
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 09/10 pp95–111
DOI: 10 .26599 /TST.2019 .9010044
Volume 26, Number 1, February 2021

�C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

A Multi-Objective Optimization Method of Initial Virtual Machine
Fault-Tolerant Placement for Star Topological Data Centers of

Cloud Systems

Wei Zhang, Xiao Chen, and Jianhui Jiang�

Abstract: Virtualization is the most important technology in the unified resource layer of cloud computing systems.

Static placement and dynamic management are two types of Virtual Machine (VM) management methods. VM

dynamic management is based on the structure of the initial VM placement, and this initial structure will affect the

efficiency of VM dynamic management. When a VM fails, cloud applications deployed on the faulty VM will crash if

fault tolerance is not considered. In this study, a model of initial VM fault-tolerant placement for star topological data

centers of cloud systems is built on the basis of multiple factors, including the service-level agreement violation rate,

resource remaining rate, power consumption rate, failure rate, and fault tolerance cost. Then, a heuristic ant colony

algorithm is proposed to solve the model. The service-providing VMs are placed by the ant colony algorithms, and

the redundant VMs are placed by the conventional heuristic algorithms. The experimental results obtained from

the simulation, real cluster, and fault injection experiments show that the proposed method can achieve better VM

fault-tolerant placement solution than that of the traditional first fit or best fit descending method.

Key words: cloud computing; virtual machine placement; fault tolerance; multi-objective optimization; heuristic ant

colony algorithm

1 Introduction

The structure of a cloud computing system includes the

organization, unified resource, platform, and application

layers[1]. Virtualization is the most critical technology

in the unified resource layer, which can improve the

resource utilization ratio of physical servers and reduce

the cost of building data centers. However, statistical

analysis of Amazon web services shows that the top

three factors of server downtime are power supply,

storage, and Virtual Machines (VMs)[2]. Therefore,

VM fault-tolerant technology and data center reliability

management are becoming increasingly important.

� Wei Zhang, Xiao Chen, and Jianhui Jiang are with the

School of Software Engineering, Tongji University, Shanghai

201804, China. E-mail: 1910134@tongji.edu.cn; 21 chenxiao

study@tongji.edu.cn; jhjiang@tongji.edu.cn.

�To whom correspondence should be addressed.

Manuscript received: 2019-06-27; accepted: 2019-08-28

Two kinds of VM fault-tolerant techniques are widely

used. One is based on the checkpoint-based and log-

based rollback methods, which means that the VMs

placed on the failed node in a cloud computing system

will migrate online to another node[3–8]. The other is

based on the primary – backup model with the idea

of incremental checkpoints. When the system starts

running, the primary machine has the same data as

the backup machine. The primary machine processes

the compute tasks, generates the output while it is

running, and synchronizes the modified data to the

backup machine at a given time interval. When the

primary machine breaks down, the backup machine takes

over and processes the compute tasks[9, 10].

Static placement and dynamic management are two

types of VM management methods in data centers.

VM static placement focuses on the deployment of a

large number of VMs on a given number of physical

machines (nodes) at the beginning[11]. VM dynamic

96 Tsinghua Science and Technology, February 2021, 26(1): 95–111

management uses the VM online migration technology

while the system is running. The migration target node

is selected on the basis of the real-time load. The VMs

are remapped to the physical nodes under the condition

of ensuring the least migration cost[12–15].

The VM static placement problem is a matching

problem between the resource requested by the VMs

and the resource provided by the physical nodes.

The resources include the Central Processing Unit

(CPU), memory, disk, and network bandwidth. Mapping

requires the consideration of certain factors, such as

quality of user services, resource utilization ratio, and

power consumption rate in data centers. VM static

placement can be regarded as a packing problem, which

is NP-hard[16].

Most of the existing static placement methods of VMs

considered only a single constraint. For example, in

Ref. [17], the quality of user service as well as the

Service-Level Agreement (SLA) violation rate, were

measured and the SLA violation rate while the VMs were

being placed was minimized. The SLA is an agreement

between a cloud user and a web service provider

that sets out a range of parameters, such as service

description, priority, and service level. Other methods

include the improvement of the resource utilization

ratio of physical nodes to reduce resource loss[18] and

the combination of resource placement with power

management by shutting down zero or low workload

physical nodes[19–21]. Several methods were used to

solve the multiple target optimization problem. For

example, in Ref. [22], the resource utilization ratio,

power consumption, and thermal power consumption

were considered. In Ref. [23], a method to minimize

the cost of mapping VMs to physical nodes under the

influence of the SLA violation rate, resource utilization

ratio, and power consumption was proposed. In Ref.

[24], genetic algorithms were used to study the mapping

strategy of VMs to physical nodes that can minimize

resource usage and the number of physical nodes.

However, the reliability problem was not considered

in the previously mentioned works.

At present, several studies have been conducted to

investigate the fault-tolerant placement of VMs. In Ref.

[25], a method to determine the minimum number of

physical nodes when multiple services were placed on

different VMs were proposed. The method ensured that

the system can tolerate multiple physical node failures,

but it only considered the influence of response time.

In Ref. [26], the influence of VM placement on the

reliability of applications was analyzed, and the results

indicated that the VMs providing different services

should be placed on different physical nodes on the

basis of their characteristics. However, other factors,

such as resource utilization ratio and SLA violation

rate, were not considered. In Ref. [27], a method to

place VMs when multiple physical nodes failed was

proposed, and it can ensure that a certain number of

VMs can run normally at any time. However, the cost

of VM placement was not considered. Other studies

also considered how to ensure high availability of cloud

computing systems when placing VMs[28–31].

For the reliability problem in cloud computing

systems, this study focuses on how to map different types

of VMs to physical nodes under the influence of five

factors, i.e., SLA violation rate, resource remaining rate,

power consumption rate, failure rate, and fault tolerance

cost. A heuristic ant colony algorithm is proposed to

solve the multi-objective optimization problem of initial

VM fault-tolerant placement for star topological data

centers of cloud systems.

The remainder of this paper is organized as follows:

Section 2 introduces the system structure and problem

description of VM fault-tolerant management. Section 3

describes a new multi-objective optimization algorithm

of initial VM fault-tolerant placement. Section 4 presents

the experimental results and analysis of the simulation,

real cluster, and fault injection experiments. Section 5

concludes the paper.

2 VM Fault-Tolerant Placement
Management System

2.1 System structure

In this study, we assume that the data centers of cloud

computing systems are star topological; all of the

physical nodes are connected by a switch; and the

network connection is reliable.

The unified resource layer of a cloud computing

system is a cluster of many physical nodes, which

contains b racks, i.e., rack1, rack2, . . . , rackb, and racki

(1 � i � b) is placed on nodei1, nodei2, . . . , nodeini .

VMs on physical nodes are managed by the Virtual

Machine Manager (VMM), which runs on the Operating

System (OS) of physical nodes.

A cloud computing system often sets n business

nodes and m redundant nodes to support fault tolerance;

however, it results in high fault tolerance cost. To solve

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 97

the system-level VM fault tolerance problem, this study

proposes a multi-objective optimization VM placement

model based on the dual-module dynamic redundant

structure. The redundant VMs are the hot spare and have

been widely used in system-level VM fault tolerance.

The redundant VMs and service-providing VMs are

placed on different physical nodes to prevent single-

point failure without providing proprietary redundant

physical nodes, which can reduce the fault tolerance

cost. Therefore, the two types of VM in systems

are the VM that provides service and the VM that

enables Replication (VMRE), which corresponds to

the service-providing VM. The number of VMRE is

determined on the basis of the reliability requirements of

the system. As shown in Fig. 1, for example, the service-

providing VM11 and the redundant VMRE21 run on

node11, whereas VMRE11 corresponding to VM11 and

VM21 corresponding to VMRE21 run on nodeb1.

We assume that the system only considers the

permanent or transient failure of a single VM. The

system also considers the failure of the hardware and

software. When a VM fails, its corresponding VMRE

will replace it to provide service. Moreover, the VMM

is responsible for the recovery of the resources occupied

by the failed VM.

The VM fault-tolerant placement management system

is built on the unified resource layer, which is composed

of a monitor, a global controller (including a fault-

tolerant model solver and a model manager), and a fault-

tolerant strategy executor. These components form a

closed-loop control system. The VMM passes run-time

data, such as the information of the resource occupied

by each VM and the new resource request information

from the VM, to the monitor in real time. The monitor

receives data from the VMM, such as the request to join

the system from a new physical node or VM, calculates

its SLA violation rate, resource utilization ratio, power

consumption rate, and fault tolerance cost, and passes

the data to the model manager in the global controller.

