
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 06/10 pp62–71
DOI: 10 .26599 /TST.2019 .9010042
Volume 26, Number 1, February 2021

�C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

A Multi-Flow Information Flow Tracking Approach for Proving
Quantitative Hardware Security Properties

Yu Tai, Wei Hu�, Lu Zhang, Dejun Mu, and Ryan Kastner

Abstract: Information Flow Tracking (IFT) is an established formal method for proving security properties related

to confidentiality, integrity, and isolation. It has seen promise in identifying security vulnerabilities resulting from

design flaws, timing channels, and hardware Trojans for secure hardware design. However, existing IFT methods

tend to take a qualitative approach and only enforce binary security properties, requiring strict non-interference

for the properties to hold while real systems usually allow a small amount of information flows to enable desirable

interactions. Consequently, existing methods are inadequate for reasoning about quantitative security properties or

measuring the security of a design in order to assess the severity of a security vulnerability. In this work, we propose

two multi-flow solutions — multiple verifications for replicating existing IFT model and multi-flow IFT method. The

proposed multi-flow IFT method provides more insight into simultaneous information flow behaviors and allows for

proof of quantitative information flow security properties, such as diffusion, randomization, and boundaries on the

amount of simultaneous information flows. Experimental results show that our method can be used to prove a new

type of information flow security property with verification performance benefits.

Key words: hardware security; Information Flow Tracking (IFT); multi-flow IFT; security property

1 Introduction

Over the past decade, numerous security attacks have

been targeting the underlying hardware of computing

systems by exploiting the security vulnerabilities which

remain undetected at the design and fabrication stages.

Despite the growing security threats, the current

hardware design flow does not take into account security

properties and hence guaranteeing such properties

remains an open problem in most real world scenarios or

still heavily relies on code review. The ever increasing

complexity of digital hardware design has made manual

� Yu Tai, Wei Hu, and Dejun Mu are with the School of

Cybersecurity, Lu Zhang is with the School of Automation,

Northwestern Polytechnical University, Xi’an 710072, China. E-

mail: ftaiyu, weihu, mudejun, willvsnickg@mail.nwpu.edu.cn.

� Ryan Kastner is with the Department of Computer Science and

Engineering, University of California, San Diego, CA 92093,

USA. E-mail: kastner@ucsd.edu.

�To whom correspondence should be addressed.

Manuscript received: 2019-05-27; accepted: 2019-08-28

inspection for security flaws almost infeasible, while

the distributed nature of the hardware supply chain

has raised the possibility of the existence of malicious

vulnerabilities intended by an untrusted party. Although

various tools have been developed for functional testing

and verification over the past decade, there is a huge

demand for alike tools designated to detect and debug

security vulnerabilities.

Information Flow Tracking (IFT) techniques have

been widely investigated to create new secure hardware

design tools for detecting security defects or enforcing

security policies, such as non-interference[1]. Such tools

mainly consist of two elements: a security lattice for

defining the allowed flows among different security

classifications, and a model for tracking data with

security labels indicated by the lattice. The security

lattice can establish policies, such as restricting the flow

of sensitive information to publicly accessible locations

or the unauthorized modification of trusted memory.

The IFT model then defines how data with different

Yu Tai et al.: A Multi-Flow Information Flow Tracking Approach for Proving Quantitative Hardware Security Properties 63

security labels propagate through the circuit and hence

can be used to prove isolation or detect harmful flows

of information. IFT methods have been deployed at

various abstraction levels of digital hardware designs,

including the architecture[2], register transfer[3, 4], and

gate level[5–7]. However, existing IFT methods typically

take a qualitative approach and only provide a binary

answer (yes or no) to security. As an example, it may

indicate two different Rivest-Shamir-Adleman (RSA)

implementations both leak the key through a timing

channel, but cannot tell which one leaks more (or less

secure).

The lack of effective tool support for hardware security

calls for the study of more convoluted security properties,

such as quantified metrics and comparative analysis. For

example, existing IFT methods can easily detect a flow

from the secret key to the ciphertext, while none of them

can quantify the number of information flows or indicate

whether the flow is severe enough to allow recovering

the key. This requires a finer grained measurement and

assessment of information flows. Shannon[8] pioneered

in the notion of information theory, which provides

the mathematical foundation for measuring security.

Statistical and information theoretical metrics, such

as variance, entropy, and mutual information have

been employed for quantifying security, such as

attackability, randomness, and information leakage[9–11].

These theories are also employed to analyze side

channel measurements, such as timing delay and power

consumption to quantify the amount of leakage[12] or

to evaluate side-channel leakage[13]. However, these

quantitative metrics are usually estimated from discrete

data samples collected from functional verification. They

cannot be used for formal proof of quantitative security

properties, e.g., tight boundaries on the amount of

information flows.

