
TSINGHUA SCIENCE AND TECHNOLOGY
I S S N l l 1 0 0 7 - 0 2 1 4 0 1 / 1 0 p p 1 – 8
DOI: 10 .26599 /TST.2019 .9010046
Volume 26, Number 1, February 2021

�C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Efficient Static Compaction of Test Patterns Using
Partial Maximum Satisfiability

Huisi Zhou, Dantong Ouyang, and Liming Zhang�

Abstract: Static compaction methods aim at finding unnecessary test patterns to reduce the size of the test set as

a post-process of test generation. Techniques based on partial maximum satisfiability are often used to track many

hard problems in various domains, including artificial intelligence, computational biology, data mining, and machine

learning. We observe that part of the test patterns generated by the commercial Automatic Test Pattern Generation

(ATPG) tool is redundant, and the relationship between test patterns and faults, as a significant information,

can effectively induce the test patterns reduction process. Considering a test pattern can detect one or more

faults, we map the problem of static test compaction to a partial maximum satisfiability problem. Experiments on

ISCAS89, ISCAS85, and ITC99 benchmarks show that this approach can reduce the initial test set size generated

by TetraMAX18 while maintaining fault coverage.

Key words: test compaction; partial maximum satisfiability; Automatic Test Pattern Generation (ATPG)

1 Introduction

The increasing scale and complexity of components

have led to much difficulty in testing very-large-scale

integrated digital systems. To solve the increasingly

prominent test cost problem, Automatic Test Pattern

Generation (ATPG) techniques have received a lot

of attention. They aim at generating high-quality test

vector sets to detect as many potential faults as

possible in a circuit. Presently, several ATPG tools are

available[1–5]. TetraMAX ATPG, which is an automatic

test vector generation tool, employs powerful heuristics

and is capable of generating high fault coverage test sets

for a circuit under test[5].

However, due to the large scale of the test vector

sets generated by ATPG, there might be too many

� Huisi Zhou, Dantong Ouyang, and Liming Zhang

are with the Laboratory of Symbol Computation and

Knowledge Engineering, College of Computer Science and

Technology, Jilin University, Changchun 130012, China.

E-mail: 1285162366@qq.com; ouyangdantong@163.com;

limingzhang@163.com.

�To whom correspondence should be addressed.

Manuscript received: 2019-04-01; revised: 2019-08-19;

accepted: 2019-08-28

abundant test vectors, and shorter test patterns are

desired. Test compaction for benchmark circuits is the

process of reducing the size of a test pattern or the

total size of the test pattern set for the circuit. Since

reducing the volume of the test data is an important

process, several test compaction methods, static or

dynamic, have been proposed[2, 6–9]. As one of the

test compaction categories, static test compaction does

not require any modification to the test generation

procedure and is independent of the test generation

process. This type of test compaction procedure

attempts to reduce the number of test patterns while

maintaining the capability of detecting all the target

faults. Several static test compaction techniques exploit

the existing redundancy in a given set of test patterns

via reordering, overlapping, omitting test patterns, or

remodeling the test compaction problem. In Ref. [2],

removing the location of the test iteratively reduced the

number of test sets and improved test sets quality. In

Ref. [8], test vectors were modified and omitted via a

folding approach. The remodeling procedure in Ref. [9]

involved concatenating a set of sequences into a single

sequence and simultaneously manipulating all the

sequences. In Ref. [7], the set covering technique was

2 Tsinghua Science and Technology, February 2021, 26(1): 1–8

effectively used to model the test sequence compaction

problem as a set covering formulation, and very good

compaction ratios were achieved.

Furthermore, many methods based on SATisfiability

(SAT)[10–12] have also been found to improve ATPG

algorithms[13–18]. In contrast to structural ATPG

algorithms, most of the SAT-based ATPG algorithms

encode each connection in a given circuit into a

Conjunctive Normal Form (CNF) formulation. In

Ref. [14], the robustness and the learning features

of SAT-solvers were employed to prevent unnecessary

computations and to push the test compaction. In Ref.

