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Abstract: The rapid development of wearable computing technologies has led to an increased involvement of

wearable devices in the daily lives of people. The main power sources of wearable devices are batteries; so,

researchers must ensure high performance while reducing power consumption and improving the battery life of

wearable devices. The purpose of this study is to analyze the new features of an Energy-Aware Scheduler (EAS) in

the Android 7.1.2 operating system and the scarcity of EAS schedulers in wearable application scenarios. Also, the

paper proposed an optimization scheme of EAS scheduler for wearable applications (Wearable-Application-optimized

Energy-Aware Scheduler (WAEAS)). This scheme improves the accuracy of task workload prediction, the energy

efficiency of central processing unit core selection, and the load balancing. The experimental results presented in

this paper have verified the effectiveness of a WAEAS scheduler.
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1 Introduction

There has been a significant involvement of wearable
devices in the daily lives of people with the rapid
advancement of wearable technologies, and they have
been used in a broad range of applications, such as
healthcare, entertainment, as well as various military
and industrial applications. The prime focus of typical
wearable applications is on sensing, collecting, and
uploading physiological, environmental, and location
data via wireless body area networks[1] or wireless sensor
networks[2]. In military, healthcare, and emergency
fields, the satisfactory/optimum operation of wearables
is needed for a long time to help people cope with all
kinds of dangerous situations. As wearables are powered
by batteries, energy efficiency has become a key concern.
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However, there are still many problems that need to
be further addressed, optimized, and improved.

(1) Since the years the first lithium-ion batteries were
invented, advancements in battery energy density lag
far behind than the changes in hardware performance,
and next generation batteries are still under development.
Owing to the restricted size of embedded wearables, the
battery capacity is very limited. In order to extend the
battery life of wearables, it is necessary to reduce the
power consumption of wearables in hardware/software
coschedule mode.

(2) The usage scenarios of wearables generally include
many human-computer interaction operations, which
require a real-time response. In order to reduce the
response time of wearables, it is essential to continuously
increase the power consumption of system. Therefore,
the optimization of the system becomes necessary as
per the characteristics of wearable applications while
extending the battery life of wearables as much as
possible.

(3) In wearables, the processor consumes a significant
portion of the total energy. Heterogeneous multicore
processors, which provide high performance and
low-power consumption, have garnered a lot of
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attention and development in recent years. Many
researches have optimized the scheduling strategies of
heterogeneous processors to improve performance and
energy efficiency, but few of them had addressed the
Energy-Aware Scheduler (EAS) strategies of wearable
systems. Due to the difference of usage scenarios
between wearables and general-purpose devices, it is
necessary to research on the low-power technologies for
wearable applications.

The objective of this paper is to study and develop
the wearables that provide complex functions and
are sensitive to response time and battery life (e.g.,
wearables in military and emergency fields), and
research the task scheduling strategies of heterogeneous
multicore processor for wearable applications.

2 Related Work

The selection strategy of a Central Processing Unit
(CPU) is an important part of a task scheduler in
the heterogeneous multicore systems. As there are
a large number of low-load periodic tasks in the
wearable application scenarios, the selection of low-
power processors for such tasks is the most appropriate
thing to do, and low-power coprocessor[3] is an example
of them. Priyantha et al.[4] used a low-power coprocessor
to coordinate with the main processor, extended the
time in low-power idle state of the main processor by
assigning the low-load tasks, such as context awareness,
into the coprocessor, and reduced power consumption by
two orders of magnitude. Lane et al.[5] proposed the ZOE
wearable platform, which is based on Intel Edison SoC,
using a dual-core 500 MHz CPU as the main processor
and a 100 MHz MCU as the low-power coprocessor, and
achieved an efficient heterogeneous computing platform.
Since the coprocessor does not have all the computing
capacity like the main processor, it may not be suitable
for carrying out all type of tasks, such as activity
recognition, by using the machine learning algorithm[6].
At present, the heterogeneous multicore processor
technology[7], which integrates cores with different
advantages together to improve system performance,
such as big.LITTLE architecture, has emerged as the
development trend of wearables. The research works on
task scheduling in heterogeneous multicore systems can
learn from the coprocessor technology.