The model manager receives the data from the monitor,

processes them on the basis of the format required by the

fault-tolerant model solver, and passes them to the model

solver. The model solver implements the replacement

strategy on the basis of the VM fault-tolerant placement

model and passes it to the fault-tolerant strategy executor.

The fault-tolerant strategy executor parses the placement

strategy into VMM executable instructions and passes

them to the VMM on the physical node where the VM

needs to be replaced.

VM dynamic management is based on the structure of

the initial placement, and this initial structure will affect

the efficiency of VM dynamic management. This study

investigates the initial placement of VMs in data centers.

When available resources change, a new VM placement

solution is needed.

2.2 Mathematical description of the problem

The VM placement problem is a multidimensional

packing problem, which is actually a multi-objective

optimization problem. To address this problem, we need

to consider not only the resource allocation problem but

also the SLA violation rate, resource remaining rate,

power consumption rate, and fault tolerance cost. VM

fault-tolerant placement needs to consider not only the

service-providing VMs but also the redundant VMs,

because the VMRE cannot be placed together with its

corresponding service-providing VM to prevent single-

point failure, which increases the fault tolerance cost.

To consider the previously mentioned factors

synthetically, we need to establish a fault-tolerant

placement model. We assume that the number of

physical nodes in a data center is s, the number of VMs

Monitor

ollect
data

Model anagerModel solver

New node or
VM joining

xecute
Rack1

Node

R k

Node

VMM

VM11 VMRE21

VMM

VM11 VMRE21

VMM

VM11 VMRE21

NNNooodddeee 111111

VMM

VM11 VMRE21

Rack

Node

VMRE11 VM21

Node

VMRE11 VM21

Node

VMRE11 VM21MM

Node

VMRE11 VM21

VMM

1 1

erver rack
hysical node

irtual machine anager

irtual achine

irtual machine replica

anagement component

Fig. 1 Structure of the unified resource layer and fault-tolerant placement management system.

98 Tsinghua Science and Technology, February 2021, 26(1): 95–111

is v, and the fault-tolerant placement of VMs needs to

consider the following factors:

(1) SLA violation rate
The SLA violation rate is inversely proportional to

the quality of service provided by the cloud computing

system. The Million Instructions Per Second (MIPS)

requested by all VMs on the i-th physical node is Mri ,

whereas the actual MIPS provided by the i-th physical

node is Mai . Thus, the SLA violation rate for the i-th

physical node can be expressed as Eq. (1)[17, 23]:

Si D Mri � Mai

Mri

; i D 1; 2; : : : ; s (1)

(2) Resource remaining rate
VM placement involves multiple types of resources,

such as CPU, memory, disk, and network bandwidth.

The balanced use of various resources is important[22].

If one type of resource is exploited, then other VMs can

no longer be placed on the physical node, which will

result in the waste of other resources. Figure 2 shows the

resource usage example when three VMs are placed on

a physical node. The horizontal axis represents memory

usage and the longitudinal axis represents CPU usage.

As shown in Fig. 2, the CPU usage is low (i.e., the

CPU resource remains large). However, the remaining

memory is inadequate for more VMs, which will result

in considerable waste of physical resources.

From the previously presented analysis, we determine

that VMs should be placed to minimize the resource

remaining rate. The number of resource types is set to

l . Ri
j represents the ratio of the remaining resource j of

physical node i to its total resources, j D 1; : : : ; l , and

R
i

represents the average remaining rate of various types

of resources on physical node i , R
i D

lX
j D1

Ri
j

.
l . Then,

we define the resource remaining rate REi for physical

node i , which is expressed as Eq. (2):

VM1

VM2

VM3

CPU

Memory

Fig. 2 Diagram of resource usage when three VMs are
placed on a physical node.

REi D

vuuuut
lX

j D1

.Ri
j � R

i
/2

l
(2)

As shown in Eq. (2), if the resources are used in a

balanced manner, then the value of REi will be relatively

small.

(3) Power consumption rate
The power consumption of a data center is mainly

generated by the operation of a physical machine. In

Ref. [19], the authors indicated that the CPU utilization

ratio was the main factor that affected the power

consumption of the physical machine. Moreover, the

power consumption of the physical machine increases

linearly when the CPU utilization ratio increases from

0 to 1. We assume that the CPU utilization ratios of 0

and 1 correspond to the power consumption rates Pmin

and Pmax, respectively, and the CPU utilization ratio of

physical machine i is u
cpu

i . Then, its power consumption

rate Pi can be expressed as Eq. (3)[22]:

Pi D Pmin C .Pmax � Pmin/ � u
cpu

i (3)

(4) Fault tolerance cost
Generally, only a certain number of components are

the key components in a cloud computing system[30].

We assume that the number of service-providing VMs

is v, some of them are critical, and their proportion is

u. Then, the number of VMs that need to be placed

in a redundant manner is r D bv � uc. Therefore, the

data center has v C r VMs, and r redundant VMs will

be placed on t physical nodes. When redundant VMs

are placed on a physical node, the SLA violation rate,

resource remaining rate, and power consumption rate

of that node will change with the amount of resource

requested by the redundant VMs. Therefore, the fault

tolerance cost of physical node i (noted as Mi) can be

defined as a product of the proportion of the resources

of a physical node consumed by redundant VMs, which

can be expressed as Eq. (4):

Mi D
X
k2S

us
cpu

ik
� usmem

ik � usband
ik (4)

where S D fkjk > v
V

aki D 1g; us
cpu

ik
, usmem

ik
, and

usband
ik

represent the resource proportion of the CPU,

memory, and network bandwidth placed on physical

node i by redundant VMs, respectively. If the k-th VM

(k D 1; : : : ; v C r) is placed on physical node i , then

aki D 1; otherwise, aki D 0.

(5) Failure rate
We assume that cloud applications consist of multiple

distributed components, each of which is deployed on

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 99

a VM. According to the description in Eq. (4), this

study only considers the failure of key components

and implements redundant placement of VMs with key

components. We assume that, corresponding to the nu

key components Com1, . . . , Comnu, the failure ratio is

f1, . . . , fnu. Given the use of the dual-module dynamic

redundant structure, the failure ratio of the system is

expressed as Eq. (5):

f D
nuX

yD1

f 2
y (5)

We assume that the amount of CPU, memory, and

network bandwidth resources possessed by physical

node i can be expressed as Ci D ŒC
cpu

i ; C mem
i ; C band

i �,

the amount of CPU, memory, and network bandwidth

resources requested by the k-th VM can be expressed

as Qk D ŒQ
cpu

k
; Qmem

k
; Qband

k
�, the number of physical

nodes placed by redundant VM is t , the resource

remaining rate of physical node i is REi , the VM set is

C , and the redundant VM set is Cred. Moreover, v C r

VMs are placed on s physical nodes, with the placement

matrix defined as A.

VM fault-tolerant placement aims to place v VMs and

r redundant VMs on s physical nodes. The limiting

condition is that the amount of resources requested by

the VM cannot exceed the amount that the physical

nodes can supply. Each VM can only be placed on

one physical node. Meanwhile, a VM that requires

fault-tolerant placement and its corresponding redundant

VM cannot be placed on the same physical node. The

optimization goal is to minimize the SLA violation rate,

resource remaining rate, power consumption rate, and

fault tolerance cost. Therefore, the formal description of

the multi-objective optimization problem of VM fault-

tolerant placement is expressed as follows:

Target:

min

"
s�tX
iD1

Si ;

s�tX
iD1

REi ;

s�tX
iD1

Pi ;

tX
iD1

Mi

#
(6)

Constraint conditions:
vCrX
kD1

Q
cpu

k
� aki < C

cpu

i (7)

vCrX
kD1

Qmem
k � aki < C mem

i (8)

vCrX
kD1

Qband
k � aki < C band

i (9)

sX
iD1

aki D 1 (10)

aki C a.vCk/i � 1; k D 1; : : : ; r (11)

Formula (6) is an objective function of multi-objective

optimization. Formulae (7) – (9) represent the total

amount of CPU, memory, and network bandwidth

resources requested by VMs, respectively, which cannot

exceed the amount of resources actually possessed by

the physical node. Equation (10) indicates that each VM

can only be placed on one physical node. To facilitate

the design of the model and algorithm, we set the key

service-providing r VMs from the first to r-th and set

their corresponding r redundant VMs from .v C 1/-th

to .v C r/-th. Formula (11) indicates that the r key

VMs and their r corresponding redundant VMs cannot

be placed on the same physical node.