[15], encoding fault detection constraints into a CNF

instance was found to be empirically effective on the

test set size. In Ref. [13], a multifunctional SAT-based

testing framework was proposed in different detection

problems. To reduce the number of test patterns in

test generation, Ref. [6] proved the importance of the

relationship between test patterns and faults, which

is extracted via data mining. In the present paper,

we propose that it is important to ensure an effective

reduction of the number of faults, which can be detected

by each test pattern, to significantly reduce the number

of test patterns based on the fact that if all the faults

a test pattern detects can be detected by the other test

patterns, the test pattern can be removed.

In our work, we reduced the number of test

patterns that are generated by TetraMAX18 by

building a remodeling procedure that maps the

relationship between the test sets and faults in a

static test compaction problem into a relationship

between Boolean variables and clauses in a Partial

MaxSAT (PMS)[19–21] problem. Running a solver in the

remodeling model would omit a lot of test patterns. As

an overview, the procedure we present in this paper

works as follows: A test pattern set T 0 is first generated,

whereby T 0 reduces the size of the initial test pattern set

T processed by TetraMAX18. Additionally, the fault

detection coverage of T 0 will be no less than that of T .

At the beginning of the procedure, T 0 is empty. First,

each pattern t of T is processed, and its detected fault fj
is determined. Next, a MaxSAT formula is encoded and

solved, which requires detecting all the Stuck-At Faults

(SAFs), and the fault coverage is maximized. Finally,

the returned pattern t, which is represented by a variable

in the MaxSAT formula, is added to T 0, and we use

a common evaluation method called fault coverage to

check the effectiveness of new test sets. Although our

experiment aims at only the SAFs model, the proposed

method can be applied to the other fault models.

The rest of the paper is organized as follows. Section

2 reviews the basic concept about test patterns set and

fault used throughout this work. Section 3 describes the

PMS problem and discusses the static test compaction

procedure proposed in this paper. Section 4 presents the

experimental results. Section 5 concludes the paper.

2 Definitions and Notations

To describe the test compaction procedures, we use the

following definitions and notations.

Let T D .t1; t2; : : : ; tn/ be a given test patterns set,

where ti is a single test pattern vector and n is the length

of T .

The set of target faults (SAFs) is represented as F D
ff1; f2; : : : ; fmg; where m is the length of F .

The length of test patterns that can detect fault fj is

denoted by SLen (fj). The target fault fj is denoted

as a unit fault if SLen (fj / D 1, which is similar to the

essential column proposed in Ref. [7].

The set of faults that can be detected by a test pattern

ti is denoted by FSet (ti). The set of test patterns that

can detect fault fj is denoted by TSet (fj).

The length of fault set detected by a given test

patterns set T is denoted by FLen (FdeT). The fault

coverage is the only criterion to evaluate the quality of

T , and it is represented as

Fc.T / D FLen.FdeT /

m
(1)

The relation matrix representing the relationship

between test patterns and faults is denoted by R-Matrix,

with n rows representing test patterns and m columns

representing faults. For a test ti and a fault fj , the value

of R-Matrix is denoted as r.ti ı fj / which takes the

value r.ti ı fj / D 1 if test ti (row) can detect fault fj
(column), otherwise r.ti ı fj / D 0. The matrix element

is useful for the remodelling procedure and it can be

produced before the translation process.

Now, the test compaction problem can be translated

into a problem of selecting from R-Matrix K rows,

which is the length of the reduced test patterns, so that

each fault fj can be detected .r.ti ı fj / D 1; i D 1; 2;

: : : ; n/.

To illustrate these notations, we consider ISCAS-

85 benchmark circuit c17 in Table 1. In this case,

the number of all the detected faults is 14, and the

number of tests is 7. The initial test patterns generated

by TetraMAX ATPG can detect all the faults, and the

fault coverage is approximately 1. The fault f1 can

Huisi Zhou et al.: Efficient Static Compaction of Test Patterns Using Partial Maximum Satisfiability 3

Table 1 ISCAS-85 benchmark c17.