For latency-sensitive tasks, multicore scheduling
strategy[8] focuses on how to place such tasks on the
appropriate CPU core while meeting the performance

demand of tasks. Wu and Ryu[9] introduced Best Speed
Fit for Earliest Deadline First (BSF-EDF), which is a
task assignment method in a heterogeneous processor
system based on Earliest Deadline First (EDF)[10]. When
assigning tasks, BSF-EDF selects the lowest speed idle
CPU whose performance capacity is no less than the
utilization of the task to perform the task with the highest
priority, instead of selecting the CPU with the highest
speed like the traditional scheduling algorithm, which
reserves high-speed processors for the following tasks,
improves the overall performance, and reduces the power
consumption of the system. Khan et al.[11] proposed an
offline thermal-aware scheduling algorithm to improve
the scheduling strategy in multicore systems. As the
high temperature of devices will result in performance
degradation and energy waste, task migration is a
common method to keep the temperature within thermal
constraints in multicore systems, which migrates tasks
to the CPU at a lower temperature, thereby improving
the reliability and stability of the system and reducing
the power consumption of CPUs.

Workload balancing and task migration are also the
important features of multicore scheduling algorithm.
Cheng[12] proposed a Heterogeneous MultiProcessor
Dynamics Balance (HM-PDB) energy-saving scheduling
framework based on the HMP scheduler. This framework
dynamically adjusts the task migration thresholds on
different processors based on the workload change,
achieves load balancing and power consumption
reduction with guaranteeing performance and fairness,
and is more suitable for wearable application scenarios.
Huang[13] divided application into three stages (pre-
process, task executing, and post-process) from the
perspective of hardware and software co-scheduling,
coordinated with one master core and four slave cores
for task scheduling, and improved the system throughput.
Gao[14] predicted the application demand for CPU
resource by dynamically sensing the load changes of
tasks, thereby assigning an optimal time of the logical
CPU to the application, and improved the performance
and energy efficiency of the system.

Through the above investigation, we should make
full use of the different characteristics, including
heterogeneous cores, the adjustable CPU frequency,
and the low-power consumption of CPU in idle state,
to optimize the task scheduler. This paper address
the dynamic task scheduling problem in heterogeneous
multicore wearable systems and aim to improve
the performance energy efficiency of heterogeneous
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processors from the following aspects.
(1) Optimization of CPU Core Selection: On the

promise of fulfilling the deadline constraints and the
demands for performance, tasks should be assigned to
suitable CPU cores to reduce power consumption.

(2) Improvement of CPU Frequency Scaling: On
the promise of fulfilling the task demands, the scheduler
should set CPU to a suitable frequency and decrease
the frequency scaling times to reduce the power
consumption and response latency brought by frequency
scaling.

(3) Optimization of CPU C-State-Setting: Based
on the changes of system workload, the scheduler should
set suitable CPU cores into the idle state. Also, it
needs to set optimal c-state level to avoid unnecessary
state switching between active and idle and reduce
the unnecessary power consumption generated by CPU
wakeup and CPU wakeup latencies.

3 Wearable-Application-Optimized Energy-
Aware Scheduler (WAEAS)

We assumed that the wearable platform is equipped with
a range of sensors and provides various functions such
as GPS positioning, physical health monitoring, and
environmental monitoring, etc. The wearable hardware
platform is also equipped with heterogeneous multicore
processor, RAM, flash memory, internal battery, LCD,
communication modules, etc. The processor is based
on ARM big.LITTLE architecture and consists of
several high-performance cores and several low-power
cores. All the cores can be active at the same time and
have access to the same memory regions. The platform
also implements general applications, such as Graphical
User Interface (GUI), audio player, text editor, etc.
however, this paper mainly aims on the workloads of
wearable applications. Our previous work[15] provides a
detailed description of the wearable system.

The most obvious feature of wearable applications is
the communication with external devices through the
IO interface. Each application starts with sending or
receiving data and ends with providing feedback to users
after data processing. Therefore, wearable applications
can be divided into the following three stages: data
collection, filtering and storage, and computing and
processing.

