM<S; T>

1: Procedure OptimizeModel() begin

2: Set S; T D ∅

3: Array outgoTran[][]; incomTran[][]I //store all outgoing &

incoming transitions for each state

4: flag D false //indicating whether there are equivalent states

5: do
6: flag D falseI
7: outgoTran D ExtractOutgoTrans.S1; T1/I
8: incomTran D ExtractIncomTrans.S1; T1/I
9: for (i D 0I i < S1:lengthI i C C) do

10: for (j D i C 1I j < S1:lengthI j C C) do
//Optimize model by merging R-equivalent states

11: if (equ.outgoTranŒi �; outgoTranŒj �/) then
12: flag D trueI
13: MergeState.S1Œi �; S1Œj �/I
14: ReplaceState.S1Œi �; S1Œj �; T1/I
15: end if//Optimize model by merging L-equivalent

states

16: if (Šflag) then
17: if (equ.incomTranŒi �; incomTranŒj �/) then
18: flag D trueI
19: MergeState.S1Œi �; S1Œj �/I
20: ReplaceState.S1Œi �; S1Œj �; T1/I
21: end if
22: end if
23: end for
24: end for
25: for (i D 0I i < T1:lengthI i C C) do //merge equivalent

transitions

26: for .j D i C 1I j < T1:lengthI j C C) do
27: if (equTran.T1Œi �; T1Œj �/) then
28: MergeTran.T1Œi �; T1Œj �/I
29: end if
30: end for
31: end for
32: while flag D false

33: S DS1; T DT1I
34: return CBM <S; T>

there is a corresponding transition T1Œq� outgoing from

S1Œj � in outgoTranŒj � whose label lbl and target state

trgt are identical to those of T1Œp�, then S1Œi � and S1Œj �

are taken as R-equivalent, implemented by the function

equ.outgoTranŒi �; outgoTranŒj �/: In a similar manner,

the L-equivalent is considered, namely, if for each

incoming transition T1Œu� of S1Œi � in incomTranŒi �, there

is a corresponding transition T1Œv� pointing to S1Œj � in

incomTranŒj �, whose label lbl and source state src are

the same as those of T1Œu�, then S1Œi � and S1Œj � are

regarded as L-equivalent, which are implemented by the

function equ.incomTranŒi �; incomTranŒj �/. Otherwise,

these two states are independent.

After the equivalent states are identified, they are

merged into one state. In other words, if a pair of states

SŒi � and SŒj � are judged to be L-equivalent, then one

of them, such as SŒj �, is deleted from the state set S1.

At the same time, the transitions in T1, whose source

or target state is the deleted state SŒj �, are modified.

That is, the deleted state SŒj � on these transitions is

replaced with the other reserved SŒi �. Similarly, if a pair

of states are judged to be R-equivalent, then the states

and transitions are handled in the same manner. The

process is implemented by the function MergeState and

ReplaceState.

Then, equivalent transitions are considered. That is,

for each pair of transitions T Œi � and T Œj � in transition set

T1, if the two transitions are determined to be equivalent

according to Definition 7, namely, equTran(T Œi �; T Œj �/

returns true, then one of T Œi � and T Œj � is removed

from T1. As merging equivalent transitions may cause

the emergence of new equivalent states, the preceding

process is repeated until no equivalent states exist.

4.3 Equivalence proof of CBMs before and after
optimization

To demonstrate that the original and optimized

CBMs have the same behaviors, the main theorem

homomorphism of model projection[32] is applied to

prove it. That is, if there is a homomorphic mapping

between the original and optimized CBMs, then the two

CBMs are deemed to have the same behaviors, namely,

they react to user operations in the same ways.

The homomorphic mapping between two CBMs is

defined as follows:

Definition 9 Homomorphic mapping of models.
For the original CBM = .S; I; O; T / and optimized

CBM0 = .S 0; I 0; O 0; T 0/ of a Web application, a

homomorphic mapping h from CBM to CBM0 is defined

as a pair of functions h = .hS W S ! S 0; hT W T ! T 0)
that preserves the structure of CBM as well as CBM0
and satisfies the following constraints:

8t 2 T in the CBM whose src(t) = s1, trgt(t) = s2,

lbl(t) = event[con]/act, and s1, s2 2 S , CBM0 has the

corresponding states and transitions that meet hT .t/ =

t 0 2 T 0; hS .s1) = s0
1, hS .s2) = s0

2 2 S 0; and src(t 0) = s0
1,

trgt(t 0) = s0
2, and lbl.t 0/ = eventŒcon�=act hold.

In the following, we prove that the original CBM

is homomorphic to the optimized CBM0, namely, a

homomorphic mapping from CBM to CBM0 exists.

As discussed in the preceding, the optimized CBM

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 125

is obtained by merging equivalent states and equivalent

transitions of CBM. In other words, states from set S

that satisfy L-equivalent or R-equivalent conditions are

merged, and then equivalent transitions from set T are

processed. Thus, to prove that CBM is homomorphic

to CBM0, we only have to prove the following two

propositions.

Proposition 1 Given an original CBM = (S, I, O,
T) and an optimized CBM0 = (S0, I0, O0, T0) produced

by merging R-equivalent states of CBM, CBM is

homomorphic to CBM0.
Proof CBM0 is the slice of CBM produced by

merging R-equivalent states. We show the presence of a

model homomorphic mapping, h, from CBM to CBM0.
We assume that the CBM which includes states s1

and s2 has identical outgoing transitions. That is, if

state s1 has an outgoing transition t1 whose src.t1/ = s1,

lbl.t1/ = eventŒcon�=act, and trgt.t1/ = x, then state s2

also has an outgoing transition t2 whose src.t2/ = s2,

lbl.t2/ = eventŒcon�=act, and trgt.t2/ = x. According to

Definition 5, states s1 and s2 are R-equivalent. Thus,

CBM0 can be obtained by merging s1 and s2. Then,

CBM0 is identical to CBM except that s1 and s2

are replaced by a single state s. The corresponding

transitions t1 and t2 in CBM are replaced by a single

transition t with src.t/=s, lbl.t/=eventŒcon�=act, and

trgt.t/=x, where s is either s1 or s2. As a result, CBM0
is obtained. Thus, a mapping h = .hS ; hT / from CBM