Test
Fault

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

t1 1 0 1 0 0 1 1 0 0 0 0 1 0 1

t2 0 1 0 1 0 0 0 0 0 0 0 0 0 1

t3 1 0 1 0 0 0 1 0 1 0 0 0 0 1

t4 0 0 1 0 1 0 0 1 0 0 0 0 1 0

t5 0 0 0 1 0 1 0 1 0 0 1 0 1 0

t6 0 0 0 1 0 1 0 1 0 0 1 0 1 0

t7 0 0 1 0 0 0 0 0 0 1 0 0 1 0

be detected by t1; r.ti ı fj / D 1, the fault f2 can not

be detected by t1; r.ti ı fj / D 0, both test t1 and t3
can detect fault f0, TSet (f1/ D ft1, t3g, SLen .f1/ D 2.

For j D 2; 5; 9; 10; and 12, SLen (fj / D 1 and fj is a

unit fault. In Table 1, test pattern t5 is redundant,

and the compaction problem aims at eliminating these

redundant patterns.

3 PMS-Based Compaction

To cover as many faults as possible with minimum tests,

finding test patterns that can cover maximum faults or

cover the unit fault is important. These test patterns can

be easily found by remodeling the static compaction

process into a PMS problem.

3.1 PMS problem

In this section, we state some basic properties of the

PMS problem.

Given a set of Boolean variables fx1; x2; : : : ; xng, a

literal is defined as a variable xi or its negation form

�xi . A clause Ci is defined as a disjunction of literals

(i.e., Ci D li1 _ li2 _ � � � _ lij). A CNF F is defined

as a conjunction of clauses that is composed of a set of

clauses (i.e., F D C1 ^ C2 ^ � � � ^ Cc).

The PMS problem is defined as finding an assignment

in the CNF formula, in which clauses are composed of

hard clauses and soft clauses, so that all hard clauses

are satisfied and the number of satisfied soft clauses is

maximized. The weighted PMS, where each soft clause

is associated with a positive weight, aims to satisfy

all hard clauses and maximize the total weight of the

satisfied soft clauses. The assignment ˛ of Weighted

PMS (WPMS) instance F is feasible if the assignment

satisfies all hard clauses in F . The cost of a feasible

assignment ˛ is defined as the number of falsified

soft clauses under ˛ for PMS. For convenience, the

cost of any infeasible assignment is defined to be +1.

Typically, F is written to Weighted CNF (WCNF) file

and as input to Weight SAT (WSAT) solver.

We introduce the translation process from the

relationship between tests and faults into a PMS

problem in Procedure 1. According to R-Matric, faults

are translated in the Step (2) and tests are translated in

the Step (3).

For Step (2) in Procedure 1, the translation of faults is

illustrated in Fig. 1. Note that the black arrow between

the test tp and fault fq indicates that tp is in the TSet (fq/,

and the white arrow from fault fq indicates that fq

can be translated into the Cq . For example, f4 can

be detected by t2, t5, and t6; thus, TSet (f4/ D ft2 ,

t5; t6g. Consequently, clause f4 is 2 _ 5 _ 6. In the

same way, clause f14 is 1 _ 2 _ 7. At the end of the

Procedure 1 Translating tests and faults into PMS
problem.
(1) input R-Matric
(2) For j D 1; 2; : : : ; m

(a) For test pattern ti .i D 1; 2; : : : ; n/, if r.ti ı fj / D 1, add

ti into TSet (fj /

(b) Initialize Cj D ∅

(c) For each test tk in TSet (fj /; Cj D Cj _ k

(d) Write Cj as a hard clause into WCNF file

(3) For i D 1; 2; : : : ; n

(a) Initialize Cj Ci D ∅

(b) For each test pattern ti ; Cj Ci D Cj Ci _ �i

(c) Write Cj Ci as a soft clause into WCNF file

Fig. 1 Translation of faults.

4 Tsinghua Science and Technology, February 2021, 26(1): 1–8

second iteration, all the faults were mapped into hard

clauses, and all the tests were mapped into soft clauses,

which would be passed to a PMS solver to find the

satisfying assignments; this would indicate which tests

can be reduced.

Since some translation procedures in Fig. 1 are left

out, in Table 2, considering the relationship between

tests and faults, we show all the clauses, which include

14 hard clauses and 7 soft clauses. For hard clauses on

the left of Table 2, the weight is set to the number of soft

clauses plus 1. Different from this, the weight of soft

clauses is set to 1 on the right of Table 2. All clauses end

of in a 0 and are solved in a PMS solver. The j -th line

in hard clauses represents tests related to j -th faults.