The tasks in the data collecting stage are generally
periodic, run in background, and only require fewer
CPU resources. At the same time, these tasks will

invoke external devices to send or receive data and
hang themselves until the completion of transmission.
The requirement for CPU resources of the tasks in the
filtering and storage stage is related to the content of the
collected data. For the small data collected by sensors,
only a small amount of CPU resources are needed to
complete the filtering and storage. For the large data
collected by camera or microphone, more CPU resources
are needed to complete data filtering as soon as possible.
The tasks in the computing and processing stage mainly
include picture/video processing, data encryption, and
data fusion. Such tasks require a large number of CPU
resources. At the same time, in order to respond to
users as soon as possible, it is necessary to assign high
priority to the task and improve the response speed of
the system. Therefore, in the research of low-power
technology for wearable applications, the characteristics
of application priority, latency sensitivity, periodicity,
workload, duration, and external devices invocation
should be fully considered.

3.1 EAS scheduler

In order to be more suitable to mobile devices, ARM
and Linaro jointly developed a new scheduler: EAS,
which was originally designed to reduce the power
consumption of the overall system as much as possible
without affecting performance.

EAS aims to make power performance management
and is applicable to the current popular multicore
heterogeneous processors (such as ARM big.LITTLE
processor). It combines scheduler, CPUIdle, and
CPUFreq modules as shown in Fig. 1. The EAS
scheduler instructs the CPUFreq module to scale the
frequency of CPU cores. It also instructs the CPUIdle
module to set CPU core into the idle state, which aims
to make power performance control more centralized

Fig. 1 Architecture of scheduler, CPUIdle, and CPUFreq in
EAS.
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with the EAS scheduler as the primary driver for power
performance decisions.

The architecture of the EAS scheduler is shown in
Fig. 2. Since the EAS scheduler is mainly used in
the Android systems, on the basis of the traditional
Completely Fair Scheduler (CFS), the EAS scheduler
introduces some new features for mobile platforms,
which are labeled in Fig. 2, including the CPU
energy model, Window-Assisted Load Tracking (WALT)
algorithm, SchedTune, wakeup path, and Schedutil.
Energy model is defined as a set of frequency-power
or capacity-power pairs and is an accurate baseline
model of the dynamic and static powers used by the
CPUs in the system. WALT is a per-task load tracking
mechanism. When the system is not overutilized, all
tasks will occasionally wake up. Hence, the task wakeup
path module selects the CPU core where the task
should be executed. SchedTune implements a single (and
simple) central tunable controller to balance the energy
efficiency and performance boosting. Schedutil is a
CPUFreq governor that makes it possible to control CPU
clock frequency selection directly from the scheduler.
Schedutil works as a shim layer between the scheduler
and the CPUFreq framework[16].

In the following, we will optimize the EAS scheduler
combined with these new features from four aspects,
including workload prediction, CPU selection, batch
processing for the associated tasks, and load balancing.

3.2 Basic exponential smoothing-based WALT
algorithm

In the original WALT algorithm, there are five 20 ms
sliding time windows to count the historical workloads
of tasks. The workload is called WALT time and is

calculated as following,

L D timeexec �
freqcurr

freqmax
�

IPCcurr

IPCmax
(1)

where timeexec is the actual task execution time, freqcurr
is the current CPU frequency, freqmax is the max CPU
frequency, IPCcurr is the current computational efficiency
of CPU, and IPCmax is the max computational efficiency
of CPU.

After the counting of five historical workloads,
the WALT algorithm selects maxfLrecent; Lavgg (the
maximum between the most recent value Lrescent and
the average value Lavg) as the predicted task workload
in the next sliding window. As shown in Fig. 3, the
predicted value Lnext is 4 ms calculated with the average
values; however, in the practical applicable scenario,
1 ms is a more reasonable predicted task demand.

We propose Basic Exponential Smoothing WALT
(BES-WALT) algorithm to resolve the above problem.
The purpose of adopting basic exponential smoothing[17]

is to increase the weight of short-term loads on the
predicted demand. The load calculation formula is
shown as following,

LtC1 D ˛ � xt C .1 � ˛/ � Lt (2)

Fig. 3 Example of WALT algorithm.