to CBM0 exists, where hS W S!S 0 means that s1 and s2

in S are mapped to s in S 0 by hS , hT W T !T 0 means

that t1 and t2 in T are mapped to t in T 0 by hT , and

transitions targeting s1 or s2 in T map the transitions

targeting s in T 0. That is, CBM is clearly homomorphic

to CBM0.
Proposition 2 Given a CBM0 = (S 0, I 0, O 0, T 0) and

its slice CBM00 = (S 00, I 00, O 00, T 00), which are produced

by merging L-equivalent states, CBM0 is homomorphic

to CBM00.
Proof CBM00 is the slice of CBM0 produced by

merging L-equivalent states. We show that a model

homomorphic mapping, h0, exists from CBM0 to CBM00.
We assume that CBM0 includes states s0

1 and s0
2,

which have identical incoming transitions. That is, if

state s1 has an incoming transition t 0
1 whose src.t 0

1/ = x,

lbl.t 0
1/ = event0Œcon0�=act0, and trgt.t 0

1/ = s0
1, then state s0

2

also has an incoming transition t 0
2 whose src.t 0

2/ = x,

lbl.t 0
2/ = event0Œcon0�=act0, and trgt.t 0

2/ = s0
2. According

to Definition 6, states s0
1 and s0

2 are L-equivalent. Thus,

CBM00 can be obtained by merging s0
1 and s0

2. Then,

CBM00 is identical to CBM0 except that s0
1 and s0

2

are replaced by a single state s0. The corresponding

transitions t 0
1 and t 0

2 in CBM0 as above are replaced

in CBM00 by a single transition t 0 with src.t 0/ = x,

lbl.t 0/ = event0Œcon0�=act0, and trgt.t 0/ = s0, where s0 is

either s0
1 or s0

2. Besides, the transitions deriving from s0
1

or s0
2 are replaced by transitions deriving from s0. As a

result, CBM00 is obtained. Thus, a mapping h0=(h0
S ,h0

T)

exists from CBM0 to CBM00, where h0
S : S 0 ! S 00 means

that s0
1 and s0

2 in S 0 are mapped to s0 in S 00 by h0
S , h0

T :

T 0 ! T 00 means that t 0
1 and t 0

2 in T are mapped to t 0
in T 00 by h0

T , and transitions deriving from s0
1 or s0

2 in

T 0 map the transitions from s0 in T 00. That is, CBM0 is

homomorphic to CBM00.
According to the proofs, a homomorphic mapping

h exists from CBM to CBM0, and a homomorphic

mapping h0 occurs from CBM0 to CBM00. Obviously,

homomorphism satisfies transitivity. Thus, CBM is

homomorphic to CBM00. So, we can conclude that a

homomorphic relation exists between the original CBM

and the optimized CBM, that is, the two models have

the same semantics. Equivalent transitions merging

essentially remove duplicate transitions in the CBM;

thus, the behavior of the model is not affected. Thus,

the optimized CBMs are valid to represent the dynamic

behavior of Web applications.

5 Empirical Study

This section focuses on the evaluation metrics and

research questions, information about subject programs

and experimental design, experiment results and analysis,

and threats to validity.

5.1 Evaluation metrics and research questions

To verify the validity of the CBM construction method,

we conducted a series of experiments on six commonly

used Web applications, and the effectiveness and

efficiency are evaluated on the basis of these experiments.

The effectiveness is reflected in whether a CBM can

accurately represent the dynamic behavior of a Web

application, and the efficiency is embodied in the time

cost of CBM construction. As we know, modern Web

applications are mostly event-driven, and these events

are responded by a set of client-side JS functions

called event handlers. The execution of event handlers

causes Web pages (DOMs) transferred to other pages.

Furthermore, events with different trigger conditions

of event handlers may result in different Web pages

and follow-up operations. As a result, the client-side

behaviors of Web applications are closely related to

events, trigger conditions (JS branches), and DOMs.

126 Tsinghua Science and Technology, February 2021, 26(1): 112–134

Thus, the accuracy and integrity of CBMs in representing

the client-side behavior of Web applications can be

manifested by the coverage of events, JS branches, and

DOMs.

Therefore, three metrics are raised to measure the

effectiveness of our CBM construction method. They

are the coverage of events, JS branches, and DOMs. For

events and JS branches, we can obtain all of them in

client-side code through static source code analysis. For

DOMs, they are dynamically created in the execution

of client-side and server-side code, so it is difficult to

distinguish where DOMs are generated. Therefore, we

regard the DOMs that appear in user behavior traces as

all the DOMs. The details of these three metrics are

described as follows:

• Metric 1: Events Coverage (EC). EC measures

the proportion of the events that appear in the CBM

constructed to all events in the client-side code of the

Web application. For a CBM of Web application, EC

can be computed as follows:

EC D jM.eventsj
jW.eventsj (3)

where jM:eventsj indicates the number of all events in

the CBM model and jW.eventsj represents the number

of all events in the Web application.

• Metric 2: JS branch Coverage (JC). JC estimates

the proportion of the JS branches that occur in the CBM,

i.e., conditions on transitions, to all JS branches in the

client-side code of the Web application. For a CBM of

the Web application, JC can be calculated as follows:

JC D jM.JSbranchesj
jW.JSbranchesj (4)

where jM.JSbranchesj implies the number of all JS

branches in the CBM and jW:JSbranchesj indicates the

number of all JS branches in the Web application.

• Metric 3: DOM Coverage (DC). DC evaluates the

proportion of the DOMs that appear in the CBM to all

the DOMs that occur in the user behavior traces. For a

CBM of Web application, DC can be counted as follows:

DC D jM.DOMsj
jW.DOMsj (5)

where jM.DOMsj represents the number of all DOMs

in the CBM and jW.DOMsj depicts the number of all

DOMs in the user behavior traces with respect to a Web

application.