3 Multi-Objective Optimization Algorithm
of Initial VM Fault-Tolerant Placement

Generally, we can obtain the optimal solution for

single-objective optimization using several algorithms.

However, obtaining such optimal solution for multi-

objective optimization is difficult. The multi-objective

optimization problem has several Pareto solutions, and

we often select one as the optimal solution[32].

Heuristic and evolutionary algorithms are often

used to solve the VM placement problem. The four

types of traditional heuristic algorithms are the first

fit, best fit, First Fit Descending (FFD), and Best

Fit Descending (BFD) algorithms[15]. The two types

of evolutionary algorithms are genetic[13] and ant

colony[15, 23] algorithms. The Ant Colony Optimization

(ACO) algorithm is a bionic optimization algorithm,

which has strong robustness[33] and can use the positive

feedback mechanism to obtain the optimal approximate

solution of NP combinatorial optimization problem

rapidly.

VM fault-tolerant placement is a discrete multi-

objective optimization problem, which should consider

not only the placement of service-providing VMs but

also the placement of redundant VMs. Moreover, the

service-providing VM cannot be placed on the same

physical node with its corresponding redundant VM.

This study proposes two heuristic ACO algorithms

to solve the multi-objective optimization problem

of VM fault-tolerant placement for data centers of

cloud systems, i.e., First Fit Descending Ant Colony

Optimization (FFDACO) and Best Fit Descending Ant

Colony Optimization (BFDACO) algorithms.

3.1 Fitness function

According to Formula (6), the multi-objective

100 Tsinghua Science and Technology, February 2021, 26(1): 95–111

optimization model needs to minimize the values of

the four factors collaboratively. To optimize the four

objective functions, the objective functions of the

SLA violation rate, resource remaining rate, power

consumption rate, and fault tolerance cost are derived as

follows:

(1) Function of the SLA violation rate
According to Eq. (1), Si is related to the CPU

utilization ratio of physical node i , and the higher

the CPU utilization ratio, the larger the value of Si .

To make the value change in the range of .0; 1/[23],

the function of the SLA violation rate is expressed as

Eq. (12):

FSLA.u
cpu

i / D 1

1 C eu
cpu

i
�0:9

(12)

where u
cpu

i represents the CPU utilization ratio of

physical node i . The experimental results presented

in Ref. [23] indicate that, when the CPU utilization

ratio increases from 0 to 0.9, the SLA violation

rate increases gradually. However, when the CPU

utilization ratio is > 0:9, the SLA violation rate increases

rapidly. Therefore, the threshold of the CPU utilization

ratio is set to 0.9. Our experimental environment is

similar to that in Ref. [23]. Thus, we also set the

threshold to 0.9.

(2) Function of the resource remaining rate
According to Eq. (2), the function of the resource

remaining rate of physical node i can be expressed as

Eq. (13):

Fres.Ui / D .1 � u
cpu

i / � .1 � umem
i / � .1 � uband

i / (13)

where Ui D .u
cpu

i ; umem
i ; uband

i /, umem
i is the memory

utilization ratio and uband
i is the network bandwidth

utilization ratio of the physical node i . Moreover, u
cpu

i D
vX

kD1

aki � Q
cpu

k

.
C

cpu

i , umem
i D

vX
kD1

aki � Qmem
k

.
C mem

i ,

and uband
i D

vX
kD1

aki � Qband
k

.
C band

i .

As shown in Eq. (13), the higher the resource

utilization ratio, the lower the resource remaining rate.

(3) Function of the power consumption rate
According to Eq. (3), Pi and u

cpu

i are linearly related.

Given that the values of the SLA violation rate and the

resource remaining rate are in the range of Œ0; 1�, we also

make the value of Pi change in the range of Œ0; 1�. The

function of the power consumption rate of physical node

i is expressed as Eq. (14):

Fpower.U
cpu

i / D u
cpu

i

Pmin C .Pmax � Pmin/ � u
cpu

i

� Pmax

(14)

As shown in Eq. (14), the function of the power

consumption rate is a monotonous increment function,

and the larger the value of u
cpu

i , the higher the power

consumption rate. Therefore, we need to reduce its value

as much as possible.

(4) Function of the fault tolerance cost
On the basis of Eq. (4), the function of the fault

tolerance cost of physical node i is expressed as Eq.

(15). Notably, the fault tolerance cost is affected by the

resource requests from redundant VMs.

F i
ft D

vCrX
kDvC1

aki � Q
cpu

k

C
cpu

i

�
vCrX

kDvC1

aki � Qmem
k

C mem
i

�
vCrX

kDvC1

aki � Qband
k

C band
i

(15)

Given that the values of Eqs. (12) – (15) are all in the

range of Œ0; 1�, on the basis of Formula (6), the fitness

function of the multi-objective optimization of the VM

fault-tolerant placement model can be expressed as Eq.

(16):

F.U/ D w1 �
s�tX
iD1

FSLA.u
cpu

i /C

w2 �
s�tX
iD1

Fres.Ui /C

w3 �
s�tX
iD1

Fpower.u
cpu

i /C

w4 �
sX

iD1

F i
ft (16)

where w1 C w2 C w3 C w4 D 1, w1, w2, w3, and

w4 represent the weights of the SLA violation rate,

resource remaining rate, power consumption rate, and

fault tolerance cost, respectively, and U is the matrix

constructed using Ui .

3.2 Heuristic ant colony algorithm

The following part describes the traditional heuristic

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 101

algorithm, which can solve the VM fault-tolerant

placement problem, and proposes a heuristic ACO

algorithm.

(1) FFD-based algorithm of VM fault-tolerant
placement

The FFD-based algorithm of VM fault-tolerant

placement is described in Algorithm 1. Its input contains

Ci , Qk , u, Pmin, Pmax, w1, w2, w3, and w4, and its

output contains A and F.U/. A is the placement matrix

that describes how the VMs are placed on physical

nodes. This algorithm can be divided into three steps, as

follows:

Step 1. Sort the resource request of VMs in

descending order, expressed as a1, a2, . . . , avCr .

Step 2. Place a1 on the physical node hn1. If hn1 does

not meet the requirements, then select the next physical

node hn2, until the resource request of a1 is met.

Algorithm 1 FFD based VM fault tolerant placement
Input: i, k, u, P , P , 1, 2, 3, 4;

Output: : placement matrix, F (): value of fitness

function;

1 Initialize , ;

2 Sort the resource request from VMs in descending order,

expressed as a1,a2,. . . ,av+r;

3 i = 1;

4 while a1 do
5 if i a1

then
6

7

initialize physical node i;

place a1 on the physical node i, update ;

8 i = i + 1;

9 j = 2;

10 while j v+ r do
11 ∗

1
∗
2

∗
z

12

13

mark initialized physical nodes as , , . . . ,

(keep original order);

g = 1;

while aj g z

14 ∗
gif aj

∗
g

then
15

∗
g

16

place aj on the physical node , update ;

g = g + 1;

17 if aj then
18 initialize a new physical node and place aj on it,

update ;

19 j = j + 1;

20 calculate according to and F () according to Eq. (16),
respectively;

21 return , F ();

Step 3. To meet the resource request ak of the VM,

if physical nodes hn�
1 , hn�

2 , . . . , hn�
z are already in use

at this time, then select one or some of them to place

ak in numerical order of subscript, ensuring that the

resource request is met and its corresponding redundant

and service-providing VMs are not on the same physical

node. If one or some physical nodes that meet the

requirements do exist, then select the one that has the

minimum subscript to place ak . By contrast, if such a

physical node does not exist, then select a new physical

node to place ak .

(2) BFD-based algorithm of VM fault-tolerant
placement

The BFD-based algorithm of VM fault-tolerant

placement is described in Algorithm 2. Its input

and output are the same as those of the FFD-based

algorithm. This algorithm can be divided into three steps,

as follows:

Step 1. Sort the resource requests of VMs in

descending order, expressed as a1, a2, . . . , avCr .

Step 2. Place a1 on the physical node hn1. If hn1 does

not meet the requirements, then select the next physical

node hn2, until the resource request of a1 is met.

Step 3. To meet the resource request ak of the VM,

if physical nodes hn�
1 , hn�

2 , . . . , hn�
z are already in

use at this time, then select one or some of them to

place ak in numerical order of the subscript, ensuring

that the resource request is met and its corresponding

redundant and service-providing VMs are not on the

same physical node. If one or some physical nodes that

meet the requirements do exist, then select the one which

can minimize the resource remaining rate to place ak .