Fig. 2 EAS scheduler architecture diagram.
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where Lt represents the predicted demand in the t-th
sliding window, xt represents the real demand in the
t-th sliding window, ˛ represents the smoothing factor,
where ˛ 2 .0; 1/. After substituting Lt ; Lt�1; : : : ; L1

into LtC1, the following formula can be obtained after
expanding and sorting,
LtC1D˛xtC˛.1 � ˛/xt�1C˛.1� ˛/

2xt�2C � � �C

˛.1 � ˛/t�1x1 C .1 � ˛/
tL1 (3)

It can be seen from the above formula that basic
exponential smoothing is essentially a moving average
with ˛.1 � ˛/k as the weight factor. Since the value of
˛ is less than 1, the larger k is, the smaller ˛.1 � ˛/k

will be, and therefore, the further it is away from the
current time, the smaller the workload weight will be.
According to the calculation characteristics of geometric
series in the PELT[18] algorithm, ˛ D 0:5 is selected,
and in order to minimize the influence of the initial value
L1 on the predicted demand, L1 is taken as the average
value of the two oldest historical workloads of the task,

L1 D
x1 C x2

2
(4)

After the predicted value LtC1 is obtained by
basic exponential smoothing, the previous practice is
continued, the predicted demand Lnext in the next sliding
window is taken as the maximum of the predicted value
and the recent value,

Lnext D maxfLrecent; LtC1g (5)
Figure 4 illustrates the examples of different historical

workloads and the prediction results of BES-WALT
algorithm. As shown in Fig. 4, when the workload
changes are relatively smooth and regular, the prediction
results of basic exponential smoothing method will not
distinguish from the predicted value of mean value
method. When there is a sudden increase in task
workloads, BES-WALT selects Lrecent as the predicted
value so that workload prediction can ensure a timely
response to a sudden increase in workloads and improves
the response speed of system; when task workloads
suddenly decrease, BES-WALT ensures that the further
it is away from the current time, the smaller the effect of
historical task workloads on the prediction value will be,
and avoids the effects of preemption and other abnormal
operations on the task workloads in the Linux kernel
scheduling process; when the task workloads are indeed
on a downward trend, compared to mean value method,
BES-WALT can more accurately reflect the changes of
task workloads.

From above, BES-WALT algorithm can improve the
accuracy of workload prediction through increasing the

Fig. 4 Examples of using BES-WALT algorithm to predict
task workload.

weight of short-term loads on the predicted demand,
avoid unnecessary CPU frequency switching, and ensure
that the CPU core selection is more reasonable, and
the efficiency of CPU utilizing is better than WALT
algorithm.

3.3 Energy-aware CPU selection algorithm

When the EAS scheduler performs CPU core selection
with the SchedTune mechanism, the latency-sensitive
tasks and the non-latency-sensitive tasks will be
distinguished from each other. The CPU selection
algorithm will be optimized from the perspective of
latency-sensitive tasks and the non-latency-sensitive
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tasks in combination with the actual use scenario.
(1) Latency-Sensitive Task: When the current task is

latency-sensitive, in order to complete the task as soon as
possible, the original CPU selection algorithm directly
traverses all the CPU cores in the system and returns the
first retrieved core in the idle state. As shown in Fig. 5,
Cores 0, 3, and 4 are in the idle state, Cores 0 and 4 are
in the Deep idle state, Core 3 is in the Wait-For-Interrupt
(WFI) idle state, the idle state level of Cores 0 and 4 is
higher than Core 3. Core 0 is the first retrieved core in
the idle state, so that Core 0 is returned by the original
CPU selection algorithm as the target core.

Although this approach can vastly improve the
searching speed for the idle core, but in big.LITTLE
architecture, the power consumption of the big core
is more than the little core when it is providing the
same computing power. At the same time, because the
DVFS Operating Performance Point (OPP) is discrete,
the frequency interval of big core is larger than the little
core, and the coarse granularity is more likely to cause
the waste of computing power when the big core is

Fig. 5 Example of CPU selection for latency-sensitive tasks.

selected. Embedded multicore processor only consists
of a small number of cores and since simplifying the
search process brings out improvement in the power
consumption and performance, the selection of a suitable
CPU core becomes essential.

From above observations, the scheduler does not
return the first idle CPU core for latency-sensitive tasks,
but it seeks a core with the minimum performance
capacity and the lowest idle state along with meeting the
performance demand of the task. The specific algorithm
is presented in Algorithm 1. In Fig. 5, Cores 0, 3, and 4
are in the idle state, Core 3 is in the lowest idle state level
and the performance capacity of Core 3 meets the task
demand, so that the optimized CPU selection algorithm
selects Core 3 as the target core for the task.