As mentioned, our CBM construction is based on user

behavior traces. In the previous study[19], we discussed

how to obtain the trace sets according to the Web

applications under test. When acquiring the trace sets,

three adequacy criteria (all events coverage, all JS

branches coverage, and maximum DOM coverage) are

used to guide the minimal trace set generation. Under

the premise of satisfying the adequacy criteria, we have

obtained three minimal user behavior trace sets for each

Web application, which are event-trace-set, JS-trace-set,

and DOM-trace-set, respectively. The three trace sets are

used to construct CBMs to further evaluate the influence

of different trace sets on the CBM models built.

We implemented a prototype to assess the CBM

construction approach reported in this paper. Moreover,

the following research questions are raised and

investigated:

RQ1. Is our CBM construction method effective for

Web applications?

RQ2. Is the optimized CBM more effective than the

original CBM?

RQ3. How do different trace sets affect the CBM

models built? Which trace set is the most suitable for

modeling a Web application?

RQ4. How efficient is our approach to CBM

construction?

5.2 Experimental subjects and design

To address the given research questions, we selected

five commonly used open-source Web applications from

https://sourceforge.net and a laboratory management

system developed by our group, called DBLab, as

the experimental subjects. These applications are

implemented in PHP or JSP language. Table 2 provides

a brief description of these subjects, including the

programming language, size of Web applications, Lines

Of Code (LOC), number of events (#Events), number of

Table 2 Web applications used in the study.
App name Version Language Size (KB) LOC #Events #JS branches Functional description

SchoolMate 1.5.4 PHP 365 8181 159 161 School admin system

Addressbook 8.2.5.2 PHP 3799 47 481 50 27 Addressbook management system

Webchess 1.0.0 PHP 468 4722 28 374 Online chess game

FAQForge 1.3.2 PHP 227 1712 20 – FAQ management tool

JCart 1.3.0 PHP 123 1188 7 13 Online shopping

DBLab – JSP 166 10 526 41 72 Laboratory management system

phpaaCMS 0.0.5 PHP 1659 15 949 65 105 Article management system

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 127

JS branches (#JS branches), and a functional description

of the Web applications. Although the total JS branches

in Webchess are 374, a large number of them (363) are

used to make rules for playing chess. The execution of

this kind of JS branches does not affect the states space.

So these branches are filtered when obtaining the trace

set and building the CBM. In addition, subject FAQForge

is a simple PHP Web application without JS branches.

The CBM modeling method contains two phases: One

is to build corresponding CBMs for Web applications

based on their user behavior trace sets, called original

CBMs, and the other is to optimize the original CBMs

by merging equivalent states and transitions, called

optimized CBMs. To evaluate the effectiveness of the

two phases, we construct these two CBM models on the

basis of three trace sets, that is, event-trace-set, JS-trace-

set, and DOM-trace-set, respectively, and further analyze

the difference between the original and optimized CBMs

for each Web application.

In summary, for a Web application, we use three

trace sets to build corresponding CBM models, and then

optimize the CBMs built. As a result, six CBM models

are established for each Web application, which are listed

in Table 3.

All experiments are performed on Windows platform

(Windows10-64 bit) with CPU i5-2470 and 8 GB of

memory. The programming language is Python.

Table 3 CBM models constructed by different trace sets.
Trace set Original CBM Optimized CBM

Event-trace-set CBMEvOrg CBMEvOpt

JS-trace-set CBMJsOrg CBMJsOpt

DOM-trace-set CBMDoOrg CBMDoOpt

5.3 Experimental results and analysis

5.3.1 Results for RQ1
To assess the CBM construction method, we use three

user behavior trace sets to build the CBMs for Web

applications under test. The related statistics on user

behavior traces, model components after merging the

same components, noises removed, and original CBM

built are summarized in Table 5. For example, for

SchoolMate, the number in parentheses of event-trace-

set is 34, which means that 34 traces are obtained to

cover all events of SchoolMate; the number of states and

transitions <#s, #t> that are included in the event-trace-

set is 538 and 504, respectively; the number <#s, #t> is

decreased to 65 and 352 after merging identical states

and transitions; and the number <#s, #t> is further

reduced to 65 and 161 after removing noise states and

transitions, respectively. As a result, the original CBM

consists of 65 states and 161 transitions according to

event-trace-set of SchoolMate. Moreover, the CBM of

SchoolMate login by administrators is shown in Fig. 10.

Table 5 Statistics on traces, merging information, noises removed, and original CBM built.
Web app Trace set <#s, #t> of trace <#s, #t> merge same <#s, #t> remove noise <#s, #t> of CBMs

SchoolMate

event-trace-set (34) <538, 504> <65, 352> <65, 161 > CBMEvOrg <65, 161>

JS-trace-set (50) <707, 657 > <70, 352> <70, 186> CBMJsOrg <70, 186>

DOM-trace-set (53) <722, 669 > <73, 352> <73, 203> CBMDoOrg <73, 203>

Addressbook

event-trace-set (10) <118, 108> < 34, 84> <34, 76> CBMEvOrg <34, 76>

JS-trace-set (11) <122, 111> <34, 85> <34, 78> CBMJsOrg < 34, 78>

DOM-trace-set (11) <123, 112> <34, 84 > <34, 80 > CBMDoOrg <34, 80 >

Webchess

event-trace-set (10) < 77, 67> < 9, 33> <9, 28 > CBMEvOrg <9, 28 >

JS-trace-set (12) <92, 80 > <10, 33 > <10, 32> CBMJsOrg <10, 32>

DOM-trace-set (11) <84, 73> <10, 33 > <10, 31> CBMDoOrg <10, 31>

FAQForge

event-trace-set (5) <65, 60> <8, 35> <8, 21> CBMEvOrg <8, 21>

JS-trace-set (–) � � � �
DOM-trace-set (6) <71, 65> < 9, 36 > <9, 23 > CBMDoOrg <9, 23>

JCart

event-trace-set (2) < 27, 25 > <3, 13 > <3, 10> CBMEvOrg <4, 10>

JS-trace-set (3) < 32, 29> <4, 15> <4, 14 > CBMJsOrg <4, 14>

DOM-trace-set (3) < 32, 29> <4, 15> <4, 14 > CBMDoOrg <4, 14 >

DBLab

event-trace-set (13) <117, 104> <32, 80 > <32, 67 > CBMEvOrg <32, 67 >

JS-trace-set (24) <198, 174 > <43, 123> <43, 106> CBMJsOrg <43, 106 >

DOM-trace-set (40) <276, 236> <59, 131 > <59, 108 > CBMDoOrg <59, 108 >

Average

event-trace-set (12) <157, 145> <25, 99> <25, 60> CBMEvOrg <25, 60 >

JS-trace-set (20) <230, 210> <32, 122> <32, 83> CBMJsOrg <32, 83>

DOM-trace-set (21) <218, 197> <31, 108> <31, 76> CBMDoOrg <31, 76>

128 Tsinghua Science and Technology, February 2021, 26(1): 112–134

Fig. 10 CBM of SchoolMate login by administrators.