For example, f1 can be detected by t1 and t3; Thus,

TSet .fi1/ D ft1; t3g; consequently, the clauses for f1 is

1, 3, 0 in WCNF file. This example illustrates that f1

can be detected only if t1 or t3 exists. In soft clauses, all

literals are negative and all clauses are unit fault.

After constructing the relationship between tests and

faults with the WCNF, each fault is transformed into

a hard clause denoted by '''F , which means that the

fault must be detected. Each test in the hard clause is

treated as a Boolean variable, which represents the state

of redundancy, while each test is transformed into a

unit soft clause denoted by '''T , and the unit fault is

converted to a unit hard clause. Therefore, the complete

CNF '''compaction for static test compaction is formulated

as follows,

'''compaction D '''F � '''T (2)

The CNF '''compaction can be solved by a PMS solver. If

the solver returns a solution in which no soft clauses is

Table 2 Clauses of faults and tests in c17.
Hard clause Soft clause

Weight Clause Weight Clause

8 1 3 0 1 �1 0

8 2 0 1 �2 0

8 1 3 4 7 0 1 �3 0

8 2 5 6 0 1 �4 0

8 4 0 1 �5 0

8 1 5 6 0 1 �6 0

8 1 3 0 1 �7 0

8 4 5 6 0

8 3 0

8 7 0

8 5 6 0

8 1 0

8 4 5 6 7 0

8 1 2 3 0

satisfiable, no test pattern can be reduced. Otherwise,

the satisfied soft clauses indicate the reduced test

patterns.

3.2 Test compaction

Converting the test set reduction problem into a PMS

problem can ensure the effective reduction of the

number of test sets, and the change will not reduce the

fault coverage. The compaction procedure is described

in Procedure 2.

In Procedure 2, note that our static test compaction

process can be used for both sequential and

combinational circuits and we operate differently

aiming at different types of circuits in Step (1). When

TetraMAX is used to generate test sets, the fault model

used is SAFs in Step (2). There are many reasons for

choosing SAFs. First, it is easy to generate a fault list,

and the total number of faults increases linearly with

the number of logic gates in the circuit. Second, the test

set that can cover all the SAFs also has a high coverage

rate for other types of faults in the chip. Last, the

SAFs aims at a single fault in the chip, while existing

experiments have shown that the test set that can cover

all single faults also has a high coverage rate when

multiple faults are being detected[22]. For the generated

PMS formulas, SATLike, which is a famous incomplete

partial MaxSAT solver based on the dynamic local

search[23] approach, is selected in Step (6). In terms of

the new set of test patterns, Step (7) confirms that the

fault coverage will not decrease.

4 Results and Discussion
In the field of digital circuit testing, the benchmark

Procedure 2 Test compaction.
(1) Add the circuit netlist. If the circuit is a sequential circuit,

add the clock information file.

(2) Set the fault model as stuck-at and add all SAFs.

(3) Run TetraMAX and generate initial test patterns.

(4) Get a relationship between tests and faults.

(a) Separate the test patterns in T into single test pattern

ti .i D 1; 2; : : : ; n/:

(b) For i D 1; 2; : : : ; n, get FSet (ti) for each single test

pattern ti .

(c) The iteration result is the R-Matrix representing the

relationship between test patterns and faults.

(5) Compile R-Matrix into WCNF clauses in Proceure 1.

(6) Run a partial MaxSAT solver to find an assignment ˛ if

the variable representing test ti is positive, accordingly,

the test ti can be reduced.

(7) Compute the fault coverage of the reduced test set.