(2) Non-Latency-Sensitive Task: As shown in
Fig. 6, the EAS scheduler always assigns the non-
latency-sensitive tasks to the active cores in the little-core
scheduling subdomain as far as possible. It also assigns
the task to Cores 2 and 4 in the little core scheduling
subdomain. Due to its relatively lower utilization, Core
4 is selected as the target core.

However, this CPU selection strategy will result in the
tasks being distributed relatively evenly in the little-core
scheduling subdomain, and the little cores will always
be active and cannot switch to the idle state. At the same
time, due to the low utilization of each core, CPU cores
will run in low frequency and provide low performance
capacity that will affect the throughput of overall system.

In military, emergency rescue, disaster relief, and
other application scenarios, the wearable platform is
equipped with many sensors, such as barometer, thermo-
hygrograph, cardio-tachometer, etc.

Algorithm 1 Select the suitable core for the latency-sensitive task
Input: latency-sensitive task
Output: target core

1: temp capacity null //initialize temp capacity which represents the performance capacity of target core
2: temp cstate null //initialize temp cstate which represents the idle-state level of target core
3: target core null //initialize target core which is the current optimal CPU core for the latency-sensitive task
4: for each core in CPU do
5: if core capacity > task performance demand ^ core == Idle then
6: if core capacity 6 temp capacity ^ core cstate < temp cstate then
7: temp capacity core capacity
8: temp cstate core cstate
9: target core core

10: end if
11: end if
12: end for
13: return target core
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Fig. 6 Example of CPU selection strategy for non-latency-
sensitive task.

The tasks of collecting and processing the data from
the above external devices are periodic and of low
workload. But they need to be processed continuously,
so that the original strategy will avoid the energy waste
and longer response latency.

From above observations, we proposed “task packing
strategy” for non-latency-sensitive tasks with low
workload which are packaged into a process group and
placed on a small number of processors. By scaling the
frequency, these processors can run at a frequency closer
to their computing capacity, while other processors can
enter the idle state to save power. Since the system will
force global load balancing when the utilization rate of
any CPU core exceeds 80%, the packing threshold is set
to 80% of the computing power. Meanwhile, since the
power consumption of big core is much higher than the
little core, the “task packing strategy” is only performed
on the little cores. The implementation is presented in
Algorithm 2.

After adopting the task packing strategy, the CPU
selection for non-latency-sensitive tasks will change,

as shown in Fig. 6. In Fig. 6, the EAS scheduler
will select CPU Core 4 as the target CPU, because of
the least utilization of Core 4 among the active cores
in the little core scheduling domain so as to distribute
the tasks. However, WAEAS will select Core 2 as the
target CPU when the utilization of CPU core satisfies
the packing threshold. Core 4 will enter the idle state
after the completion of all the tasks, so as to achieve the
purpose of putting more cores into the idle state when the
system load is low and reduce the power consumption of
system. Meanwhile, as the demand for computing power
on Core 2 increases, CPUFreq will raise the computing
power of Core 2, that will speed up the completion of
tasks and reduce the response time of the system.

3.4 Batch processing strategy for the associated
tasks

Complementing the above CPU selection algorithm,
when there are some cores in the overutilized state and
some cores are idle in the system, in order to keep load
balancing in the system, the function select idle sibling()
is called to select the suitable idle CPU core to achieve
the goal of assigning tasks. For example, there are Tasks
A and B, where Task A is an application that periodically
needs to call the I/O device. When Task A calls the
I/O device, Task A wakes up Task B and suspends itself;
when TaskB is completed, TaskB wakes up TaskA, and
so on. Since the original function select idle sibling()
randomly select a CPU core, TasksA andB may migrate
randomly onto different CPU cores, resulting in energy
waste as shown in Fig. 7.