In this work, we demonstrate a new hardware

IFT technique that can simultaneously track multiple

flows of information by defining multi-bit security

labels, designing novel label propagation rules, and

deriving multi-flow IFT models. We show how this

technique can be used to analyze a new type of

security property, quantify the flow of information in

hardware designs, and search for attack vectors that

can cause a security property violation and pinpoint

design flaws. Specifically, this paper makes the following

contributions.

� Proposing two multi-flow IFT solutions for

measuring simultaneous information flows;

� Providing a method for testing and formal

verification of quantitative information flow security

properties;

� Providing a technique for searching for attack

vectors and identifying the source of information flows;

� Presenting experimental results to demonstrate

the verification performance benefits of the proposed

technique in proving quantitative security properties.

The remainder of the paper is organized as follows.

We briefly review related work in Section 2. Section

3 discusses about different types of information flow

security properties and motivates for multi-flow IFT

methods. In Section 4, we propose two different

approaches for multi-flow tracking and a method for

verifying multi-flow security properties. Section 5

presents security verification and performance evaluation

results. We conclude the paper in Section 6.

2 Related Work

Hardware IFT techniques have been used to enforce

information flow security properties related to

confidentiality, integrity, and isolation for secure

hardware design[3–5].

Gate Level Information Flow Tracking (GLIFT) is

a fine grained IFT technique that allows for precise

measurement of all logical flows through Boolean gates.

GLIFT has been employed to identify and eliminate

timing channels in standard bus interfaces[14], prove

isolation of IP blocks in SoC systems[15], craft verifiably

information flow secure architectures[16], investigate

timing-based security violations[7], and detect a certain

class of hardware Trojans[17]. Despite of the success of

GLIFT, researchers move to a higher level of abstraction

to accelerate security verification for better performance,

which is a typical tradeoff in hardware design.

Several IFT methods targeting the Register Transfer

Level (RTL) have been introduced over the past few

years. Caisson[18] is a novel Hardware Description

Language (HDL) with a static type system dedicated

to security analysis. Using Caisson, the designer is

required to define a security label for each variable,

which is then verified by the type system. Sapper[19]

improves upon Caisson by designing a dynamic type

system that allows the designer to either track the flow

of information or enforce certain policies. However,

Sapper and Caisson are both finite state-based languages

which make their adaptation in the general hardware

design flow intricate. Furthermore, the label propagation

rules employed in these methods are overly conservative

64 Tsinghua Science and Technology, February 2021, 26(1): 62–71

and overestimate the actual flow. SecVerilog[3] allows

the designer to describe his/her own label propagation

rules for different operations through the definition of

dependable and mutable type functions, which can be

verified by the type system. Hence, the designer is

responsible for labeling data values and defining the

tracking rules, an arduous task that preferably would be

automated. Another IFT method at the RTL augments

additional Coq semantic model for Verilog to track and

prove the secrecy of internal sensitive data[20]. A novel

code-space randomization scheme has been presented

to defense against code reuse attacks that can hijack the

control information flow of the victim application[21].

RTLIFT[4] allows for automatically generating the IFT

logic using precise flow tracking rules. The RTLIFT

logic can be analyzed by the available EDA tools,

eliminating the need for designing a new type system. A

property specific approach for information flow security

was proposed to accelerate security verification and

restrict potential security violations to quickly pinpoint

hardware security vulnerabilities[22].

In all these previous work, a binary answer (yes or no)

is provided regarding the flow of information between

different design elements, which in turn restricts the

capabilities of these methods. A binary answer cannot

be used for assessing the severity of the information flow,

e.g., the amount of leakage or performing comparative

security analysis, e.g., if one implementation leaks more

information than another.

Quantitative information flow analysis provides a

method to ascertain the security of a system in a

finer granularity. Gray III[10] formalized quantitatively

an applied flow model that relates non-interference

to the maximum rate of flow between variables.

Clark et al.[9] restricted the leaked information using

different information theoretic measures. Heusser

and Malacaria[11] introduced quantitative information

analysis for C code and show the information leakage

vulnerabilities in the Linux Kernel. Mao et al.[12]

employed information theoretic measures to quantify the

amount of timing information flow that can be exacted

from runtime measurements of cryptographic hardware.

However, these methods are all based on the estimation

of statistical or information theoretic parameters using

discrete data samples from functional verification. None

of them takes a formal approach that allows for formal

proof of security properties.