Evidently, we observe a large number of identical states

and transitions as well as redundant ones in the user

behavior trace sets.

Moreover, the three metrics identified (EC, JC, and

DC) are applied to estimate the effectiveness of the

CBMs constructed. The results are shown in Table 5. To

reveal the coverage of CBMs more intuitively, we use

histograms, as shown in Fig. 11, to depict the coverage

Table 5 Evaluation results of CBMs of Web applications.
Web app <#s, #t> of CBMs EC JC DC

SchoolMate

CBMEvOrg <65, 161> 159/159=100% 114/161=70.81% 65/73=89.04%

CBMJsOrg <70, 186> 159/159=100% 161/161=100% 70/73=95.89%

CBMDoOrg <73, 203> 159/159=100% 161/161=100% 73/73=100%

Addressbook

CBMEvOrg <34, 76> 50/50=100% 23/27=85.19% 34/34=100%

CBMJsOrg < 34, 78> 50/50=100% 27/27=100% 34/34=100%

CBMDoOrg <34, 80 > 50/50=100% 27/27=100% 34/34=100%

Webchess

CBMEvOrg <9, 28 > 28/28=100% 2/11=18.18% 9/10=90%

CBMJsOrg <10, 32> 28/28=100% 11/11=100% 10/10=100%

CBMDoOrg <10, 31> 28/28=100% 11/11=100% 10/10=100%

FAQForge

CBMEvOrg <8, 21> 20/20=100% � 8/9=88.89%

CBMJsOrg .�/ � � �
CBMDoOrg <9, 23> 20/20=100% � 9/9=100%

JCart

CBMEvOrg <4, 10> 7/7=100% 7/13=53.85% 4/4=100%

CBMJsOrg <4, 14> 7/7=100% 13/13=100% 4/4=100%

CBMDoOrg <4, 10> 7/7=100% 13/13=100% 4/4=100%

DBLab

CBMEvOrg <32, 67> 41/41=100% 35/72=48.61% 32/59=54.24%

CBMJsOrg <43, 106> 41/41=100% 72/72=100% 43/59=72.88%

CBMDoOrg <59, 108> 41/41=100% 72/72=100% 59/59=100%

Average

CBMEvOrg <25, 60> 100% 56.23% 87.03%

CBMJsOrg <32, 83> 100% 100% 93:75%

CBMDoOrg <31,76> 100% 100% 100%

0

20

40

60

80

100

CBM CBM CBM
EC JC DC

(a) SchoolMate

0

20

40

60

80

100

CBM CBM CBM
EC JC DC

(b) Addressbook

0

20

40

60

80

100

CBM CBM CBM
EC JC DC

(c) Webchess

0

20

40

60

80

100

EC JC DC

(d) FAQForge

0

20

40

60

80

100

EC JC DC

(e) JCart

0

20

40

60

80

100

EC JC DC

(f) DBLab

Fig. 11 EC, JC, and DC of CBM by using different trace sets.

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 129

of CBMs constructed with respect to different trace sets

for six Web applications. As shown in Table 5 and Fig.

11, the EC of the original CBMs built based on the

event-trace-set, i.e., CBMEvOrg model, is 100%; the JC of

the original CBMs associated with the JS-trace-set, i.e.,

CBMJsOrg model, is 100%; and the DC of the original

CBMs related to DOM-trace-set, i.e., CBMDoOrg model,

is 100% for each Web application. These results indicate

that our CBM construction method for Web applications

is effective, and all events, JS branches, and DOMs can

be preserved.

5.3.2 Results for RQ2
To evaluate the effectiveness of the CBM optimization

method (RQ2), we compared the number of states

and transitions of the original CBMs constructed

and optimized CBMs for each Web application. The

results are exhibited in Table 6. Furthermore, the

difference between these two CBM models are analyzed.

According to Situation 1 discussed in Section 4.2, a

user on different Web pages triggers identical events

and reaches the same follow-up pages. Then, the

preceding states and corresponding transitions are

merged into one in the optimized CBM. Similarly,

as described in Situation 2, a user on the same Web

page triggers the same event with different values but

results in different follow-up pages. Then, corresponding

Table 6 Comparison of original and optimized CBMs.
Web app <#s, #t> of CBMs�Org Œ#s, #t� of CBMs�Opt

SchoolMate

CBMEvOrg <65, 161> CBMEvOpt <64, 160>

CBMJsOrg <70, 186> CBMJsOpt <69, 185>

CBMDoOrg <73, 203> CBMDoOpt <72, 202>

Addressbook

CBMEvOrg <34, 76> CBMEvOpt <31, 73>

CBMJsOrg <34, 78> CBMJsOpt <31, 75>

CBMDoOrg <34, 80> CBMDoOpt <31, 77>

Webchess

CBMEvOrg <9, 28 > CBMEvOpt <9, 28>

CBMJsOrg <10, 32> CBMJsOpt <10, 32>

CBMDoOrg <10, 31> CBMDoOpt <10, 31>

FAQForge

CBMEvOrg <8, 21> CBMEvOpt <8, 21>

CBMJsOrg .�/ CBMJsOpt .�/

CBMDoOrg <9, 23> CBMDoOpt <9, 23>

JCart

CBMEvOrg <4, 10> CBMEvOpt <4, 10>

CBMJsOrg <4, 14> CBMJsOpt <4, 14>

CBMDoOrg <4, 14> CBMDoOpt <4, 14>

DBLab

CBMEvOrg <32, 67> CBMEvOpt <30, 66>

CBMJsOrg <43, 106> CBMJsOpt <41, 105>

CBMDoOrg <59, 108> CBMDoOpt <57, 107>

Average

CBMEvOrg <25, 60> CBMEvOpt <24, 60>

CBMJsOrg <32, 83> CBMJsOpt <31, 82>

CBMDoOrg <31, 76> CBMDoOpt <30, 76>

transitions and follow-up states are combined in the

optimized CBM. Thus, the optimized CBM has fewer

states and transitions than the original CBM.