In wearable systems, many tasks are periodic, and
they wake up each other. “Batch processing strategy
for the associated tasks” is proposed to carry out such
tasks. If the core is idle on which the task was run the

Algorithm 2 Select the suitable CPU core for non-latency-sensitive task
Input: non-latency-sensitive task
Output: target core

1: target core null //target core records the current optimal core for the object task
2: temp utilization 0 //temp utilization records the new utilization of the current optimal core
3: for each core in CPU do
4: if core == active ^ core available capacity > task performance demand then
5: new utilization non latency sensitive taskC core utilization
6: if core == little ^ new utilization < 80% core capacity ^ new utilization > temp utilization then
7: temp maximum utilization new utilization
8: target core core
9: end if

10: end if
11: end for
12: return target core
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Fig. 7 Example of Tasks A and B awaken each other in the
original algorithm: Task A (Core 2) wake up Task B (Core
3); Task B (Core 3) wake up Task A (Core 4); Task A (Core 4)
wake up Task B (Core 5).

last time as the awakener, this task will be placed on
the CPU core. In the above example, the process that
Tasks A and B wake up each other is shown in Fig. 8.
The proposed strategy records which core the task was
running on as the awakener at the last time, and runs the
tasks in the system centralized on fewer cores, which not
only reduces the migration of tasks in the system, but
also makes more cores in the system be in the idle state.

When some cores are in the overutilized state, the
other tasks on such cores that do not belong to the
category of the associated tasks and will be migrated to
another idle core to achieve the goal of load balancing.

3.5 Cluster-based load balancing strategy

In the current load balancing implementation, there is a
variable which indicates that the system is overutilized
in the root scheduling domain. When any CPU core
is overutilized, this variable will be set to true, and the
whole system will be considered overutilized.

Then, the global Symmetric Multi-Processor (SMP)
load balancing is performed, in which all workloads are
shared among all the cores in the system, as shown in

Fig. 8 Example of Tasks A and B waking up each other in
the optimized algorithm: Task A (Core 2) wake up Task B
(Core 3); Task B (Core 3) wake up Task A (Core 2); Task A
(Core 2) wake up Task B (Core 3).

Fig. 9, and all the tasks are shared among all the cores.
SMP load balancing is mainly designed for

homogeneous multicore processor; however, the
embedded heterogeneous multicore processor is divided
into the cluster of big cores and the cluster of little cores,
which computing power is different from the other. The
fairness of task scheduling will not be guaranteed in the
equal assigning of tasks to the cores due to the gap in
computing capacity; meanwhile, because as long as any
CPU core is in the overutilized state, the load balancing
will be performed and the frequent load balancing will
cause a waste of system performance and energy.

According to the above observations, we proposed
“cluster-based load balancing strategy” that sets an
overutilized indicator in the big core scheduling
subdomain and the little core scheduling subdomain,
respectively, thereby indicating that whether the domain
is overutilized or not. When a scheduling domain is
overutilized, the current domain state is set to be
overutilized first, and the load balancing in the current
domain is given a priority. This is shown in Fig. 10.

Meanwhile, in order to ensure that the local load
balancing will not destroy the balance of the whole
system, the root scheduling domain should be set to
overutilized, and load balancing over all the scheduling
domains of the system should be performed if the
following conditions arise.

(1) When a task running in a scheduling subdomain is
not suitable to continue running in the current scheduling
subdomain as time goes by.

(2) When the demand for computing power of all
the tasks in some scheduling subdomain is greater than
the computing power that the current subdomain can

Fig. 9 Example of the original load balancing in EAS
scheduler.
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Fig. 10 Example of the cluster-based load balancing
strategy.

provide.
From the above observations, there are a lot of

aperiodic high-load applications among the wearable
applications. When such applications appear, it will
lead to unbalanced load in the little core or big
core scheduling subdomain. Simply performing global
load balancing will only result in energy waste and
performance degradation. Cluster-based load balancing
strategy reduces the meaningless task migrations in
the big core and the little core scheduling subdomains,
thereby reducing the system power consumption on the
basis of guaranteeing the system performance.

4 Experimental Analysis

4.1 Experimental environment of software and
hardware

The experiment is based on the Rockchip RK3399
processor, which employs ARM big.LITTLE
architecture with dual Cortex-A72 big core (main

frequency up to 2.0 GHz), quad Cortex-A53 little core
(up to 1.5 GHz), 2 G LPDDR3 RAM, and 8 G EMMC
ROM. The information of software platform is shown in
Table 1.