Huisi Zhou et al.: Efficient Static Compaction of Test Patterns Using Partial Maximum Satisfiability 5

circuits ISCAS85[24], ISCAS89[25], and ITC99[26] have

been used to evaluate the quality of the test pattern

set. Among these benchmark circuits, ISCAS85 is

a combinational circuit, ISCAS89 and ITC99 are

sequential circuits. In the experiments, we add all the

SAFs into benchmark circuits ISCAS85, ISCAS89,

and ITC99 using the TetraMAX ATPG tool, and the

numbers of circuits’ names and faults are listed in Table

3. Table 3 shows that the SAFs increase linearly with the

number of logic gates in the circuit. In the experiment,

the proposed compaction algorithm SATComp was

implemented in Python, and we ran on each benchmark

instance within 300 s. The test compaction results

of benchmarks ITC99, ISCAS85, and ISCAS89 are

presented in Tables 4, 5, and 6, respectively. In Tables

4 – 6, Column Reduction (%) shows the percentage of

reduction in the compacted pattern length relative to the

initial test pattern length. The dashes indicate that the

test pattern is not compacted by the procedure. Table 4

compares the procedure SATComp with the procedure

VERSE-H+FOLD from Ref. [8]. In the case of

TetraMAX+SATComp, the initial test patterns were

generated by TetraMAX18 and compacted patterns

produced via SATComp. The result shows that more

than 23% of benchmarks for SATComp achieved over

30% reduction ratio, and SATComp achieved a higher

percentage reduction than VERSE-H+FOLD for b03,

b09, and b10.

Table 5 presents the results of SATComp for

ISCAS85 benchmarks. TetraMAX+SATComp

procedure generated initial test patterns by

TetraMAX18-Comp and compacted patterns

by the SATComp procedure. For TetraMAX-

Table 3 Circuit name and faults number.

Circuit
Number of

faults
Circuit

Number of
faults

c17 14 s27 64

c432 86 s208 221

c499 146 s298 396

c880 165 s344 464

c1355 146 s349 448

c1908 116 s382 538

c2670 589 s386 352

c3540 144 s400 535

c5315 596 s420 502

c6288 128 s444 517

c7552 613 s510 604

b01 177 s526 587

b02 129 s526n 581

b03 778 s641 565

b04 2346 s713 573

b05 1848 s820 723

b06 275 s832 742

b07 1617 s838 994

b08 628 s1196 1327

b09 664 s1238 1374

b10 672 s1423 2081

b11 1991 s1488 1423

b12 4324 s1494 1429

b13 1299 s5378 4283

b14 16947 s9234 3650

b15 25834 s13207 5930

s35932 34600 s15850 2643

Comp+SATComp, the initial test patterns were

compacted by TetraMAX18-Comp, and the SATComp

procedure achieved compaction again. The results

show that for TetraMAX+SATComp, over 64% of

benchmarks achieved more than 40% reduction ratio,

Table 4 Results of SATComp for ITC99 benchmarks.

Circuit

VERSE-H+FOLD TetraMAX+SATComp

Initial length
of test pattern

Length of compacted
test pattern

Reduction
(%)

Initial length
of test pattern

Length of compacted
test pattern

Reduction
(%)

b01 - - - 21 14 33.33

b02 - - - 16 12 25.00

b03 65 59 9.23 46 31 32.61
b04 123 86 30.08 99 77 22.22

b05 - - - 120 92 23.33

b06 - - - 20 17 15.00

b07 - - - 93 70 24.73

b08 - - - 67 50 25.37

b09 265 225 15.09 44 32 27.27
b10 116 87 25.00 63 46 26.98
b11 332 236 28.92 181 143 20.99

b12 - - - 218 170 22.02

b13 - - - 67 44 34.33

6 Tsinghua Science and Technology, February 2021, 26(1): 1–8

Table 5 Results of SATComp for ISCAS85 benchmarks.

Circuit

TetraMAX+SATComp TetraMAX-Comp+SATComp

Initial length
of test pattern

Length of compacted
test pattern

Reduction
(%)

Initial length
of test pattern

Length of compacted
test pattern

Reduction
(%)

c17 7 6 14.29 5 4 20.00

c432 26 15 42.31 15 14 6.67

c499 20 10 50.00 8 8 0.00

c880 24 14 41.67 10 9 10.00

c1355 15 10 33.33 8 7 12.50

c1908 18 9 50.00 8 7 12.50

c2670 46 32 30.43 19 17 10.53

c3540 30 14 53.33 17 12 29.41

c5315 39 17 56.41 9 9 0.00

c6288 7 5 28.57 7 5 28.57

c7552 58 32 44.83 14 14 0.00

Table 6 Results of SATComp for ISCAS89 benchmarks.