By contrast, if such a physical node does not exist, then

select a new physical node to place ak .

The traditional ant colony algorithm optimization

depends on the positive feedback mechanism, but it often

leads to local optimization or premature convergence.

To avoid this situation, this study uses the Max-Min

Ant System (MMAS) proposed by Stützle and Hoos[33],

which can search for high-quality solutions and avoid

premature convergence or falling into the local optimum.

We assume that the number of ants is n in iteration

q, the number of ants on the k-th VM is bk.q/, the

pheromone of the k-th VM on the physical node i is

�ki .q/, the probability that ant h places the k-th VM

on physical node i is P h
ki

.q/, the heuristic function is

�ki .q/, the information heuristic factor is @, the expected

heuristic factor is ˇ, the tabu list of ant h is tabuh.q/ (the

102 Tsinghua Science and Technology, February 2021, 26(1): 95–111

Algorithm 2 BFD based VM fault-tolerant placement
Input: i, k, u, P , P , 1, 2, 3, 4;

Output: : placement matrix, F (): value of fitness

function;

1 Initialize , ;

2 Sort the resource request from VMs in descending order,

expressed as a1,a2,. . . ,av+r;

3 i = 1;

4 while a1 do
5 if i a1

then
6

7

initialize physical node i;

place a1 on the physical node i, update ;

8 i = i + 1;

9 j = 2;

10 while j v+r d
11

∗
1

∗
2

∗
z

12

13

14 ∗
gif aj aj∗

g

then
15 assuming that aj placed on the physical node

∗
g , calculate the resource remaining rate

according to Eq. (13), assigning its value to

;

16 if < then
17

18

= g;

= ;

19 g = g + 1;

20

21

22

if !=−1
place aj cal de , date ; if

aj then
23 initialize a new physical node and place aj on it,

update ;

24 j = j + 1;

25 calculate according to and F () according to Eq. (16)

respectively;

26 return , F ();

set of VMs that has been placed), the volatile coefficient

� 2 Œ0; 1/, the pheromone increment of the k-th VM

on physical node i is ��best
ki

, and the set of VMs that

has not yet been placed and can be placed on physical

node i by ant h is allowedh. If k 2 allowedh, then the

transition probability function P h
ki

.q/ can be expressed

as Eq. (17); otherwise, its value is zero.

P h
ki .q/ D �ki .q/@ � �ki .q/ˇX

k2allowedh

.�ki .q/@ � �ki .q/ˇ /
(17)

where @ is a parameter used to control the influence of the

information accumulated by ants during its movement

process and ˇ is a parameter used to control the influence

of the heuristic information in path selection. In iteration

q, the pheromone function of the k-th VM on physical

node i is expressed as Eq. (18):

�ki .q C 1/ D .1 � �/ � �ki .q/ C ��best
ki (18)

In the first iteration, �ki .0/ D ˛, ˛ is a constant

value and 1 � � is the pheromone evaporation

coefficient. In MMAS, we need to set the upper and

lower bounds for pheromone. We assume that �ki .q/ 2
Œ�min; �max�, where the initial value of �max is �ki .0/,

�min D �max

g
, and g is the lower bound factor (i.e.,

g > 1). The pheromone increment ��best
ki

of the k-th

VM on the physical node i is expressed as Eq. (19):

��best
ki D

8̂<
:̂

F.Abest/

�ki .q/
; if ˛ki D 1I

0; else

(19)

where Abest represents the optimal solution set of this

model. According to Eq. (19), the value of F.Abest/ can

be calculated. In MMAS, the pheromone increment is

equal to the value of the fitness function in the optimal

solution. However, in this algorithm, the pheromone

increment is equal to the value of the fitness function in

the optimal solution divided by the pheromone, which

can avoid falling into the local optimum prematurely

and obtain the global optimal approximate solution set

eventually. In Eq. (17), �ki .q/ is the heuristic function

when the k-th VM is placed on physical node i and

represents the desirability of the k-th VM placed on

physical node i . Its function can be expressed as Eq.

(20):

�ki .q/ D 1

1 � Q
cpu0

k

� 1

1 � Qmem0

k

� 1

1 � Qband0

k

(20)

where Q
cpu0

k
, Qmem0

k
, and Qband0

k
represent the ratios

of the request of the k-th VM for CPU, memory, and

network bandwidth resources to the remaining resources

of physical node i , respectively. As shown in Eq. (20),

the ant preferentially places VMs with large requests for

CPU, memory, and network bandwidth resources.

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 103

3.3 Multi-objective optimization algorithm of
initial VM fault-tolerant placement

The heuristic ant colony algorithm includes the FFDACO

and BFDACO algorithms. The difference is that, when

an ant has placed all of the service-providing VMs,

the redundant VMs can be placed by the FFD or BFD

algorithm.

The FFDACO-based algorithm of VM fault-tolerant

placement is described in Algorithm 3. Its input and

output are similar to those of Algorithms 1 and 2. The

difference is that the FFDACO-based algorithm has

several additional parameters to MMAS that we have

discussed in Section 3.2. This algorithm can be divided

into the following steps:

Step 1. Initialize the parameters, i.e., the number of

ants is Nant and the number of iterations is Nrun.

Step 2. Select the physical node i randomly and place

ant h on it. Then, the ant starts to search VMs.

Step 3. If set C (set of service-providing VMs) is not

empty, then proceed to Step 4; otherwise, proceed to

Step 6.

Step 4. The ant h searches the VMs from allowedh,

which contains the VMs that have not been placed and

can be placed on physical node i . If set allowedh is

empty, then select the next physical node randomly and

proceed to Step 3.

Step 5. The ant h updates �ki .q/ (it represents the

desirability of the k-th VM placed on physical node

i) according to Eq. (20), selects the k-th VM from

set allowedh, places it on the physical node i using

the roulette wheel selection algorithm (which selects

randomly by probability) according to Eq. (17), updates

the placement matrix A, deletes the k-th VM from set C,

and updates Ci (useable resources on the physical node

i). Then, proceed to Step 3.

Step 6. Place the redundant VMs. Sort the VMs in set

Cred on the basis of the resource requests in descending

order. Then, new VM sequence can be expressed as

VM1, VM2, . . . , VMr .

Step 7. If set Cred is not empty, then proceed to Step

8; otherwise, proceed to Step 9.

Step 8. To meet the resource request of VMk in set

Cred, if physical nodes hn�
1 , hn�

2 , . . . , hn�
z are already

in use at this time, then select one or some of them to

place the VMk in numerical order of subscript, ensuring

that the resource request is met and its corresponding

redundant and service-providing VMs are not on the

same physical node. Then, if one or some physical nodes

Input: i, k, u, P , P , 1, 2, 3, 4, ∂, β,

ρ, g, τki(0), N , N ;

Output: : best placement matrix, F (): value of
fitness function;

1 Initialize , , , , ;

h = 1, = 1;

3 while N

4 while h N do
5

6

ant h randomly selects physical node i;

while do
7 if then
8

9

10

11

12

13 else
14

update ηki()

VMk from by oulette heel

election lgorithm according to Eq. (17);

place VMk on physical node i, update ;
delete VMk from ;

update i;

ant h randomly selects physical node i;
15

16

17

Sort VMs in set by resource request in

descending order, the new VM sequence

expressed as VM1,VM2, . . . ,VMr;

k = 1;

while k r do
18

∗
1

∗
2

∗
z

19

20

mark initialized physical nodes as

, , . . . , (keep original order);

g = 1;

while g z
21 ∗

gif k

∗
g

22
∗
gplace VMk on the physical node ,

23

24

update ;

g = g + 1;

if k then

25 initialize a new physical node and place

26

VMk on it, update ;

k = k + 1;

27 if h == 0 == 0 then
28 = ;

29 else
30 if (F () < F () then
31

32

33

= ;

reset i, , , ηki();
h = h+ 1;

34

35

update τki()

if τki()<τ

36

37

38

39

τki() =τ ;

if τki()>τ hen
τki() =τ ;

= + 1, h = 0;

40 calculate according to and F () according to
Eq. (16) respectively;

41 return , F ();

104 Tsinghua Science and Technology, February 2021, 26(1): 95–111

that meet the requirements do exist, then select the one

that has the minimum subscript to place the VMk . If

such physical node does not exist, then select a new

physical node to place the VMk . Finally, delete the

VMk from Cred, update the placement matrix A, and

proceed to Step 7.