In this work, we enhance hardware IFT methods to

track multiple flows simultaneously by defining multi-

bit security labels and constructing multi-flow IFT

models, which will allow understanding simultaneous

information flow behaviors and analyzing a new type of

security properties.

3 Information Flow Security Properties

Information flow security properties can be categorized

into qualitative and quantitative.

3.1 Qualitative information flow security
properties

Non-interference is a strong qualitative security property

for enforcing data confidentiality and integrity. It

states that high information should never flow to a

low portion of the design. For example, consider a

cryptographic core where the key should never flow to

the ciphertext ready signal. We can label the key as

high and check if the ready signal is always low. The

following describes such a security property.

set key = high,

set others = low,

assert ready == low.

Non-interference is a very strict qualitative security

property. Most existing IFT methods are built upon the

non-interference model. These methods are effective

for enforcing security properties such as there is either

never or always a flow. They will indicate a potential

security threat whenever an unintended information flow

is detected.

However, practical systems sometimes allow a small

amount of information flow to enable interactions

between different design components. Qualitative

information flow security properties cannot be used

to enforce scenarios where information is allowed to

flow but only in a secure manner. Consider a password

checker that takes a 64-bit phrase and outputs logical 1
when the input is the correct password otherwise logical

0. A qualitative information flow security property will

indicate a security violation due to the flow from the

password to the status output. However, it is perfectly

fine to allow such a small amount of information flow.

3.2 Quantitative information flow security
properties

Diffusion, confusion, and randomization represent three

important security properties for assessing the security

of information flows.

Diffusion is a quantitative security property that can

Yu Tai et al.: A Multi-Flow Information Flow Tracking Approach for Proving Quantitative Hardware Security Properties 65

be verified using a Satisfiability Modulo Theories (SMT)

solver. It requires that if we change a single bit of

the message, statistically half of the ciphertext bits

should flip. In the following, we mark the w-th bit of

the message as high and check if at least half of the

ciphertext bits will be high, where L is the length of

the ciphertext in bits and cipher t is the security label of

the ciphertext.

set message[w] = high,

set others = low,

assert
P

.cipher t Œj � DD high/ > L=2, j 2 Œ0; L � 1�.

Confusion is another important quantitative security

property which requires that each ciphertext bit should

depend on several parts of the key. Assume that we have

a security label * i that can track the information flows

from each individual key bit, the following example

security property requires that at least N key bits should

flow to every single bit of the ciphertext. This can be

formalized as Eq. (1) and checked using an SMT solver,

9 message 2 f0; 1gL; 8 key 2 f0; 1gL;X
cipher i Œj � > N; j 2 Œ0; L � 1� (1)

Randomization is a quantitative security property

similar to confusion, which can be used to evaluate the

strength of a masking mechanism. It requires that a

critical variable is at least protected by N bits of the

random number. Assume that we have a security label

* i that can track the information flows from every single

bit of the random number, the following example security

property requires that at least N bits of the random

number should flow to each bit of var,

9 message; 2 f0; 1gL; 8 rand 2 f0; 1gL;X
var i Œj � > N; j 2 Œ0; L � 1� (2)

In the following, we will propose two multi-flow IFT

approaches for simultaneously tracking the information

flows from each individual bit of a variable and enforcing

quantitative information flow security properties.

4 Multi-Flow IFT Approaches

4.1 Multi-flow information flow tracking

Existing hardware IFT models only allow a data object to

be associated with a single security class at any time. The

change in its security classification precisely indicates

a flow between the old and updated security classes.

However, these models are inadequate in modeling

simultaneous information flow scenarios among multiple

security classes.

As an example, cryptographic cores usually introduce

confusion and diffusion to increase security. This

requires that all secret data bits are fully and evenly

mixed. It is usually desirable that all bits of the secret

key should flow to all bits of the ciphertext. In another

case, ideally all bits of the random number should protect

(flow to) some critical variable in order to guarantee the

strength of a masking mechanism. In such cases, we

need a multi-flow IFT model that can track the flow

of multiple data bits simultaneously. This model can

precisely measure how many bits are affecting (flowing

to) a target bit at the same time and allow quantifying the

amount of information flow. We present two different

solutions for multi-flow IFT in Sections 4.2 and 4.3.

4.2 Label encoding and mapping

To track multiple information flows simultaneously,

we need to expand the security label used by existing

hardware IFT methods to track the propagation of every

single input data bit. This requires linear scale expansion

in label width. After the expansion, a simple two-

level security lattice low � high will be adequate for

security classification. Thus, there still can be significant

benefits in scalability as compared to introducing a

complex security lattice, which will result in exponential

scale increase in complexity of the IFT model.