Circuit

CHRON+FOLD VERSE-H+FOLD TetraMAX+SATComp TetraMAX-Comp+SATComp

Initial
length of

test pattern

Length of
compacted
test pattern

Reduction
(%)

Initial
length of

test pattern

Length of
compacted
test pattern

Reduction
(%)

Initial
length of

test pattern

Length of
compacted
test pattern

Reduction
(%)

Initial
length of

test pattern

Length of
compacted
test pattern

Reduction
(%)

s27 - - - - - - 11 7 36.36 10 7 30.00

s208 - - - - - - 32 27 15.63 26 25 3.85

s298 73 72 1.37 75 69 8.00 42 30 28.57 26 25 3.85

s344 39 38 2.56 45 39 13.33 37 25 32.43 21 19 9.52

s349 - - - - - - 33 25 24.24 19 17 10.53

s382 489 - - 483 - - 47 33 29.79 32 29 9.38

s386 - - - - - - 64 52 18.75 49 43 12.24

s400 - - - - - - 44 34 22.73 30 28 6.67

s420 - - - - - - 86 69 19.77 68 67 1.47

s444 - - - - - - 39 31 20.51 30 28 6.67

s510 - - - - - - 83 72 13.25 67 66 1.49

s526 749 734 2.00 869 803 7.59 53 42 20.75 32 30 6.25

s526n - - - - - - 52 37 28.85 31 29 6.45

s641 70 49 30.00 78 49 37.18 54 28 48.15 23 22 4.35

s713 - - - - - - 56 43 23.21 21 20 4.76

s820 306 251 17.97 340 253 25.59 103 79 23.3 83 76 8.43

s832 - - - - - - 115 89 22.61 83 78 6.02

s838 - - - - - - 187 157 16.04 151 146 3.31

s1196 219 181 17.35 227 183 19.38 221 163 26.24 141 127 9.93

s1238 - - - - - - 224 180 19.64 152 139 8.55

s1423 487 350 28.13 768 338 55.99 123 82 33.33 47 44 6.38

s1488 328 251 23.48 427 270 36.77 138 108 21.74 102 98 3.92

s1494 - - - - - - 140 112 20.00 101 95 5.94

s5378 337 192 43.03 489 208 57.46 285 222 22.11 100 99 1.00

s9234 - - - - - - 193 135 30.05 72 70 2.78

s13207 - - - - - - 218 165 24.31 148 146 1.35

s15850 - - - - - - 118 93 21.19 94 91 3.19

s35932 121 94 22.31 - - - 58 47 18.97 38 37 2.63

and that is more than 50% for the c3540 and c5315

benchmarks. Although compacting already highly

compacted test patterns is more difficult, over 27% of

benchmarks achieved more than 20% reduction ratio in

the TetraMAX-Comp+SATComp procedure. Table

6 compares the SATComp procedure with the

CHRON+FOLD and VERSE-H+FOLD, which are

all from Ref. [8]. In addition, the initial test patterns

for the SATComp were generated by TetraMAX18

and TetraMAX18-Comp, which provided compacted

patterns. The procedure VERSE-H+FOLD generated

initial test patterns via VSRSE-H and compacted

patterns via FOLD. The procedure CHRON+FOLD

generated initial test patterns via CHRON and

compacted patterns via FOLD.

From this comparison, for the TetraAMX+SATComp

procedure, which applied the initial test patterns

generated by TetraMAX, all the benchmarks achieved

Huisi Zhou et al.: Efficient Static Compaction of Test Patterns Using Partial Maximum Satisfiability 7

efficient reduction and more than 21% of the

benchmarks achieved over 25% reduction ratio. For

the TetraMAX+SATComp procedure, which applied

already highly compacted patterns, the number of test

patterns could also be reduced.

Furthermore, test patterns and faults in circuits with

complicated structures can be mapped into numerous

WCNF clauses. However, SATLike solver based on

dynamic local search can solve most PMS instances

containing a large number of WCNF clauses. The

optimal or approximate optimal solution can be solved

within 300 s. In terms of ITC99, ISCAS85, and

ISCAS89, the solution shown above is optimal. With

regard to large-scale circuits, our approach can obtain

the approximate optimal solution to reduce the number

of test patterns within 300 s.