Step 9. If h D 0, then Abest = A; otherwise, compare

F.A/ with F.Abest/, if (F.A/ < F.Abest/, then Abest = A.

Reset Ci , A D 0, C, and �ki .q/. Then set h D h C 1, if

h < Nant, proceed to Step 2.

Step 10. Update �ki .q/ according to Eqs. (18) and

(19), if �ki .q/ < �min, set �ki .q/ D �min; if �ki .q/ >

�max, set �ki .q/ D �max. Then set q D qC1, if q < Nrun,

reset h D 0, and proceed to Step 2.

Step 11. Calculate U according to Abest and F.U/ by

Eq. (16). Then, output Abest and F.U/.

The difference between BFDACO and FFDACO

algorithms is determined in Steps 6 – 8. In the BFDACO

algorithm, these steps adopt the BFD method described

in Algorithm 2.

According to Ref. [33], the time complexity of the

proposed heuristic ant colony algorithm is T .n/ D
O.q� .v C r/2 �n/, which increases with the increment

of the number of VMs .v C r/, the number of ants .n/,

and the number of iterations .q/, respectively. Its space

complexity is S.n/=O..v C r/2/C O..v C r/ � n/;

therefore, it increases with the increment of the number

of VMs and the number of ants.

The four algorithms (i.e., FFD, BFD, FFDACO,

and BFDACO) are all implemented using the Java

programming language. Section 4 describes the three

experiments, i.e., simulation, real cluster, and fault

injection experiments, conducted in this study and

explains all of the related algorithmic languages and

environments.

4 Experiment and Analysis

To verify the VM fault-tolerant placement method

proposed in this study, the multi-objective optimization

model is realized in a simulation environment. Then,

the results of the simulation experiment are verified in a

real cluster environment. Finally, the failure rate of the

system is evaluated by the fault injection experiment in

a real cluster environment.

4.1 Simulation experiment and analysis

The simulation experiment is realized on the CloudSim

platform, which is a cloud computing platform

simulation software developed by the Grid Laboratory of

Melbourne University and the Gridbus Project[34]. The

CloudSim platform provides a function library based

on the discrete event simulation package SimJava and

supports multiple Operating Systems (OSs).

In the simulation experiment, the CloudSim platform

holds 110 physical nodes. The processing capability

of the CPU is divided into three levels, i.e., 1001,

2001, and 3001 MIPS, and each physical node has

10 001 MB memory, 1001 GB disk, and 1001 Mbps

network bandwidth. We need to deploy a total of

250 service-providing VMs, and their request for CPU

resource can be divided into four types, i.e., 250, 500,

750, and 1000 MIPS, in which each VM requests for

250 MB memory, 200 GB disk and 250 Mbps network

bandwidth. When the CPU utilization ratio is 0, the

power consumption rate is Pmin D 75 W. When the CPU

utilization ratio increases to 1, the power consumption

rate is Pmax D 175 W. When u D 0:2; the number of

redundant VMs is 50 (r D 50). In Eq. (16), w1, w2, w3,

and w4 are the weights of different placement factors,

which represent the influence of different factors, and

can be set manually in simulation experiments and

configured by the system administrator in real systems.

Because, in different applications and environments, the

requirements of users are different. For example, if users

pay more attention to service quality, then w1 can be set

to have a large value but should be in the range [0; 1]. If

users only care about service quality, then w1 can be set

to 1, w2 D w3 D w4 D 0; and the problem degrades to

a single-constraint optimization problem.

We realized four kinds of VM fault-tolerant placement

algorithms, i.e., FFD, BFD, FFDACO, and BFDACO

algorithms, in the simulation experiments. Given that

the amounts of resources requested for memory, disk,

and network bandwidth are the same, when we use the

heuristic algorithm or heuristic ant colony algorithm,

the requested resource will be sorted on the basis of the

processing capability of the CPU.

The parameters of heuristic ant colony algorithm

are determined by experimental training, in which @,

ˇ, and g are integers (i.e., @ 2 Œ1; 10�, ˇ 2 Œ1; 10�;

and g 2 Œ1; 10�), and the increment of � is 0.01 and

� 2 .0; 1/. When the number of ants is > 15 and the

number of iterations is > 200, the variation of the value

of the fitness function is small. Therefore, we set @ D 2,

ˇ D 5, � D 0:3, g D 4, �ki .0/ D 3, Nant D 15, and

Nrun D 200.

For each wz(z 2 f1; 2; 3; 4g), the value is initially set

from 0 to 1 (recorded as p) and subsequently set to

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 105

(1 � p/=3. The variations of the fitness function values

based on the FFD, BFD, FFDACO, and BFDACO are

shown in Fig. 3. As shown in Figs.3a and 3c, the fitness

function value increases with the increase in w1 (weight

of the SLA violation rate) and w3 (weight of the resource

remaining rate). Moreover, the fitness function values

based on the FFDACO and BFDACO are lower than

those based on the FFD and BFD. When w1 and w3

are > 0:3, BFDACO has a lower fitness function value

than FFDACO. As shown in Figs. 3b and 3d, the fitness

function value decreases with the increase in w2 (weight

of the power consumption rate) and w4 (weight of the

fault tolerance cost). In Fig. 3b, the fitness function

values based on the FFDACO and BFDACO are lower

than those based on the FFD and BFD. Moreover, when

w2 is > 0:4, FFDACO has a lower fitness function value

than BFDACO. In Fig. 3d, when w4 < 0:2, BFDACO

has a low fitness function value; when 0.2 < w4 < 0:5,

FFDACO has a low fitness function value; and when w4

is > 0:5, FFD and BFD have low fitness function values.

In the next part of the simulation and real cluster

experiments, we assume that w1 = w2 = w3 = w4 =

0.25. The fitness function values based on the FFD,

BFD, FFDACO, and BFDACO are 34.053 78, 34.053 78,

29.702 65, and 29.466 14, respectively. The results

indicate that the fitness function value of the algorithm

based on the FFDACO or BFDACO is less than that of

the algorithm based on the FFD or BFD. Moreover, the

heuristic ant colony algorithm proposed in this study

outperforms the heuristic algorithm in solving the fault-

tolerant placement problem of VMs. This finding can

be attributed to the fact that the heuristic ant colony

algorithm utilizes the positive feedback mechanism

and the characteristics of MMAS, which can optimize

the multiple factors of VM fault-tolerant placement

and search for the global optimal solution. Thus, the

fitness function value can reach the optimal value. No

difference in fitness function value between FFD-based

and BFD-based algorithms can be observed because they

all use the physical nodes that have already been used

firstly.

Figure 4 shows the comparison of the values of the

placement factors among the algorithms based on the

FFD, BFD, FFDACO, and BFDACO.

As shown in Fig. 4, the algorithms based on the FFD

and BFD have high power consumption rates, whereas

the algorithms based on the FFDACO and BFDACO

have high fault tolerance costs. For the algorithms

based on the FFD and BFD, VMs are sorted on the

basis of the amount of resource requested for CPU.

Then, the physical node is selected to place the service-

providing and redundant VMs together. However, for

0 0.2 0.8 1.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0 FFD

BFD

FFDACO

BFDACO

(a) Fitness function value with different w1

0 0.2 0.8 1.0.4 .6

10

15

20

25

30

35

40

FFD

BFD

FFDACO

BFDACO

(b) Fitness function value with different w2

0 0.2 0.8 1.0.4 .6

20

30

40

50

60

70

80
FFD

BFD

FFDACO

BFDACO

(c) Fitness function value with different w3

0 0.2 0.8 1.00.4 0.6

10

20

30

40

FFD

BFD

FFDACO

BFDACO

(d) Fitness function value with different w4

Fig. 3 Variations of the fitness function values with different weights of placement factors.