For a better understanding of the multi-flow security

label, consider a four-bit signal A. Table 1 shows the

security labels under different IFT models. Under the

two-level hardware IFT method, we have the taint

labels At Œw� 2 f0; 1g, where 0 � w � 3. Thus, At is

four-bit wide. The multi-level IFT method allows a

finer classification of security labels. Each individual

bit in A can take a different label, we have At Œw� 2
f00; 01; 10; 11g, which can be encoded with two binary

bits. Therefore, At is eight-bit wide for the multi-level

IFT method. By comparison, the multi-flow IFT method

uses one-hot encoding in order to track the flow of

individual bits. The taint labels Ai Œw� 2 f0000; 0001;

0010; 0100; 1000g (we use a different notation Ai here).

Here, 0000 corresponds to the case when At Œw� D 0.

The multi-flow model requires 16 bits for security labels.

Now we define a rule for mapping the security labels

Table 1 Encoding methods for security labels under
different IFT models.

Model Signal Encoding code Label width

Two-level At Œw� 0, 1 1 bit

Multi-level At Œw� 00, 01, 10, 11 2 bits

Multi-flow Ai Œw� 0000, 0001, 0010, 0100, 1000 4 bits

66 Tsinghua Science and Technology, February 2021, 26(1): 62–71

to multi-flow. Given an n-bit signal B , we need n-

bit security labels in one-hot encoding for multi-flow

tacking. Let Bt and Bi be the security labels for existing

two-level and multi-flow IFT methods, respectively.

Equation (3) shows a possible method to encode the

multi-flow security labels, where << is the left shift

operator.

Bi Œw� D
(

0000; when Bt Œw� D 0I
0001 << w; when Bt Œw� D 1

(3)

4.3 Multi-flow IFT model

Hardware IFT models define the rules for label

propagation. These models can precisely measure the

existence of a flow by considering the effect of values in

label propagation. Take the two-input AND gate (AND-

2) as an example. Let A; B , and O be its inputs and

output, respectively. Use At ; Bt , and Ot to denote their

security labels under two-level IFT methods. The precise

label propagation policy for AND-2 can be formalized

as Eq. (4),

Ot D A � Bt C B � At C At � Bt (4)

Equation (4) indicates that when A is logical 1 and

B is high, or B is logical 1 and A is high, or both A

and B are high, the output will be high. It models if

there is any high information flow from either A or B

to the output. However, when there is indeed a flow, it

does not tell which input pattern caused the output to

be high. Nor does it reveal how many high inputs

flow to the output at the same time. Understanding the

source of a harmful information flow can be beneficial

for pinpointing a security vulnerability. To do this, we

need a label propagation policy that tracks the flows of

information from multiple variables simultaneously.

Existing work[23] typically tracks the flow of multiple

variables using an imprecise model as shown in Fig. 1b.

Here, A and B are the original inputs of AND-2; Ai , Bi ,

and Oi are the multi-flow security labels. This method

simply takes the logic OR of all input multi-flow labels

as the output label. This doubtlessly will track the flow

of all input variables simultaneously. However, it can be

overly conservative since it does not take into account

the effect of logic values in label propagation. As a

simple example, when A is (low, 0) and B is high,

existing hardware IFT model given in Eq. (4) indicates

there is no flow of high information (i.e., Ot D low).

Thus, the multi-flow label should be all zeros. However,

the multi-flow model shown in Fig. 1b will still indicate

a high information flow in this case.

Another possible solution for tracking multiple bits

is to replicate an existing hardware IFT model (e.g.,

GLIFT or RTLIFT) and then run multiple verifications

for the models replicated as shown in Fig. 1c. However,

this will introduce additional verification performance

overheads.

To eliminate such false positives and avoid running

multiple verifications, we propose a technique to reset

the multi-flow label when there is no high flow.

Specifically, when the precise hardware IFT model (e.g.,

GLIFT or RTLIFT) indicates there is no high flow, we

downgrade the multi-flow label to all zeros, i.e., low.

Figure 1d shows such a technique.

Table 2 shows the number of information flows for

outputs of the IWLS alu2 benchmark measured using

the multi-flow tracking models shown in Figs. 1b and 1d,

Table 2 Number of information flow for outputs of the
IWLS alu2 benchmark measured using imprecise and precise
multi-flow tracking logic.

Output Imprecise Precise False positive (%)

k 4 194 296 4 053 784 3.47

l 5 242 870 4 792 260 9.40

m 1 048 574 1 048 574 0.00

n 1 048 574 786 430 33.33

o 5 242 870 3 984 738 31.57

p 2 097 148 1 835 004 14.29

Fig. 1 Multi-flow tracking logic for AND-2. (a) Two-input AND gate. (b) Conservative multi-flow tracking logic for AND-2. (c)
Multi-flow tracking logic through IFT model replication. (d) Precise multi-flow tracking logic for AND-2.