5 Conclusion

In practice, a large number of test patterns are

disadvantageous to the testing cost and time. As a

result, various static and dynamic compaction methods

have been proposed to decrease the test pattern count

of the test pattern set. In this paper, we present a

novel method for static test compaction, aiming at

test patterns generated by TetraMAX18. Our method

is based on the PMS technique, and the basic idea

is to translate the relationship between the tests and

faults in the test compaction process into a relationship

between Boolean variables and clauses in the PMS

technique. The experimental results show that our

method effectively reduced the number of test patterns

for all SAFs, validating our idea.

Acknowledgment

This work was supported by the National Natural Science

Foundation of China (Nos. 61672261 and 61872159).

References

[1] I. Hamzaoglu and J. H. Patel, New techniques for

deterministic test pattern generation, J. Electron. Test, vol.

15, nos. 1&2, pp. 63–73, 1999.

[2] I. Pomeranz, Balancing the numbers of detected faults for

improved test set quality, IEEE Trans. Comput. Aided. Des.
Integrated. Circ. Syst., vol. 35, no. 2, pp. 337–341, 2016.

[3] J. P. Roth, Diagnosis of automata failures: A calculus and

a method, IBM J. Res. Dev., vol. 10, no. 4, pp. 278–291,

1966.

[4] M. H. Schulz, E. Trischler, and T. M. Sarfert, Socrates: A

highly efficient automatic test pattern generation system,

IEEE Trans. Comput. Aided. Des. Integrated. Circ. Syst.,
vol. 7, no. 1, pp. 126–137, 1988.

[5] A. G. Boon, C. C. Kit, C. K. Keng, and O. C. Khian,

TetraMax diagnosis and laker software on failure analysis

for ATPG/scan failures, in Proc. of 13th International
Symposium on the Physical and Failure Analysis of
Integrated Circuits, Singapore, 2006, pp. 217–221.

[6] C. Bolchini, E. Quintarelli, F. Salice, and P. Garza,

A data mining approach to incremental adaptive

functional diagnosis, in Proc. of 2013 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, New York, NY, USA, 2013, pp.

13–18.
[7] M. Dimopoulos and P. Linardis, Efficient static compaction

of test sequence sets through the application of set covering

techniques, in Proc. of Design, Automation and Test in
Europe Conference and Exhibition, Paris, France, 2004,

pp. 194–199.
[8] I. Pomeranz, Fold: Extreme static test compaction by

folding of functional test sequences, ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol.

20, no. 4, p. 57, 2015.
[9] I. Pomeranz, Modeling a set of functional test sequences as

a single sequence for test compaction, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 23,

no. 11, pp. 2629–2638, 2014.
[10] S. J. Li, W. M. Liu, and S. S. Wang, Qualitative

constraint satisfaction problems: An extended framework

with landmarks, Artificial Intelligence., vol. 201, no. 4, pp.

32–58, 2013.
[11] D. B. Cai and M. H. Yin, On the utility of landmarks in

SAT-based planning, Knowledge-Based Systems, vol. 36,

pp. 146–154, 2012.
[12] J. Gao, R. Z. Li, and M. H. Yin, A randomized

diversification strategy for solving satisfiability problem

with long clauses, Science China Information Sciences,

vol. 60, no. 9, pp. 121–131, 2017.
[13] R. Drechsler, M. Diepenbeck, S. Eggersgl, and R.

Wille, Passat 2.0: A multifunctional SAT-based testing

framework, presented at the 14th Latin American Test

Workshop-LATW, Cordoba, Argentina, 2013.
[14] S. Eggersgl, R. Krenz-Baath, A. Glowatz, F. Hapke, and R.

Drechsler, A new SAT-based ATPG for generating highly

compacted test sets, in Proc. of IEEE 15th International
Symposium on Design and Diagnostics of Electronic
Circuits & Systems, Tallinn, Estonia, 2012, pp. 230–235.