4.2 Basic performance and fairness analysis of the
WAEAS scheduler

In order to better assess the basic performance of the
WAEAS scheduler, we use Perf[19] to perform a system
performance test. Perf is one of the most common tools
used for performance counter profiling on Linux, and it
consists of several performance testing tools, including
Sched message and Sched pipe, which are involved in
basic performance testing and fairness testing of the
scheduler.

(1) Basic Performance Testing: Sched message is
a migration from the classic benchmark Hackbench[20],
and it is primarily used to measure the performance of
the scheduler. By starting N reading tasks and writing
tasks, Inter-Process Communication (IPC) performs
parallel reading/writing operations to measure the
performance of the scheduler. Comparing before and
after of the performance improvement operations, the
experimental results are shown in Fig. 11.

The analysis of experimental results: when the
parameterN is small (less than 60), the system workload
is low. Due to the task packing strategy adopted in the
CPU selection algorithm, some tasks are assigned to the
same CPU core, and the performance is slightly reduced.
When parameter N is greater than or equal to 60,
there is a gradual increase in the system workload, the
WAEAS scheduler achieves reasonable CPU selection

Table 1 Information of software platform.
Software platform Version

Linux kernel Linux Kernel 4.4.83
OS Android 7.1.2

Application compiler aarch64-linux-gnu-gcc 5.4.0

Fig. 11 Basic performance improvement in percentage after improvement.
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and load balancing, and the system performance has
been improved to a certain extent. As the influence
of workload and the OPP of CPU cores, the additional
amount of performance improvement fluctuates within
the range of N from 120 to 180.

(2) Scheduling Fairness Testing: Sched pipe is
mainly used to evaluate the fairness of the scheduler.
Its basic principle is to create two tasks: Tasks A and B ,
the two tasks sendN integers to each other through pipe,
both are mutually dependent. If the scheduling policy
is unfair by showing a preference for a particular task,
the whole running time will be longer. The experimental
results are shown in Fig. 12.

Experimental results analysis: when parameter N is
equal to 100 000, there is a slight decrease in the fairness
of WAEAS scheduler. When parameter N is greater
or equal to 200 000, the overall fairness of WAEAS
scheduler is slightly better than that of EAS scheduler
by up to 2%.

4.3 Performance and power consumption analysis
of scheduler in multithreaded applications

ParMiBench[21] is an open source benchmark based
on MiBench[22] and targeted for multiprocessor-based
embedded systems. ParMiBench consists of parallel
implementations of seven compute-intensive algorithms
in four categories: automation and industry control,
network, office, and security. Experimental results
are shown in Table 2. The performance and power
consumption improvement is calculated as following,

Perfimprov D
PerfWAEAS

PerfEAS
� 100% (6)

Powerimprov D 100% �
PowerWAEAS

PowerEAS
(7)

Table 2 Performance and power consumption improvement
in percentage of each program in ParMiBench.

(%)

APP Performance Power consumption
Bitcount 2.44 4.04

Susan 0.01 4.68
Basicmath 0.81 6.33

Patricia 46.20 48.51
Dijkstra 1.92 8.09

Stringsearch 1.23 4.38
SHA-1 –13.87 –10.16

Experimental results analysis: among the seven
applications, Patricia shows the most obvious
improvements in performance by 46% and a decrease
in power consumption by 48%. When Patricia is
running, the overall utilization of CPU is low, indicating
that when the system workload is low, the WAEAS
scheduler has advantages for CPU selection and load
balancing. For Bitcount, Susan, Basicmath, Dijkstra,
and Stringsearch, as compared with EAS scheduler, the
performance of WAEAS scheduler is slightly improved,
and the power consumption of these 5 applications
is improved by an average of 5%, which verifies that
the WAEAS scheduler has more advantage in power
consumption. However, the results of SHA-1, which
is a low-load application, are not satisfactory. SHA-1
is repeated 100 times in a single experiment to reduce
errors that result in SHA-1 running at a high density.
This is done because WAEAS will give low-load tasks
priority to choose a little core for task packing, and it
does not give full play to the performance advantages
of big cores, resulting in the performance degradation
of SHA-1. At the same time, because SHA-1 has been
running on little cores, due to insufficient computing

Fig. 12 Scheduling fairness improvement in percentage.
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power of little cores, the running time is too long, and
the power consumption increases with the running time
too.