Yu Tai et al.: A Multi-Flow Information Flow Tracking Approach for Proving Quantitative Hardware Security Properties 67

respectively. k; l; m; n; o; and p are the outputs of the

IWLS alu2 benchmark. We can see that the percentage

of false positives for the imprecise tracking logic shown

in Fig. 1b can be over 30% percent for certain outputs.

Unlike existing hardware IFT methods, where false

positives are safe, false positives in multi-flow tracking

may indicate non-existent confusion or diffusion and

thus allow an insecure design to be verified as secure.

To derive the multi-flow tracking logic for other

Boolean gates, we only need to replace the precise

hardware IFT logic for AND-2 in the dotted rectangle

in Fig. 1d with the corresponding IFT logic for that

gate. The multi-flow tracking logic for an invertor will

automatically simplify to a direct connection. This is

because an invertor always propagates the security label

as it is.

4.4 Multi-flow tracking logic generation

To understand multi-flow behaviors of hardware designs,

the first step is to create multi-flow tracking logic for

digital circuits. This can be done in a constructive

manner similar to technology mapping. We first

synthesize the hardware design into design netlist

consisted of a small set of logic primitives (e.g.,

AND, OR, and Invertor). Deriving multi-flow tracking

logic for smaller primitives has significantly lower

complexity. With the multi-flow tracking logic for the

logic primitives, we can then discretely map the primitive

gates in the design netlist to its corresponding multi-flow

tracking logic. Using this constructive approach, multi-

flow tracking logic for large hardware design can be

generated in polynomial time. Figure 2 shows such a

constructive method.

5 Experimental Results

In this section, we present experimental results. In

Section 5.1, we perform simulation analysis to show

that multi-flow IFT model reveals the confusion

introduced by S-Box. We perform verification analysis

to demonstrate how multi-flow IFT models simultaneous

information flow behaviors while existing hardware IFT

methods cannot in Section 5.2. We perform comparison

Hardware
Design

Design
netlist

Multi-flow
IFT logic

Tech
library

Multi-flow
IFT library

Fig. 2 Constructive method for multi-flow tracking logic
generation.

of security verification performance across different IFT

models in Section 5.3.

5.1 Simulation analysis

We perform simulation analysis using the S-Box

in the Advanced Encryption Standard (AES) cipher.

The function under test can be described as O D
sbox.key XOR mes/, where key is a key byte, mes is a

message byte, and sbox is the substitute bytes operation

in AES.

We mark all eight bits of key as high and encode their

multi-flow security labels using the method introduced

in Section 4.2. All bits of mes are labeled as low and

thus their multi-flow labels are all zeros. We use linear

feedback shift register to generate random vectors as the

message and observe the multi-flow labels of the signals

in the S-Box model. Figure 3 shows the percentage of

signals affected by different number of key bits.

From Fig. 3, the signals affected by no more than

two key bits sum up to about 5%. About 8% signals are

affected by three key bits. Over 85% signals are affected

by at least four key bits, where more than 25% signals are

affected by all eight key bits. Our simulation test based

upon the multi-flow IFT model reveals the confusion

introduced by S-Box, which could not be shown using

existing hardware IFT methods.

5.2 Security verification analysis

We perform security verification analysis using an AES

core of Differential Power Analysis (DPA) contest from

dpacontest.org. Figure 4 shows the architecture of the

AES design.

Fig. 3 Percentage of signals affected by different number
of key bits from random simulation of AES S-Box using the
multi-flow IFT model.

Fig. 4 AES core from DPA contest.

68 Tsinghua Science and Technology, February 2021, 26(1): 62–71

We mark the lowest 16 bits of the key as high, i.e.,

key t D 128’hFFFF. We then use the label encoding and

mapping method introduced in Section 4.2 to determine

the multi-flow labels for the corresponding key bits.

These would be from 16’h0001 to 16’h8000 using

our encoding. We perform security verification using

both the GLIFT and multi-flow IFT models. We check

the following security properties, where cipher t Œw�

(w 2 Œ0; 15�) is the taint label for the ciphertext under

the GLIFT model while cipher i Œw� is the multi-flow

label,

assert cipher t Œw� == high,
assert

P
cipher i Œw� DD 16:

Verification results using GLIFT show that the security

property always holds, i.e., the ciphertext is always

high. However, results indicate that the security

property for multi-flow IFT can be violated. After a

closer check of the AES design, we find the core contains

a security flaw in that it feeds the key xor message

and intermediate encryption results to the cipher output.