106 Tsinghua Science and Technology, February 2021, 26(1): 95–111

FFD BFD FFDACO BFDACO

Placement algorithm

0

2

4

6

8

10

12

14

16

V
a
lu
e
o
f
p
la
c
e
m
e
n
t
fa
c
to
rs

SLA violation rate

Resource remaining rate

Power consumption rate

Fault tolerance cost

Fig. 4 Comparison of the values of the placement factors
among different algorithms.

the algorithms based on the FFDACO and BFDACO, we

place the service-providing VMs using the ant colony

algorithm. Then, we place the redundant VMs using

the FFD or BFD algorithm. The number of physical

nodes required by the FFD and BFD is 105, whereas

that required by the FFDACO and BFDACO is 109. If

the resource requests are the same, then the number of

physical nodes will be small, the resource remaining

rate will be low, and the CPU utilization ratio will

be high. Thus, the power consumption rates of the

algorithms based on the FFD and BFD are high. In

the FFDACO-based and BFDACO-based algorithms,

redundant VMs are placed as far as possible on the

physical nodes that are already used, leading to a

high fault tolerance cost. Figures 5 and 6 show the

variations of the fitness function values based on the

FFDACO and BFDACO algorithms as the number of

iterations increases, respectively. Notably, the algorithm

based on the FFDACO or BFDACO will converge to

0 25 50 75 100 125 150 175 200

29.8

30.0

30.2

30.4

30.6

Fig. 5 Variation of the fitness function value based on the
FFDACO algorithm.

0 25 50 75 100 125 150 175 200

29.6

29.8

30.0

30.2

Fig. 6 Variation of the fitness function value based on the
BFDACO algorithm.

a stable value after 100 iterations, because when the

pheromone function is continually updated, the ants will

approach the optimal placement solution. Moreover, the

convergence speed of the fitness function value of the

algorithm based on the FFDACO is slower than that

of the algorithm based on the BFDACO because the

redundant VMs of FFDACO are placed on the basis of

the ordinal number of the physical nodes that have been

already used. Furthermore, the ordinal number may be

different from that of the last iteration. Meanwhile, for

BFDACO, the physical node with the smallest resource

remaining rate is selected. Thus, the convergence speed

of the algorithm based on the FFDACO is slower than

that of the algorithm based on the BFDACO.

4.2 Real cluster experiment and analysis

To verify the effect of the VM fault-tolerant placement

solution on the real cloud platform, we conducted

experiments in the laboratory cluster environment and

verified and analyzed the given VM fault-tolerant

placement solution.

To simulate real cloud computing services, we

use the benchmark program Rice University Bidding

System (RUBiS), which is similar to the eBay auction

system. RUBiS is an open source benchmark program

developed by Rice University and often used to

evaluate the quality of design patterns for network

applications[35]. The experimental platform is a cluster

environment composed of six physical nodes, one of

which is a monitoring node and the remaining five nodes

are service nodes. The monitoring node is responsible

for collecting the dynamic information of VMs on

the service nodes, inputting the data into the model

solver, and obtaining the output value of the objective

function. The service nodes are used to place service-

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 107

providing and redundant VMs, and the service node

numbers are defined as N0, N1, N2, N3, and N4. The

monitoring node configuration is Intel Core 2 Duo

Processor E7500 (2.93 GHz), 4 GB memory, and 500 GB

hard disk (7200 RPM). The service node configuration

is Intel Xeon Processor E3-1225 v2 (3.2 GHz), 8 GB

memory, and 1 TB hard disk (7200 RPM). All of the

nodes are connected by a gigabit switch, and both

monitoring and service nodes install CentOS 6.4 x86 64

and Java 1.8 update 5.

In the deployment of the MySQL cluster, the SQL

node is responsible for accessing cluster data and the

data node is responsible for saving cluster data, the

number of which is related to the number of their replicas.

Moreover, these two types of nodes provide the critical

data service of RUBiS. Thus, these nodes need to be

placed redundantly.

RUBiS is a typical three-tier architecture web

application benchmark program. We selected Version

1.3, and the logical structure of the experimental system

is shown in Fig. 7. 13 VMs based on Kernel-based

Virtual Machine (KVM) were used in this experiment.

The first tier used three VMs, and all were installed the

Apache server (Version 2.4.9), which is responsible for

receiving HTTP requests from clients and forwarding

these request to the second tier. These VMs are labeled

as VM3, VM4, and VM5 in sequence. The second tier

used five VMs, and all were installed the Apache tomcat

server (Version 7.0.54), which is responsible for running

RUBiS and receiving and processing the HTTP requests

from the first tier. These VMs are labeled as VM6,

VM7, VM8, VM9, and VM10. The third tier used five

VMs, and all were installed the MySQL cluster, of which

one was installed the management component, one was

installed the data component, one was installed the

T1: Apache
ervers

(stateless)

VM3

VM4

VM5

T2: Tomcat
ervers (stateless)

VM6

VM7

VM8

VM9

VM10

T3: MySQL
ervers (stateful)

VM2
(manage)

VM0 (SQL)

VM11

(SQL-RE)

VM12

(ata-RE)

VM1 (ata)

Synchronize

Load blance

Load blance

Synchronize

Fig. 7 Three-layer structure based on RUBiS.

SQL component, and the remaining two were redundant

VMs[36], which were set as the backup machines of the

data and SQL components. The version of MySQL is

7.3.6. These VMs are labeled as VM2, VM0, VM1,

VM11, and VM12. The guest OS of KVM is Ubuntu

13.10 Server x86 64. The CPU of each tier of VMs is

configured as single core and single thread. The memory

configurations of the first, second and third tiers are 1500,

2000, and 2500 MB, respectively.

The proposed VM fault-tolerant placement algorithm

is used to derive the mapping solution of 13 VMs and 5

service nodes. Then, RUBiS is deployed and tested

on the basis of the obtained mapping solution. The

utilization ratio data of the CPU, memory, and network

bandwidth of the service nodes are collected, and the

actual fitness value of the objective function is calculated.

Finally, the consistency of the results between real

cluster and simulation experiments is verified.

To quantify the CPU processing power, the single

core and single thread processing capability of the

service node CPU is set to 1000 MIPS. Thus, the

CPU processing capacity of each service node is

4000 MIPS and the CPU resource requested by each

VM is 1000 MIPS. Given that the physical network card

of the host is shared with the KVM guest OS by bridging,

the network bandwidth of the service node is 100 Mbps,

and the network bandwidth resource requested by each

VM is 25 Mbps. To prevent the resource occupied by

the VMs from being affected by the guest OS resource

requirements during the experiment, the number of VMs

placed on each physical node is limited to three or less.

The prototype system of the VM fault-tolerant

management system presented in Fig. 1 is implemented

as shown in Fig. 8.

The monitoring node of the prototype system

includes the model management, solver process,

and the monitoring process. The monitoring process

VMM1VMM1
VVMMMMjj

...

Monitor

Monitoring

Monitor

Monitoring

Monitor

Monitoring

and olver

VM11 VM12 VM 1 VM 2

Fig. 8 Implementation of the prototype system.

108 Tsinghua Science and Technology, February 2021, 26(1): 95–111

is responsible for receiving resource information

(including the actual utilization ratio data of CPU,

memory, and network bandwidth) collected by the

monitoring process of the service node cluster,

forwarding the resource data to the model management

and solver process, and receiving its output, i.e., the

VM placement solution. Finally, the monitoring process

connects to the Libvirt service on each service node

through Remote Procedure Call (RPC) and performs the

VM creation and placement operations on the basis of

the obtained placement solution.

In the service node cluster, each VM runs the

monitoring process, which is responsible for transmitting

resource information to the monitoring node. The

VM resource configuration on each physical node is

managed by its VMM, and the operation instructions

are transmitted by the interface provided by the Libvirt

service.

In the real cluster experiment, the mapping solution

of VMs to physical nodes is the same as that of the

simulation experiment (including the settings of the

model parameters). Table 1 shows the mapping solutions

of the four types of VM placement algorithms. The first

row shows the 13 VMs, i.e., VM0–VM12 and the first

column shows the four different placement algorithms.

The second to fifth rows depict the mapping solutions

of 13 VMs and 5 service nodes of different placement

algorithms.

Figure 9 shows the fitness function values based

FFD BFD FFDACO BFDACO

Placement algorithm

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Fig. 9 Fitness function values in the simulation experiment.

on the four types of VM fault tolerant placement

algorithms in the simulation experiment. As shown in

Table 1 and Fig. 9, both VM fault-tolerant placement

algorithms based on the FFD and BFD have not only

the same fitness function value but also the same

placement solution. However, both algorithms based on

the FFDACO and BFDACO only have the same fitness

function value. Their placement solutions are different

because they select different VMs to place during the

process of each iteration. Figure 10 shows the real

cluster experimental results of the fitness function values

when different VM fault-tolerant placement algorithms

are used. Notably, the fitness function values of the

VM fault-tolerant placement algorithms based on the

FFDACO and BFDACO are smaller than those of the

algorithm based on the FFD or BFD, which is consistent

with the simulation results. The fitness function value of

the VM fault-tolerant placement algorithm based on the

BFD or BFDACO is smaller than that of the algorithm

based on the FFD or FFDACO. This finding can be

attributed to the fact that the algorithm based on the

BFD or BFDACO prioritizes the physical node that can

minimize the resource remaining rate when placing the

redundant VMs.