The coverage metrics are also estimated for the

optimized CBMs. The results are described in Table

7. As Table 7 shows, the EC of the optimized CBMs

built based on event-trace-set of Web applications,

i.e., CBMEvOpt, is 100%. Similarly, CBMJsOpt reaches

100% JC, based on the corresponding JS-trace-set. This

indicates that the optimization does not affect the

coverage of events and JS branches of the CBMs built.

However, the merging of equivalent states results in that

the states on the optimized CBMs cannot match the

DOMs of Web applications one by one. Therefore, DC

is not evaluated for the optimized CBM.

5.3.3 Results for RQ3
We recall that RQ3 is how different trace sets affect

the CBMs and which trace set is the most appropriate

for modeling Web applications. This question can be

answered by analyzing the difference among the CBMs

constructed by these three trace sets, namely, event-trace-

set, JS-trace-set, and DOM-trace-set. Tables 5 – 7 detail

the differences in the coverage and scales of the CBMs

built. The more traces we use, the larger the scale of the

CBM, and the higher the coverage of the CBM.

Moreover, for a Web application, the CBMs built

based on three different trace sets are analyzed and

Table 7 Evaluation results of optimized CBMs.
Web app <#s, #t> of CBMs�Opt EC JC

SchoolMate

CBMEvOpt <64,160> 159/159=100%114/161=70.81%

CBMJsOpt <69, 185> 159/159=100% 161/161=100%
CBMDoOpt <72, 202> 159/159=100%161/161=100%

Addressbook

CBMEvOpt <31, 73> 50/50=100% 23/27=85.19%

CBMJsOpt <31, 75> 50/50=100% 27/27=100%
CBMDoOpt <31, 77> 50/50=100% 27/27=100%

Webchess

CBMEvOpt <9, 27> 28/28=100% 2/11=18.18%

CBMJsOpt <10, 32> 28/28=100% 11/11=100%
CBMDoOpt <10, 31> 28/28=100% 11/11=100%

FAQForge

CBMEvOpt <8, 21> 20/20=100% �
CBMJsOpt .�/

CBMDoOpt <9, 23> 20/20=100% �

JCart

CBMEvOpt <4, 10> 7/7=100% 7/13=53.85%

CBMJsOpt <4, 14> 7/7=100% 13/13=100%
CBMDoOpt <4, 10> 7/7=100% 13/13=100%

DBLab

CBMEvOpt <30, 66> 41/41=100% 35/72=48.61%

CBMJsOpt <41, 105> 41/41=100% 72/72=100%
CBMDoOpt <57, 167> 41/41=100% 72/72=100%

Average
CBMEvOpt <24, 60> 100% 56.23%

CBMJsOpt <31, 82> 100% 100%

130 Tsinghua Science and Technology, February 2021, 26(1): 112–134

compared. Tables 5 and 7 show that CBMEv� models

constructed by the event-trace-set can cover all the

events but not all the JS branches. CBMJs� models

built by the JS-trace-set can cover all the events and

JS branches but not all DOMs. CBMDoOrg models built

by the DOM-trace-set cover all the events, JS branches,

and DOMs. Here, “*” stands for original or optimized.

However, as all DOMs are collected from dynamically

executed traces and the traces from different users are

changeable, total DOMs are undecided, which further

causes uncertainty in the CBMDo� built. Furthermore,

the changes of DOMs derive from the execution of client-

side or server-side code, and it is difficult to distinguish

where the changes are from. Thus, the DOM-trace-set is

unsuitable for constructing CBMs for Web applications.

In contrast to DOMs, the events and JS branches are

obtained by static analysis from the client-side source

code. They are deterministic and corresponding traces

can indicate the client-side behaviors. Thus, the CBMEv�
and CBMJs� built can represent the dynamic behavior

of Web applications demonstrably. As shown in Tables

5 and 7, CBMJs� built can cover all the events and JS

branches with respect to a Web application. Therefore,

we can infer that the JS-trace-set is the most appropriate

for modeling a modern Web application. For Web

applications without JS branches, the event-trace-set is

suitable for modeling.

5.3.4 Results for RQ4
The efficiency of our CBM modelling method can

be measured by the time cost. As discussed in the

preceding, the JS-trace-set is the most appropriate for

modelling a Web application. Thus, we build the CBMs

according to the JS-trace-set and record the time cost

of building the original CBM and optimizing the CBM

model. For FAQForge, as no JS branches exist, the

event-trace-set is used for modeling. The results are

shown in Table 8. Building CBMs involves the DOM

comparison; thus, much more time is needed than that

Table 8 Time cost of our methods.
(s)

Web app
<#s, #t>
of CBMs

Original
CBM

Optimized
CBM

Total

SchoolMate <69,185> 12.5681 0.2139 12.7820

Addressbook <31,75> 1.1315 0.0949 1.2268

Webchess <10, 32> 1.1865 0.0089 1.1954

FAQForge <8, 21> 0.9612 0.0039 0.9651

JCart <4,14> 0.5003 0.0015 0.5018

DBLab <41, 105> 2.3442 0.1295 2.5738

Average 3.1153 0.0754 3.2075

of optimizing models, which is only concerned with

the identification and merging of equivalent states and

transitions. The maximum time cost is 12.7820 s for the

six Web applications. Thus, we can say that the time cost

is acceptable.