These intermediate results leak a significant amount

of information about the key. For example, when the

message bits are all zeros, the key will be observed at

the cipher output directly.

We further perform security verification

analysis using a hardware Trojan design that

is activated when the plaintext message is

128’h00112233445566778899AABBCCDDEEFF to

leak the key. Figure 5 shows the architecture of the

Trojan design.

Similarly, We mark the lowest 8 bits of the key as

high, i.e., key t D 128’hFF and also assign multi-

flow labels for the corresponding key bits, which would

be from 8’h01 to 8’h80 under our encoding. We

perform security verification using both the GLIFT and

multi-flow IFT models to check the security properties,

where cipher t Œw� (w 2 Œ0; 7�) is the taint label for the

ciphertext under the GLIFT model while cipher i Œw� is

the multi-flow label,

Fig. 5 Hardware Trojan design that is activated when a
specific plaintext is observed.

assert cipher t Œw� == high,
assert

P
cipher i Œw� DD 8:

Verification results using GLIFT show that

the security property always holds, i.e., the

ciphertext is always high. However, results

indicate that the security property for multi-flow

IFT can be violated when the plaintext message is

128’h00112233445566778899AABBCCDDEEFF, i.e.,

when the Trojan is triggered.

From the verification results, the multi-flow method

captures both the security flaw and Trojan where GLIFT

cannot. This is because the multi-flow method can be

used to formally verify quantitative security properties

while GLIFT only enforces qualitative ones.

5.3 Verification performance analysis

We first compare the verification time of GLIFT and

multi-flow IFT models using RSA cores of different key

sizes. We use these two IFT models to verify the property

that key bits do not flow to the ciphertext ready signal.

For the GLIFT model, we mark one key bit as high and

check if the ready signal will be high when encryption

completes. For the multi-flow model, we mark eight key

bits as high and check if the multi-flow label of ready

will be 8’hFF. Figure 6 shows the verification time for

different cores.

From Fig. 6, the verification time for both methods

will grow with the size of RSA cores. Although the

multi-flow method requires more time for running a

single security verification, it accounts for eight key

bits in a single run. The GLIFT method will need to

run multiple similar verifications with different security

constraints, which would lead to significantly higher

performance overheads. Thus, the multi-flow model may

see benefits in performance when verifying quantitative

security properties.

We then use several cryptographic functions and trust-
HUB benchmarks[24] for security verification analysis to

0

1

2

3

4

5

6

7

RSA16 RSA32 RSA48 RSA64 RSA80 RSA96 RSA112 RSA128

GLIFT Multi-flow GLIFT * 8

Pr
oo

f
im

e
(

)

Fig. 6 Verification time for both GLIFT and multi-flow IFT
models using RSA cores of different key sizes.

Yu Tai et al.: A Multi-Flow Information Flow Tracking Approach for Proving Quantitative Hardware Security Properties 69

compare their performance and ability to capture harmful

information flows. There are some slight differences in

the types of security properties that are proved on these

two models. Take the BasicRSA design for example, we

label a signal key bit and would like to check where

this key bit will flow to using the GLIFT model; we

label eight key bits and track their propagation to each

ciphertext bit using the multi-flow model. Table 3 gives

the verification reports from Questa Formal.

From Table 3, the multi-flow model tends to take

longer verification time. However, it still can be

beneficial because this model tracks multiple flows

during each proof. GLIFT�N means it takes N times

of GLIFT proofs. Consider the AES-DPA example, it

takes the GLIFT model 42 s to prove where a single

key bit can flow to. It is important to note that we

cannot label multiple key bits for the GLIFT model

in this proof. Otherwise, we will not be able to tell

which key bit actually propagates to a specific ciphertext

bit. To understand the propagation of all the key bits,

we need to label a different key bit each time and run

multiple verifications under different constraints. For

the entire 128-bit key, this will require 128 proofs,

which result in a total verification time of 42 � 128 D
5376 s. By comparison, the multi-flow method can

model simultaneous information flow behaviors. We

can monitor the propagation of eight key bits in 67 s.

Understanding the propagation of all key bits requires

running 16 proofs, which yields to a total proof time of

67 � 16 = 1072 s.

It is important to notice that for the presentcipher and

RSA-T300 benchmarks, the GLIFT method indicates

the key bits always flow to all ciphertext bits while the

multi-flow IFT method says no. Here, the multi-flow IFT

method more precisely captures the key leakage through

intermediate encryption result in present cipher and also

the leakage via a hardware Trojan in the RSA-T300

design.