The comparison of Figs. 9 and 10 shows that the

fitness function value of the algorithm based on the FFD

or BFD is larger than that of the algorithm based on the

FFDACO or BFDACO. In the real cluster experiment,

the value of the resource utilization ratio takes the

FFD BFD FFDACO BFDACO

Placement algorithm

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Fig. 10 Fitness function values in the real cluster experiment.

Table 1 Mapping solutions of 13 VMs and 5 service nodes.
Method VM0 VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8 VM9 VM10 VM11 VM12

FFD N0 N0 N0 N3 N3 N4 N1 N2 N2 N2 N3 N1 N1

BFD N0 N0 N0 N3 N3 N4 N1 N2 N2 N2 N3 N1 N1

FFDACO N2 N2 N2 N3 N1 N1 N4 N4 N4 N4 N1 N3 N0

BFDACO N0 N0 N0 N3 N1 N1 N4 N3 N4 N4 N2 N3 N1

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 109

average value in a period of time, which is different

from that of the simulation experiment. Thus, the real

cluster and simulation experiments have different results.

However, the variation patterns of the fitness function

values of different algorithms are the same.

4.3 Fault injection experiment and analysis

The fault injection technology[37–39] is used to evaluate

the system failure rate when the cloud system adopts the

VM fault-tolerant placement algorithm.

On the basis of the assumption of system failure mode

in Section 2.1 and the VM placement example in Section

4.2, faults are injected into the SQL and data nodes. The

injected faults include permanent and transient faults.

The permanent faults are injected at the software or

VM level. The software fault is simulated by killing its

daemon, and the VM fault is simulated by shutting down

the VM. The transient fault is simulated by modifying

the return value of the system call, such as ioctl().

According to Eq. (5), the function of the system failure

rate is expressed as Eq. (21):

f D Failnum

Failnum C Passnum

(21)

where Failnum represents the number of failed requests

for RUBiS service and Passnum represents the number of

passed requests for RUBiS service.

We access the RUBiS service 100 000 times in

experiments. Faults are injected when the number of

times that the service is accessed reaches half. Table 2

shows the failure rate of the prototype system injected

with permanent faults. NFFDACO or NBFDACO

represents the nonredundent VM placement algorithm

based on FFDACO or BFDACO.

Notably, if critical VMs place their redundant replicas

on the basis of the proposed method, then the system’s

failure rate will be considerably reduced. When a critical

VM fails, its redundant replica will take over and

continue to provide service in a short period of time.

Thus, the number of failed requests for the RUBiS

service can be considerably reduced.

Table 3 shows the failure rate of the prototype system

Table 2 Failure rate of the prototype system injected with
permanent faults.

Method
Failure rate

MySQL KVM

NFFDACO 0.5149 0.4937

FFDACO 0.0450 0.0390

NBFDACO 0.4858 0.5041

BFDACO 0.0520 0.0570

Table 3 Failure rate of the prototype system injected with
transient faults.

Method Failure rate

NFFDACO 0.014

FFDACO 0.005

NBFDACO 0.015

BFDACO 0.003

injected with transient faults in critical VMs. Notably,

the system that adopts the proposed method has a low

failure rate. When a critical VM cannot handle the

request because of transient failure, its redundant replica

will take over and continue to provide service. The

number of failed requests for the RUBiS service is

reduced.

If permanent faults are injected into the database or

its corresponding VM, then the database cannot provide

services and the access request for the RUBiS service

will fail. Thus, the failure rate shown in Table 2 for

the system based on the NFFDACO or NBFDACO is

approximately 0.5. When a transient fault is injected into

a VM, its failure rate and the number of failed requests

for the RUBiS service are reduced. Therefore, the failure

rate shown in Table 3 is lower than that shown in Table 2.

The simulation, real cluster, and fault injection

experiments show that the VM fault-tolerant placement

solution obtained by the method proposed in this study

can not only achieve the optimal solution under multiple

VM fault-tolerant placement factors but also have a low

system failure rate.

5 Conclusion

The VM resource management of cloud computing

systems in data centers is a hot spot of current research.

VM static placement and VM dynamic management

are two types of VM management methods in data

centers. For the VM static placement problem, most

of the existing research only considers how to map

VMs to physical nodes under certain constraints and

rarely addresses the reliability problem. For VM static

placement in star topological data centers, this study

proposes a multi-objective optimization method of initial

VM fault-tolerant placement. In this work, on the basis

of the structural characteristics of the cloud computing

system, a VM fault-tolerant management system is

established at the unified resource layer to control the

VM fault-tolerant placement process; on the basis of

multiple factors, a multi-objective optimization model

of initial VM fault-tolerant placement is proposed; and

110 Tsinghua Science and Technology, February 2021, 26(1): 95–111

a heuristic ant colony algorithm is proposed to solve

the multi-objective optimization model. The simulation,

real cluster, and fault injection experiments show that

the proposed method can obtain better VM fault-

tolerant placement solution than the traditional methods.

However, the VM fault-tolerant placement method

proposed in this study only considers the case of single

VM failure. Moreover, in this study, we only construct a

model to solve the initial VM fault-tolerant placement

problem. How to combine initial VM fault-tolerant

placement with dynamic VM fault-tolerant management

to perform full life cycle VM management and how to

deal with multiple VM failures will be the focus of our

future works.

Acknowledgment

This work was supported by the National Natural Science

Foundation of China (Nos. 61432017 and 61772199).

References

[1] I. Foster, Y. Zhao, I. Raicu, and S. Y. Lu, Cloud computing

and grid computing 360-degree compared, in Proc. 2008
Grid Computing Environments Workshop, Austin, TX, USA,

2008, pp. 1–10.

[2] H. L. Chen, A qualitative and quantitative study on

availability of cloud computing, http://www.valleytalk.org/

wp-content/uploads/2013/10/, 2013.

[3] M. Nelson, B. H. Lim, and G. Hutchins, Fast transparent

migration for virtual machines, in Proc. 2005 USENIX Annu.
Technical Conf., Anaheim, CA, USA, 2005, pp. 391–394.

[4] M. Lee, A. Krishnakumar, P. Krishnan, N. Singh, and S.

Yajnik, Hypervisor-assisted application checkpointing in

virtualized environments, in Proc. IEEE/IFIP 41st Int. Conf.
Dependable Systems & Networks, Hong Kong, China, 2011,

pp. 371–382.

[5] X. Zhang, Z. G. Huo, J. Ma, and D. Meng, Fast and live

whole-system migration of virtual machines, (in Chinese),

Journal of Computer Research and Development, vol. 49,

no. 3, pp. 661–668, 2012.

[6] F. Xu, F. M. Liu, L. H. Liu, H. Jin, B. Li, and B. C.

Li, iAware: Making live migration of virtual machines

interference-aware in the cloud, IEEE Transactions on
Computers, vol. 63, no.12, pp. 3012–3025, 2014.

[7] K. J. Ye, Z. H. Wu, C. Wang, B. B. Zhou, W. S. Si, X.

H. Jiang, and A. Y. Zomaya, Profiling-based workload

consolidation and migration in virtualized data centers,

IEEE Transactions on Parallel and Distributed Systems,

vol. 26, no. 3, pp. 878–890, 2015.

[8] H. K. Liu and B. S. He, VMbuddies: Coordinating live

migration of multi-tier applications in cloud environments,

IEEE Transactions on Parallel and Distributed Systems, vol.

26, no. 4, pp. 1192–1205, 2015.

[9] J. Zhu, W. Dong, Z. F. Jiang, X. G. Shi, Z. Xiao, and X. M.

Li, Improving the performance of hypervisor-based fault

tolerance, in Proc. IEEE Int. Symp. Parallel & Distributed
Processing, Atlanta, GA, USA, 2010, pp. 1–10.

[10] J. Zhu, Z. F. Jiang, Z. Xiao, and X. M. Li, Optimizing the

performance of virtual machine synchronization for fault

tolerance, IEEE Transactions on Computers, vol. 60, no. 12,

pp. 1718–1729, 2011.

[11] D. Shen, J. Z. Luo, F. Dong, and J. X. Zhang, VirtCo: Joint

coflow scheduling and virtual machine placement in cloud

data centers, Tsinghua Science and Technology, vol. 24, no.