5.4 Threats to validity

Like any empirical study, our evaluation is subject

to threats to validity. The major threat is the

representativeness of the selected subjects which are five

open-source Web applications from https://sourceforge.

net and a laboratory management system developed

by our group. All these may affect the evaluation

of the proposed approach. However, five open-source

Web applications are popular and widely used in Web

testing[26, 33, 34]. Therefore, we believe that this threat is

limited.

In addition, CBMs are constructed according to

corresponding user behavior trace sets. Thus, another

threat relates to the integrity of trace sets. In the

experiments, the total events and JS branches with

respect to the Web applications under test are collected

by static analysis. To reduce this threat, the uncovered

events and JS branches are carefully inspected, and

corresponding traces are complemented manually to

cover all events and JS branches. Furthermore, the

automatic generation of reasonable traces is under study.

6 Related Work

6.1 Models for Web applications

Web applications are widely used to offer various

services for users[35]. A critical problem is how to

ensure the security and reliability of Web applications[36].

The graph and model-based testing approach is an

effective way to derive test cases based on the

models constructed[7]. Thus, creating a model for Web

application is essential, and precise models can support

program understanding and testing. At present, many

models are used to characterize the behavior of Web

applications. For example, Ricca and Tonella[22] created

a Finite State Machine (FSM) model in which nodes

represent Web objects (Web pages, forms, frames, and

others) and edges represent relationships and interactions

among the objects (include, submit, split, link, and

others). Andrews et al.[37] proposed the FSM with

constraints for Web applications. Logical Web pages

are represented by nodes in the FSM, and the transitions

among logical Web pages are described by edges.

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 131

These models focus on traditional Web applications

which are based on the synchronous request-response

protocol. However, asynchronous requests appear in

modern Web applications, which make user interfaces

active and responsive due to the use of JS and DOM.

For modern Web applications, Marchetto and

Tonella[9] proposed an FSM to model the behaviors of

Web applications. The DOM of Web pages manipulated

by the JS code is abstracted into a state of an FSM model,

and the callback executions triggered by asynchronous

messages from the Web server are associated with state

transitions. The authors in Refs. [20, 38] described a

technique for crawling Ajax-based applications through

automatic dynamic analysis of user interface state

changes in Web browsers. Mirshokraie et al.[39] used

a state-flow graph that captured the explored dynamic

DOM states and event-based transitions between them.

Qi et al.[11] also constructed a state flow graph for Web

applications in which a state referred to a user interface

state and an edge between states was labeled with the

type of an event. The authors in Ref. [2] introduced an

event-flow graph for Web applications in which a node

represents the Web page object and an edge represents

the event that causes certain parts of the page to change.

Schur et al.[15] presented an FSA in which the nodes

denoted abstract individual states of the Web application

and were numbered in the order that they were detected

by ProCrawl, whereas the transitions denoted actions

that changed the state and were performed by users

acting in different roles.

In addition to the FSMs for modeling Web

applications, a few approaches mined extended FSMs

by combining the FSMs with data rule inference or data

rule computed based on the input data. For example, the

authors in Refs. [5, 6, 10, 23] proposed a graph-based

behavioral model, in which a node is an information

set that includes the triggered event, related event-

handler function, and impact on the dynamic DOM

state, whereas an edge signifies a progression of time

connecting nodes. However, because a node integrates

a large volume of information, it is difficult to use in

generating test cases from this model. Schur et al.[16]

mined explicit behavior models of Web applications as

an EFSM, and a tool named PROCRAWL was given

to create the model. The nodes in this method denoted

abstract individual states of the Web application, whereas

the transitions denoted actions that changed the states

and the conditions of the transitions were computed

based on the input data.

Although these models consider the new features (i.e.,

dynamic, event-driven, and asynchronous nature), they

neither represent the parameter(s) or DOM element

changes nor the relation between Web pages and

execution conditions of event handlers. Furthermore,

our CBM construction is based on user behavior traces

while other modeling techniques, such as PROCRAWL,

are based on crawlers. Thus, the coverage of the models

built is related to the user behavior traces and crawlers

used.

Besides the explicit behavior models for Web

applications, a large number of studies focus on the

event dependency analysis over program variables and

event-handler functions of the various DOM elements,

which can be treated as implicit models for Web

applications. For example, Sung et al.[40] proposed

the first constraint-based static analysis method for

computing dependencies across event-handlers and

between HTML DOM elements. Nguyen et al.[41]

provided a call graph for client-side code while it was

still embedded in server-side code. The nodes in the

call graph referred to code elements with corresponding

origin locations in string literals of the server-side code.

The edges represented possible jumps between the nodes

and may have conditions. Wang et al.[42] proposed an

Event Handler Tree (EHT) model to assist the test case

generation process, in which the node of EHT is the

event handler and the relationship between two event

handlers is the dependency.

6.2 Trace-based model inference techniques

To model Web applications, dynamic analysis techniques

are extensively applied in model establishing, which

take a set of traces as input and infer a model based

on these traces[14, 43]. For example, Marchetto and

Tonella[9] created an FSM model by traces, aiming at

detecting Ajax faults caused by the execution order of

semantically interacting events. Thus, the trace only

contained information about the DOM states and event

sequences causing transitions from state to state. This

approach considers neither the parameters or DOM

element changes nor the relation between the conditions

of event-handler functions and Web pages.

The authors in Refs. [5,10,23] proposed a graph-based

behavior model created by traces. The objective was to

facilitate developers’ understanding of the client-side

behavior of the Web application. A detailed trace of a

Web application’s behavior was captured, including all

the event-handler functions that were executed either

132 Tsinghua Science and Technology, February 2021, 26(1): 112–134

directly or indirectly after an event occurred. Although

the researchers considered the event-handler functions,

the trace did not analyze the internal structure of these

functions and the relation between the conditions of the

event-handler functions and Web pages.

Schur et al.[16] applied the event sequences as the

observed application executions traces to mine an

explicit FSA model of enterprise Web applications.

They incrementally learned a model by generating

program runs(traces) and observing the application

behavior through the user interface. The relation between

conditions and Web pages was computed based on the

input data of traces. However, if the Web pages depend

on specific features of the supplied data, which can

trigger the corresponding conditions, PROCRAWL is

unlikely to explore this relation through guessing.