As demonstrated by our tests, the multi-flow IFT

method can be more complex than GLIFT. However,

it can be used to prove quantified security properties,

such as diffusion and confusion. By comparison, the

GLIFT and multi-level models can be more efficient in

proving qualitative security properties, e.g., no key bit

should flow to a given output.

6 Conclusion

In this paper, we propose a multi-flow IFT method for

understanding the simultaneous flows of information

through hardware designs. The proposed method

provides a finer insight into the simultaneous information

flow behaviors and allows verifying a wider range

of security properties with potential verification

performance benefits. The multi-flow method detects

both unintentional design flaws and malicious hardware

Trojans where qualitative IFT method cannot through

formal verification of quantitative security properties.

Acknowledgment

This work was supported in part by the National

Natural Science Foundation of China (No. 61672433)

and the Natural Science Foundation of Shaanxi Province

(No. 2019JM-244).

References

[1] J. A. Goguen and J. Meseguer, Security policies and security

models, in Proc. IEEE Symposium on Security and Privacy,

Oakland, CA, USA, 1982, pp. 11–20.

[2] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, Secure

program execution via dynamic information flow tracking,

in ACM Sigplan Notices, vol. 39, no. 11, pp. 85–96, 2004.

Table 3 Formal proof results for OpenCores cryptographic functions and trust-HUB benchmarks, the �symbol means proven
while � means counter example found.

Benchmark Security property
Proof time (s) Proof result

GLIFT GLIFT�N Multi-flow GLIFT�N Multi-flow

AES-SBox Confusion property of S-Box 2 16 6 � �

AES-DPA Key bits flow to all ciphertext bits 42 5376 67 � �

mini-aes Key bits flow to all ciphertext bits 31 3968 41 � �

BasicRSA Key bits flow to all ciphertext bits 28 896 74 � �

BasicRSA Key bits do not flow to ready 25 800 50 � �

present encryptor Key bits flow to all ciphertext bits 9 720 6 � �

presentcipher Key bits flow to all ciphertext bits 14 1120 9 � �

tiny encryption algorithm Key bits do not flow to ready 7 896 8 � �

RSA-T300 Key bits flow to all ciphertext bits 52 1664 53 � �

AES-T100 Key bits do not flow to capacitance 45 5760 70 � �

70 Tsinghua Science and Technology, February 2021, 26(1): 62–71

[3] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, A hardware

design language for timing-sensitive information-flow

security, in Proc. of Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Istanbul,

Turkey, 2015, pp. 503–516.
[4] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner,

Register transfer level information flow tracking for

provably secure hardware design, in Proc. of 2017 IEEE
Int. Design, Automation & Test in Europe Conference &

Exhibition Conf., Lausanne, Switzerland, 2017, pp. 1691–

1696.
[5] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F.

T. Chong, and T. Sherwood, Complete information flow

tracking from the gates up, ACM Sigplan Notices, vol. 44,

no. 3, pp. 109–120, 2009.
[6] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D.

Mu, and R. Kastner, Theoretical fundamentals of gate level

information flow tracking, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 30,

no. 8, pp. 1128–1140, 2011.
[7] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner,

Leveraging gate-level properties to identify hardware timing

channels, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 33, no. 9, pp. 1288–

1301, 2014.
[8] C. E. Shannon, A mathematical theory of communication,

ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 5, no. 1, pp. 3–55, 2001.

[9] D. Clark, S. Hunt, and P. Malacaria, Quantified interference

for a while language, Electronic Notes in Theoretical
Computer Science, vol. 112, pp. 149–166, 2005.

[10] J. W. Gray III, Toward a mathematical foundation for

information flow security, Journal of Computer Security,

vol. 1, nos. 3&4, pp. 255–294, 1992.
[11] J. Heusser and P. Malacaria, Quantifying information leaks

in software, in Proc. of 26th ACM Annual Computer
Security Applications Conf., Austin, TX, USA, 2010, pp.

261–269.
[12] B. Mao, W. Hu, A. Althoff, J. Matai, Y. Tai, D. Mu,

T. Sherwood, and R. Kastner, Quantitative analysis of

timing channel security in cryptographic hardware design,

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 9, pp. 1719–1732, 2018.

[13] L. Zhang, W. Hu, A. Ardeshiricham, Y. Tai, J. Blackstone,

D. Mu, and R. Kastner, Examining the consequences of

high-level synthesis optimizations on power side-channel,

in Proc. of 2018 IEEE Int. Design, Automation & Test in
Europe Conference & Exhibition Conf., Dresden, Germany,

2018, pp. 1167–1170.

[14] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R.