5, pp. 630–644, 2019.

[12] Z. Liu, S. J. Sun, J. Xing, Z. Fu, X. H. Hu, J. W. Pi, X. F.

Yang, Y. S. Lu, and J. Li, MN-SLA: A modular networking

SLA framework for cloud management system, Tsinghua
Science and Technology, vol. 23, no. 6, pp. 635–644, 2018.

[13] Q. Li, Q. F. Hao, L. M. Xiao, and Z. J. Li, Adaptive

management and multi-objective optimization for virtual

machine placement in cloud computing, (in Chinese),

Chinese Journal of Computers, vol. 34, no. 12, pp. 2253–

2264, 2011.

[14] K. Tsakalozos, M. Roussopoulos, and A. Delis, Hint-

based execution of workloads in clouds with Nefeli, IEEE
Transactions on Parallel and Distributed Systems, vol. 24,

no. 7, pp. 1331–1340, 2013.

[15] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J.

Plosila, I. Porres, and H. Tenhunen, Using ant colony

system to consolidate VMs for green cloud computing,

IEEE Transactions on Services Computing, vol. 8, no. 2, pp.

187–198, 2015.

[16] E. G. Coffman, M. R. Garey, and D. S. Johnson,

Approximation algorithms for bin packing: A survey, in

Approximation Algorithms for NP-Hard Problems. Boston,

MA, USA: PWS Publishing, 1997, pp. 46–93.

[17] N. Bobroff, A. Kochut, and K. Beaty, Dynamic placement

of virtual machines for managing SLA violations, in

Proc. 10th IFIP/IEEE Int. Symp. Integrated Management,
Munich, Germany, 2007, pp. 119–128.

[18] S. Chaisiri, B. S. Lee, and D. Niyato, Optimization of

resource provisioning cost in cloud computing, IEEE
Transactions on Services Computing, vol. 5, no. 2, pp. 164–

177, 2012.

[19] C. H. Lien, Y. W. Bai, and M. B. Lin, Estimation by software

for the power consumption of streaming-media servers,

IEEE Transactions on Instrumentation and Measurement,
vol. 56, no. 5, pp. 1859–1870, 2007.

[20] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari,

Server workload analysis for power minimization using

consolidation, in Proc. 2009 Conf. USENIX Annu. Technical
Conf., San Diego, CA, USA, 2009, p. 28.

[21] J. K. Dong, H. B. Wang, and S. D. Cheng, Energy-

performance tradeoffs in IaaS cloud with virtual machine

scheduling, China Communications, vol. 12, no. 2, pp. 155–

166, 2015.

[22] X. Jing and J. A. B. Fortes, Multi-objective virtual machine

placement in virtualized data center environments, in

Proc. 2010 IEEE/ACM Int’l Conf. Green Computing and
Communications & Int’l Conf. Cyber, Physical and Social
Computing, Hangzhou, China, 2010, pp. 179–188.

[23] F. Ma, F. Liu, and Z. Liu, Multi-objective optimization

Wei Zhang et al.: A Multi-Objective Optimization Method of Initial Virtual Machine Fault-Tolerant Placement : : : 111

for initial virtual machine placement in cloud data center,

Journal of Information and Computational Science, vol. 9,

no. 16, pp. 5029–5038, 2012.

[24] S. N. Wang, H. X. Gu, and G. Wu, A new approach to

multi-objective virtual machine placement in virtualized

data center, in Proc. IEEE 8th Int. Conf. Networking,

Architecture and Storage, Xi’an, China, 2013, pp. 331–335.

[25] F. Machida, M. Kawato, and Y. Maeno, Redundant virtual

machine placement for fault-tolerant consolidated server

clusters, in Proc. 2010 IEEE Network Operations and
Management Symposium, Osaka, Japan, 2010, pp. 32–39.

[26] G. Y. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting,

and C. Pu, Performance and availability aware regeneration

for cloud based multitier applications, in Proc. IEEE/IFIP
Int. Conf. Dependable Systems and Networks, Chicago, IL,

USA, 2010, pp. 497–506.

[27] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y.

Moatti, and D. H. Lorenz, Guaranteeing high availability

goals for virtual machine placement, in Proc. 31st Int. Conf.
Distributed Computing Systems, Minneapolis, MN, USA,

2011, pp. 700–709.

[28] D. Epping and F. Denneman, VMware vSphere 4.1 HA
and DRS Technical Deepdive. North Charleston, SC, USA:

CreateSpace, 2010, pp. 15–22.

[29] Z. B. Zhen, T. C. Zhou, M. R. Lyu, and I. King, FTCloud:

A component ranking framework for fault-tolerant cloud

applications, in Proc. IEEE 21st Int. Symp. Software
Reliability Engineering, San Jose, CA, USA, 2010, pp. 398–

407.

[30] Z. B. Zheng, T. C. Zhou, M. R. Lyu, and I. King,

Component ranking for fault-tolerant cloud applications,

IEEE Transactions on Services Computing, vol. 5, no. 4, pp.

540–550, 2012.

[31] F. Hermenier, J. Lawall, and G. Muller, BtrPlace: A flexible

consolidation manager for highly available applications,

IEEE Transactions on Dependable and Secure Computing,

vol. 10, no. 5, pp. 273–286, 2013.

[32] X. X. Cui, Multi-Objective Evolutionary Algorithms and
Their Applications, (in Chinese). Beijing, China: National

Defense Industry Press, 2006, pp. 10–20.

[33] T. Stützle and H. H. Hoos, MAX-MIN ant system, Future
Generation Computer Systems, vol. 16, no. 8, pp. 889–914,

2000.

[34] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De

Rose, and R. Buyya, CloudSim: A toolkit for modeling and

simulation of cloud computing environments and evaluation

of resource provisioning algorithms, Software: Practice and
Experience, vol. 41, no.1, pp. 23–50, 2011.

[35] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and

W. Zwaenepoel, Performance comparison of middleware

architectures for generating dynamic web content, in Proc.
2003 ACM/IFIP/USENIX Int. Conf. Middleware, Rio de

Janeiro, Brazil, 2003, pp. 242–261.

[36] Y. Tamura, Kemari: Fault tolerant VM synchronization

based on KVM, https://www.linux-kvm.org/images/0/0d/

0.5.kemari-kvm-forum-2010.pdf, 2010.

[37] A. Jin and J. H. Jiang, Fault injection scheme for embedded

systems at machine code level and verification, in Proc.
15th IEEE Pacific Rim Int. Symp. Dependable Computing,

Shanghai, China, 2009, pp. 55–62.

[38] J. W. Hu and J. H. Jiang, Design and implementation

of a fault injection mechanism for software reliability

evaluation, (in Chinese), Journal of Computer-Aided Design
& Computer Graphics, vol. 24, no. 6, pp. 741–751, 2012.

[39] D. Q. Zhang, J. H. Jiang, and L. B. Chen, A method for

validating the effectiveness of fault clustering and failure

clustering of programs, Scientia Sinica Informationis, vol.

44, no. 10, pp. 1323–1344, 2014.

Jianhui Jiang received the BE, ME,

and PhD degrees in traffic information

engineering and control from Shanghai

Tiedao University (in April 2000, it was

merged to Tongji University) in 1985, 1988,

and 1999, respectively. During 1994–2000,

he was an associate professor in computer

science and technology at Shanghai Tiedao

University. Since 2000, he has been a full professor in computer

science and technology at Tongji University. During 2007–2011,

he was the chair of the Department of Computer Science and

Technology, Tongji University. Since 2011, he is the associate

dean of the School of Software Engineering, Tongji University. He

is the vice director of Technical Committee on Fault-tolerant

Computing, Chinese Computer Federation (CCF). He has served

on several program committees of national or international

symposiums or workshops. He has co-authored two books and

published more than 200 technical papers. His current research

interests include dependable systems and networks, software

reliability engineering, and VLSI/SoC testing and fault-tolerance.

He is a senior member of CCF.

Wei Zhang received the BS degree in

software engineering from Shanghai

Institute of Technology and ME degree

in software engineering from Tongji

University, Shanghai, China in 2015 and

2018, respectively. Now he is a PhD

candidate at Tongji University. His current

research interests include dependable

systems and networks and software reliability engineering.

Xiao Chen received the BS degree in

information and computing science, ME

degree in computer science and technology

from China Three Gorges University, and

PhD degree in software engineering from

Tongji University, China in 2009, 2012,

and 2016, respectively. His current research

interests include software reliability

engineering and fault-tolerant computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