7 Conclusion

This paper proposed a novel CBM to represent dynamic

behaviors for modern Web applications, which can

depict not only the Web pages and trigger events but

also the trigger conditions and follow-up operations. To

generalize CBMs automatically for Web application, we

captured the user behavior traces and recorded them in

advance. Then, based on the traces, the original CBMs

were constructed and further optimized by identifying

and merging equivalent states and transitions. Moreover,

we prove that there exists a homomorphism relation

between the original and optimized CBMs, that is, they

exhibit the same behavior. The experiments show that

our CBM construction method is effective and the JS-

trace-set is most appropriate to guide the generation of

CBMs for Web applications.

Acknowledgment

The work was supported by the National Natural Science

Foundation of China (Nos. 61672085, 61702029, and

61872026).

References

[1] H. Javed, N. M. Minhas, A. Abbas, and F. M. Riaz, Model

based testing for Web applications: A literature survey

presented, Journal of Software, vol. 11, no. 4, pp. 347–361,

2016.
[2] E. Habibi and S. H. Mirian-Hosseinabadi, Event-driven Web

application testing based on model-based mutation testing,

Information and Software Technology, vol. 67, pp. 159–179,

2015.
[3] X. S. Dong, K. Patil, J. Mao, and Z. K. Liang, A

comprehensive client-side behavior model for diagnosing

attacks in Ajax applications, in Proc. 18th Int. Conf.

Engineering of Complex Computer Systems, Singapore,

2013, pp. 177–187.

[4] P. Liu and Z. N. Xu, MTTool: A tool for software modeling

and test generation, IEEE Access, vol. 6, pp. 56222–56237,

2018.

[5] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman,

Understanding JavaScript event-based interactions, in Proc.
36th Int. Conf. Software Engineering, Hyderabad, India,

2014, pp. 367–377.

[6] A. Mesbah, Software analysis for the Web: Achievements

and prospects, in IEEE 23rd Int. Conf. Software Analysis,
Evolution, and Reengineering, Suita, Japan, 2016, pp. 91–

103.

[7] Y. F. Li, P. K. Das, and D. L. Dowe, Two decades of

Web application testing: A survey of recent advances,

Information Systems, vol. 43, pp. 20–54, 2014.

[8] C. H. Liu, C. J. Wu, and H. M. Chen, Testing of AJAX-based

Web applications using hierarchical state model, in IEEE
13th Int. Conf. e-Business Engineering, Macau, China,

2016, pp. 250–256.

[9] A. Marchetto and P. Tonella, Using search-based algorithms

for Ajax event sequence generation during testing,

Empirical Software Engineering, vol. 16, no. 1, pp. 103–

140, 2011.

[10] S. Alimadadi, Understanding behavioural patterns in

JavaScript, in Proc. 24th ACM SIGSOFT Int. Symp.
Foundations of Software Engineering, Seattle, WA, USA,

2016, pp. 1076–1078.

[11] X. F. Qi, Z. Y. Wang, J. Q. Mao, and P. Wang, Automated

testing of Web applications using combinatorial strategies,

Journal of Computer Science and Technology, vol. 32, no.

1, pp. 199–210, 2017.

[12] K. Hossen, R. Groz, C. Oriat, and J. L. Richier, Automatic

generation of test drivers for model inference of Web

applications, in IEEE 6th Int. Conf. Software Testing,

Verification and Validation Workshops, Luxembourg,

Luxembourg, 2013, pp. 441–444.

[13] A. Van Deursen, A. Mesbah, and A. Nederlof, Crawl-based

analysis of Web applications: Prospects and challenges,

Science of Computer Programming, vol. 97, pp. 173–180,

2015.

[14] N. Walkinshaw, R. Taylor, and J. Derrick, Inferring extended

finite state machine models from software executions,

Empirical Software Engineering, vol. 21, no. 3, pp. 811–

853, 2016.

[15] M. Schur, A. Roth, and A. Zeller, Mining behavior models

from enterprise Web applications, in Proc. 9th Joint
Meeting on Foundations of Software Engineering, Saint

Petersburg, Russia, 2013, pp. 422–432.

[16] M. Schur, A. Roth, and A. Zeller, Mining workflow models

from Web applications, IEEE Transactions on Software
Engineering, vol. 41, no. 12, pp. 1184–1201, 2015.

[17] R. A. Haraty, N. Mansour, and H. Zeitunlian, Metaheuristic

algorithm for state-based software testing, Applied Artificial
Intelligence, vol. 32, no. 2, pp. 197–213, 2018.

[18] J. Mao, J. D. Bian, G. D. Bai, R. L. Wang, Y. Chen, Y. H.

Xiao, and Z. K. Liang, Detecting malicious behaviors in

JavaScript applications, IEEE Access, vol. 6, pp. 12 284–

Weiwei Wang et al.: Behavior Model Construction for Client Side of Modern Web Applications 133

12 294, 2018.

[19] W. W. Wang, J. X. Guo, Z. Li, and R. L. Zhao, EFSM-

oriented minimal traces set generation approach for Web

applications, in IEEE 42nd Annu. Computer Software and
Applications Conf., Tokyo, Japan, 2018, pp. 12–21.

[20] A. Mesbah, A. Van Deursen, and S. Lenselink, Crawling

Ajax-based Web applications through dynamic analysis of

user interface state changes, ACM Transactions on the Web,

vol. 6, no. 1, pp. 1–30, 2012.

[21] S. Joshi, N. Agrawal, R. Krishnapuram, and S. Negi, A

bag of paths model for measuring structural similarity in

Web documents, in Proc. 9th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, New York, NY,

USA, 2003, pp. 577–582.

[22] F. Ricca and P. Tonella, Analysis and testing of Web

applications, in Proc. 23rd Int. Conf. Software Engineering,

Toronto, Canada, 2001, pp. 25–34.

[23] A. M. Fard, M. Mirzaaghaei, and A. Mesbah, Leveraging

existing tests in automated test generation for Web

applications, in Proc. 29th ACM/IEEE Int. Conf. Automated
Software Engineering, Vasteras, Sweden, 2014, pp. 67–78.