4.4 Experimental design of practical wearable
application scenarios

In order to verify the efficiency of the optimized
scheduling strategies in a real scenario, we designed
three practical wearable application scenarios and five
wearable applications on the experimental platform, as
presented in Table 3.

The Rockchip RK3399 development board serves as
the kernel module that connects thermo-hygrograph,
barometer, GPS, and cardio-tachometer via bluetooth,
respectively. The APP installed on the development
board controls the start and end of testing. The testing
scenarios are designed as following.

(1) A low system workload is simulated by separately
starting each external device, and the power consumption
of the development board is recorded within 1 minute
after the data collection process is stable.

(2) A heavy system workload is simulated by
simultaneously starting all external devices and the
power consumption of the development board is
recorded within 1 minute after the data collection process
is stable.

(3) The transmission of large data files is simulated by
transmitting a 4 GB file from Seafile client to Seafile
server via WI-FI and the power consumption of the
development board is recorded within 1 minute after
the file transmission is stable.

4.5 Experimental results and analysis in practical
wearable application scenarios

We tested the power consumption of Completely Fair
Scheduler (CFS) scheduler, EAS scheduler, and WAEAS
scheduler in the practical wearable application scenarios,
the experimental results of which are shown in Fig. 13.
The power consumption of CFS scheduler is obviously
higher than that of the EAS scheduler, and the WAEAS
scheduler achieves the lowest power consumption. The
power consumption improvement in the percentage of
EAS scheduler and WAEAS scheduler is shown in
Table 4.

Analysis of Experimental Results: there is an
improvement of about 10% in the power consumption
of the development board when it is connected with
a single external device in low sampling frequency
(GPS, barometer, and thermo-hygrograph). Similarly,
the power consumption of the development board
improves by about 5% when it is connected with a single
external device in the high sampling frequency (cardio-
tachometer); and its power consumption is reduced
by 8% when it is connected with all the external

Table 4 Power consumption improvement in percentage of
EAS and WAEAS. (%)

Workload Power consumption
GPS module 9.90
Barometer 10.97

Thermo-hygrograph 15.40
Cardio-tachometer 4.93

All devices 8.05
Large file transmission 4.52

Table 3 Design of the practical wearable application scenario.

External device
Sampling

frequency (Hz)
Data type Computing process

GPS 1 Latitude and longitude Display real-time location information
Barometer 5 Floating number Display real-time altitude information translated from air pressure

Thermo-hygrograph 20 Floating number Display real-time temperature and humidity information
Cardio-tachometer 40 Integer Display real-time heart rate information and threshold warning

File server - 4 GB binary file Simulate the transmission of large files

Fig. 13 Power consumption of CFS, EAS, and WAEAS.
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devices. Hence, the power consumption of a large file
transmission is improved by 4.5%. These experiments
verify the efficiency of the WAEAS scheduler in the
practical wearable application scenarios.

5 Conclusion

This paper analyzed performance energy efficiency in the
dynamic scheduling of latency-sensitive and non-latency-
sensitive tasks for heterogeneous multicore wearable
systems. By aiming to improve the energy efficiency
of workload prediction, CPU core selection, and load
balancing without affecting performance, the authors
further optimized the EAS scheduler and proposed
WAEAS, which is an optimization of the EAS scheduler
for wearable applications and includes several optimized
algorithms and strategies, such as basic exponential
smoothing-based WALT algorithm, energy-aware CPU
selection algorithm, batch processing strategy, and
cluster-based load balancing. The experimental results
have verified the effectiveness of WAEAS scheduler.
First, the performance and fairness of EAS scheduler
and WAEAS scheduler were tested by using the Perf
tool in the Linux kernel, and the optimized EAS
scheduler showed an improvement of 5% when the
workload was high. Secondly, the performance and
energy efficiency of EAS scheduler before and after the
improvement conditions were tested with ParMiBench,
and the experimental results showed an improvement in
the performance and power consumption tested by the
other six benchmark programs except SHA-1. Finally,
the authors tested the power consumption in practical
application scenarios, and the experimental results
showed that the power consumption was improved by
about 8%. The next step will focus on testing the
WAEAS scheduler on more complex platforms with
more practical wearable applications and making further
improvement of performance and energy efficiency.
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