Kastner, Information flow isolation in I2C and USB, in Proc.
of 48th ACM/EDAC/IEEE Design Automation Conference,

New York, NY, USA, 2011, pp. 254–259.
[15] R. Kastner, J. Oberg, W. Hu, and A. Irturk, Enforcing

information flow guarantees in reconfigurable systems with

mix-trusted IP, in Proc. of Int. Conf. on Engineering of
Reconfigurable Systems and Algorithms, Las Vegas, NV,

USA, 2011, pp. 1–12.
[16] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B.

Hardekopf, R. Kastner, F. T. Chong, and T. Sherwood,

Crafting a usable microkernel, processor, and I/O system

with strict and provable information flow security, ACM
SIGARCH Computer Architecture News, vol. 39, no. 3, pp.

189–200, 2011.
[17] W. Hu, B. Mao, J. Oberg, and R. Kastner, Detecting

hardware trojans with gate-level information-flow tracking,

Computer, vol. 49, no. 8. pp. 44–52, 2016.
[18] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong,

T. Sherwood, and B. Hardekopf, Caisson: A hardware

description language for secure information flow, ACM
SIGPLAN Notices, vol. 46, no. 6, pp. 109–120, 2011.

[19] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R.

Rajarathinam, R. Kastner, T. Sherwood, B. Hardekopf, and

F. T. Chong, Sapper: A language for hardware-level security

policy enforcement, ACM SIGPLAN Notices, vol. 42, no. 4,

pp. 97–112, 2014.
[20] Y. Jin and Y. Makris, Proof carrying-based information flow

tracking for data secrecy protection and hardware trust, in

Proc. of IEEE 30th VLSI Test Symposium, Maui, HI, USA,

2012, pp. 252–257.
[21] F. Yan and K. Wang, Leakage is prohibited: Memory

protection extensions protected address space

randomization, Tsinghua Science and Technology,

vol. 24, no. 5, pp. 546–556, 2019.
[22] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang,

and R. Kastner, Property specific information flow analysis

for hardware security verification, in Proc. of IEEE/ACM
Int. Conf. on Computer-Aided Design, San Diego, CA, USA,

2018, pp. 1–8.
[23] B. Mazloom, S. Mysore, M. Tiwari, B. Agrawal, and

T. Sherwood, Dataflow tomography: Information flow

tracking for understanding and visualizing full systems,

ACM Transactions on Architecture and Code Optimization,

vol. 9, no. 1, pp. 1–26, 2012.
[24] H. Salmani, M. Tehranipoor, and R. Karri, On design

vulnerability analysis and trust benchmarks development,

in Proc. of IEEE Int. Conf. on Computer Design, Asheville,

NC, USA, 2013, pp. 471–474.

Yu Tai received the PhD degree from

Northwestern Polytechnical University,

Xi’an, Shaanxi, China, in 2018. He is

currently a research assistant with the

School of Cybersecurity, Northwestern

Polytechnical University, China. His current

research interests include hardware security,

logic synthesis, and optimization in

hardware information flow.

Wei Hu received the PhD degree from

Northwestern Polytechnical University,

Xi’an, Shaanxi, China, in 2012. He is

currently an associate professor with the

School of Cybersecurity, Northwestern

Polytechnical University, China. His

research interests include hardware security,

logic synthesis, formal verification,

reconfigurable computing, and embedded systems.

Yu Tai et al.: A Multi-Flow Information Flow Tracking Approach for Proving Quantitative Hardware Security Properties 71

Lu Zhang received the BE degree from

Northwestern Polytechnical University,

Xi’an, Shaanxi, China, in 2012, where he

is currently pursuing the PhD degree. From

January 2016 to January 2018, he was a

visiting PhD candidate with the Department

of Computer Science and Engineering,

University of California, San Diego, CA,

USA. His research interests include hardware security, design

automation, and embedded systems and optimization.

Dejun Mu received the PhD degree from

Northwestern Polytechnical University,

Xi’an, Shaanxi, China, in 1994. He is

currently a professor with the School of

Cybersecurity, Northwestern Polytechnical

University, China. His current research

interests include network information

security, application specific chips for

information security, and network control systems.

Ryan Kastner received the PhD degree

from the University of California at Los

Angeles, Los Angeles, CA, USA, in

2002. He is currently a professor with

the Department of Computer Science and

Engineering, University of California at

San Diego, San Diego, CA, USA. His

current research interests include hardware

acceleration, hardware security, and remote sensing. Prof.

Kastner is the co-director of the Wireless Embedded Systems

Master of Advanced Studies Program. He also co-directs the

Engineers for Exploration Program.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