[24] S. Elbaum, S. Karre, and G. Rothermel, Improving Web

application testing with user session data, in Proc. 25th Int.
Conf. Software Engineering, Portland, OR, USA, 2003, pp.

49–59.

[25] X. L. Xu, H. Jin, S. Wu, L. X. Tang, and Y. H. Wang,

URMG: Enhanced CBMG-based method for automatically

testing Web applications in the cloud, Tsinghua Science and
Technology, vol. 19, no. 1, pp. 65–75, 2014.

[26] A. Marchetto, P. Tonella, and F. Ricca, State-based testing of

Ajax web applications, in Proc. 1st Int. Conf. on Software
Testing Verification & Validation, Lillehammer, Norway,

2008, pp.121–130.

[27] T. Gowda and C. A. Mattmann, Clustering Web pages based

on structure and style similarity (application paper), in

IEEE 17th Int. Conf. Information Reuse and Integration,

Pittsburgh, PA, USA, 2016, pp. 175–180.

[28] A. H. Kulkarni and B. M. Patil, Template extraction

from heterogeneous Web pages with cosine similarity,

International Journal of Computer Applications, vol. 87, no.

3, pp. 4–8, 2014.

[29] B. Biswas, K. Jain, V. Mittal, and K. K. Shukla, Exploiting

tree structure of a Web page for clustering, International
Journal of Knowledge & Web Intelligence, vol. 1, no. 1/2,

pp. 81–94, 2009.

[30] M. E. Akpinar and Y. Yesilada, Vision based page

segmentation algorithm: Extended and perceived success, in

Proc. 13th Int. Conf. Web Engineering, Aalborg, Denmark,

2013, pp. 238–252.

[31] T. T. Wei, Y. H. Lu, X. J. Li, and J. L. Liu, Web page

segmentation based on the hough transform and vision cues,

in 2015 Asia-Pacific Signal and Information Processing
Association Annu. Summit and Conf., Hong Kong, China,

2015, pp. 865–872.

[32] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M.

Harman, K. Lano, and Z. Li, Model projection: Simplifying

models in response to restricting the environment, in Proc.
33rd Int. Conf. Software Engineering, New York, NY, USA,

2011, pp. 291–300.

[33] J. Thomé, A. Gorla, and A. Zeller, Search-based security

testing of Web applications, in Proc. 7th Int. Workshop on
Search-Based Software Testing, Hyderabad, India, 2014, pp.

5–14.

[34] N. Alshahwan and M. Harman, Automated Web application

testing using search based software engineering, in

Proc. 26th IEEE/ACM Int. Conf. Automated Software
Engineering, Lawrence, KS, USA, 2011, pp. 3–12.

[35] M. G. Li, L. Y. Li, and F. P. Nie, Ranking with adaptive

neighbors, Tsinghua Science and Technology, vol. 22, no. 6,

pp. 733–738, 2017.

[36] S. Liang, Y. Zhang, B. Li, X. J. Guo, C. F. Jia, and Z. L.

Liu, SecureWeb: Protecting sensitive information through

the Web browser extension with a security token, Tsinghua
Science and Technology, vol. 23, no. 5, pp. 526–538, 2018.

[37] A. A. Andrews, J. Offutt, and R. T. Alexander, Testing Web

applications by modeling with FSMs, Software & Systems
Modeling, vol. 4, no. 3, pp. 326–345, 2005.

[38] N. Alshahwan, M. Harman, and A. Marchetto, Crawlability

metrics for web applications, in Proc. 5th Int. Conf. on
Software Testing Verification and Validation, Montreal,

Canada, 2012, pp. 151–160.

[39] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, JSEFT:

Automated JavaScript unit test generation, in IEEE 8th Int.
Conf. Software Testing, Verification and Validation, Graz,

Austria, 2015, pp. 1–10.

[40] C. Sung, M. Kusano, N. Sinha, and W. Chao, Static DOM

event dependency analysis for testing Web applications,

in Proc. 24th ACM SIGSOFT Int. Symp. Foundations of
Software Engineering, Seattle, WA, USA, 2016, pp. 447–

459.

[41] H. V. Nguyen, C. Kästner, and T. N. Nguyen, Building

call graphs for embedded client-side code in dynamic Web

applications, in Proc. 22nd ACM SIGSOFT Int. Symp.
Foundations of Software Engineering, New York, NY, USA,

2014, pp. 518–529.

[42] B. Wang, B. B. Yin, and K. Y. Cai, Event handler tree model

for GUI test case generation, in IEEE 40th Annu. Computer
Software and Applications Conf., Atlanta, GA, USA, 2016,

pp. 58–63.

[43] D. Lorenzoli, L. Mariani, and M. Pezzè, Automatic

generation of software behavioral models, in Proc.
ACM/IEEE 30th Int. Conf. Software Engineering, Leipzig,

Germany, 2008, pp. 501–510.

134 Tsinghua Science and Technology, February 2021, 26(1): 112–134

Weiwei Wang received the BS degree from

Beijing University of Chemical Technology

(BUCT), China in 2014. Currently, she is

a PhD candidate at BUCT. Her research

interests are in the area of software testing,

focusing on Web application modeling and

test case generation.

Zheng Li received the PhD degree from

King’s College London, CREST centre

in 2009 under the supervision of Mark

Harman. He is a professor at Beijing

University of Chemical Technology. He has

worked as a research associate at King’s

College London and University College

London. He has worked on program testing

and source code analysis and manipulation. More recently, he

is interested in search-based software engineering and slicing

state-based model.

Junxia Guo received the PhD degree in

computer science from Tokyo Institute

of Technology in 2013. She is now an

associate professor at Beijing University of

Chemical Technology. Her primary research

interests include software testing and Web-

user’s behavior analysis.

Ruilian Zhao received the PhD degree in

computer science from Chinese Academy

of Sciences in 2001. She is now a professor

and PhD supervisor at Beijing University

of Chemical Technology. Her primary

research interests include software testing

and fault-tolerant computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