[15] S. Eggersgl, R. Wille, and R. Drechsler, Improved SAT-

based ATPG: More constraints, better compaction, in Proc.
of International Conference on Computer-Aided Design,

Hong Kong, China, 2013, pp. 85–90.
[16] S. Eggersgl, M. Yilmaz, and K. Chakrabarty, Robust

timing-aware test generation using pseudo-boolean

optimization, in Proc. of 21st Asian Test Symposium,

Guam, USA, 2012, pp. 290–295.
[17] J. H. Shi, G. Fey, R. Drechsler, A. Glowatz, H.

Friedrich, and S. Jurgen, Passat: Efficient SAT-based

test pattern generation for industrial circuits, in Proc. of
IEEE Computer Society Annual Symposium on VLSI: New
Frontiers in VLSI Design, Tampa, FL, USA, 2005, pp. 212–

217.

8 Tsinghua Science and Technology, February 2021, 26(1): 1–8

[18] P. Stephan, R. K. Brayton, and A. L. Sangiovanni-

Vincentelli, Combinational test generation using

satisfiability, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, no. 9,

pp. 1167–1176, 1996.

[19] Z. D. Lei and S. W. Cai, Solving (weighted) partial MAX-

SAT by dynamic local search for SAT, in Proc. 27th
International Joint Conference on Artificial Intelligence,

Stockholm, Sweden, 2018, pp. 1346–1352.

[20] M. Liu, D. T. Ouyang, S. W. Cai, and L. M. Zhang,

Efficient zonal diagnosis with maximum satisfiability,

Science China Information Sciences, vol. 61, no. 11, p.

112101, 2018.

[21] H. S. Zhou, D. T. Ouyang, M. Liu, N. Y. Tian, and

L. M. Zhang, A PMS method combined with structure

characteristics for diagnositic problem, (in Chineses),

Scientia Sinica Informationis, vol. 49, no. 6, p. 685, 2019.

[22] M. Bushnell and V. Agrawal, Essentials of Electronic
Testing for Digital, Memory and Mixed-signal VLSI

Circuits. Berlin, Germany: Springer Science & Business

Media, 2004.

[23] W. Zhao, L. Zhao, W. D. Wu, S, G. Chen, S. H.

Sun, and Y. Cao, Loading-balance relay-selective strategy

based on stochastic dynamic program, Tsinghua Science &
Technology, vol. 23, no. 4, pp. 127–134, 2018.

[24] F. Brglez, A neutral netlist of 10 combinatorial benchmark

circuits and a target translator in fortran, in Proc. of 1985
IEEE Int. Symp. on Circuits and Systems, Special Session
on Recent Algorithms for Gate-Level ATPG with Fault
Simulation and Their Performance Assessment, Kyoto,

Japan, 1985, pp. 663–698.

[25] F. Brglez, D. Bryan, and K. Kozminski, Combinational

profiles of sequential benchmark circuits, IEEE Trans. on
Circuits and Systems, vol. 3, pp. 1929–1934, 1989.

[26] F. Corno, M. S. Reorda, and G. Squillero, Rt-level itc?99

benchmarks and first ATPG results, IEEE Design & Test of
Computers, vol. 17, no. 3, pp. 44–53, 2000.

Huisi Zhou received the BS degree

from Jilin University, Jilin, China, in

2017. She is currently a master student

of Jilin University. Her research interests

include model-based diagnosis and partial

maximum satisfiability problem.

Liming Zhang received the MS and

PhD degrees from Jilin University, China,

in 2009 and 2012, respectively. He is

currently a senior engineer at the College

of Computer Science and Technology, Jilin

Univercity, China. His main research

interests include satisfiability, integrated

circuit diagnosis and testing, maximum

satisfiability, and constrained clustering.

Dantong Ouyang received the PhD degree

from Jilin University, Jilin, China, in

1998. She is currently a professor of

Jilin University, China. Her research

interests include model-based diagnosis,

satisfiability problem, and model checking.

satisfiability problem, and model

checking. satisfiability problem, and

model checking. satisfiability problem, and model checking.

satisfiability problem, and model checking. satisfiability

problem, and model checking. satisfiability problem, and

model checking. satisfiability problem, and model checking.

satisfiability problem, and model checking. satisfiability

problem, and model checking. satisfiability problem, and model

checking. satisfiability problem, and model checking.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

