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Preserving Personalized Location Privacy in Ride-Hailing Service

Youssef Khazbak�, Jingyao Fan, Sencun Zhu, and Guohong Cao

Abstract: Ride-hailing service has become a popular means of transportation due to its convenience and low cost.

However, it also raises privacy concerns. Since riders’ mobility information including the pick-up and drop-off location

is tracked, the service provider can infer sensitive information about the riders such as where they live and work.

To address these concerns, we propose location privacy preserving techniques that efficiently match riders and

drivers while preserving riders’ location privacy. We first propose a baseline solution that allows a rider to select

the driver who is the closest to his pick-up location. However, with some side information, the service provider can

launch location inference attacks. To overcome these attacks, we propose an enhanced scheme that allows a rider

to specify his privacy preference. Novel techniques are designed to preserve rider’s personalized privacy with limited

loss of matching accuracy. Through trace-driven simulations, we compare our enhanced privacy preserving solution

to existing work. Evaluation results show that our solution provides much better ride matching results that are close

to the optimal solution, while preserving personalized location privacy for riders.
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1 Introduction

Ride-hailing services, such as Uber and Lyft, have
enabled drivers to offer rides using their own vehicles
and have enabled riders to request and hail rides with
their mobile devices. Millions of people enjoy such
service due to its convenience and low cost. However,
the current ride-hailing service significantly threatens
riders’ location privacy. Since rider mobility, including
the pick-up and drop-off location information, is tracked,
a Service Provider (SP) can infer sensitive information
about the riders such as where they live and work[2].
Many real world incidents have been reported about the
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misuse of such data. For example, in November 2014,
Uber investigated one employee who was reported to
have tracked riders[3]. If this location privacy issue is not
addressed, many users may not be willing to use such
service despite its popularity.

Location privacy has been well studied in the
literature, and researchers have proposed many
location obfuscation mechanisms, such as location
perturbation[4], spatial cloaking[5, 6], dummy location
generation[7, 8], etc. In location perturbation, noise is
added to locations to generate obfuscated locations.
In spatial cloaking, a user reduces the granularity of
his location so that his location can be hidden inside
a cloaked region. The dummy location generation
technique generates k � 1 properly selected dummy
locations to hide the user’s actual location. These
techniques increase users’ location privacy as it would
be more difficult for an adversary to know the actual
locations of the users. However, these techniques cannot
be directly applied to the current ride-hailing systems
without affecting the system usability and the system
performance.

Recently, researchers have looked into privacy issues
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in ride-hailing services. PrivateRide[9] is the first system
that aims to enhance location privacy for riders. It relies
on spatial cloaking algorithms to obfuscate locations
of riders and drivers by replacing their actual locations
with cloaked regions. Then, in order to match a rider
to a driver, the SP measures the distances between the
rider’s pick-up location and the drivers’ locations. Based
on the calculated distances, the rider is assigned to the
driver who is the closest to his cloaked region. Since the
ride matching is based on the cloaked regions, instead
of the actual locations, the chosen driver may not be
the optimal one and has to drive extra distance for rider
pickup, and the rider may wait extra time to get the ride.

In this paper, we propose location privacy preserving
techniques that efficiently match riders and drivers while
preserving riders’ location privacy. We first propose
a baseline solution that allows a rider to select the
driver who is the closest to his pick-up location without
revealing his location to the SP. However, with side
information such as knowledge of ride matching and
temporal cloaking techniques deployed in the baseline
solution, the SP can launch location inference attacks. To
overcome these attacks, we propose an enhanced scheme
that allows a rider to specify his privacy preference. In
this solution, the ride matching algorithm selects a set
of drivers that are as close to the rider’s location as
possible, and meanwhile located within an area that
meets rider’s privacy preference. Then, the rider selects
a driver among the set of drivers. The pick-up and drop-
off times are further obfuscated in a way to prevent the
SP from using the temporal information to improve the
inference of the rider’s location.

In summary, the main contributions of this paper are
as follows:

(1) We present a baseline privacy preserving solution
that protects locations of riders in ride-hailing services,
and show potential inference attacks against it.

(2) To overcome the inference attacks against
the baseline solution, we propose an enhanced
privacy preserving solution which provides personalized
riders’ location privacy. It relies on novel obfuscation
techniques that satisfy riders’ privacy requirements
without affecting the convenience of the service, and
with limited loss in ride matching accuracy.

(3) We analyze a real dataset that contains 60 000 rides.
Experimental results show that our enhanced solution
outperforms existing solutions by achieving much
better matching accuracy with negligible computational
overhead.

The rest of the paper is organized as follows. In
Section 2, we describe the related work. Section 3
presents the preliminaries, and Section 4 describes
the baseline privacy preserving solution. We present
the enhanced solution in Section 5, and present the
evaluation results in Section 6. Section 7 concludes the
paper.

2 Related Work

Privacy preserving ride-sharing service has received
considerable attention[10–17]. For example, Friginal et
al.[10] proposed a solution for protecting location privacy
in dynamic ride-sharing services. They considered a
distributed architecture which allows users’ location
information to be scattered around the network,
hence preventing the SP from collecting and storing
sensitive location information from ride-sharing users.
PrivatePool[18] is another distributed ride-sharing
solution which guarantees location privacy. It includes
ride matching protocol based on users’ proximity and
trajectories overlaps. However, it constructs a threshold
private set intersection which incurs high computation
overhead. Priv-2SP-SP[14] allows a rider and driver to
compute efficient pick-up and drop-off locations that
match their constraints, without revealing their origins
and destinations. However, this solution does not address
the ride matching problem, and hence running the
algorithm between every pair of driver/rider incurs high
computation overhead.

SRide[15] is a dynamic ride-sharing service that
provides privacy-preserving ride matching. The ride
matching is done securely by using homomorphic secret
sharing and secure two-party equality test, in order to
compute feasible ride matches and calculate ride-sharing
score for each feasible match. Drivers are assigned
securely to riders based on their ride-sharing scores. Ni
et al.[12] proposed a protocol to solve the contradiction
between safety and privacy preservation of riders and
drivers.

However, these proposed privacy preserving solutions
are for ride-sharing which is different from ride-hailing.
Ride-sharing services enable multiple individuals with
similar trip schedules to share a single car along their
route. On the other hand, ride-hailing services allow
users to use their own cars as taxies, so they can pick up
and drop off riders at their specified pick-up and drop-off
locations.

Recently, researchers started to look into privacy
issues in ride-hailing services. PrivateRide[9] is the first
system that aims to enhance location privacy for riders.
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It relies on spatial cloaking algorithms to obfuscate
locations of riders and drivers by replacing their actual
locations with cloaked regions. In order to match a
rider to a driver, the SP measures the distances between
the rider’s pick-up location and the driver’s locations.
Based on the calculated distances, the rider is assigned
to the driver who is the closest to his cloaked region.
Since the ride matching is based on the cloaked regions,
instead of the actual locations, the chosen driver may not
be the optimal and has to drive extra distance for rider
pickup, and the rider may wait extra time to get the ride.
Moreover, the fare calculation is based on the cloaked
regions, and then a rider can be either undercharged or
overcharged for a ride. As another solution, ORide[19]

relies on homomorphic encryption to encrypt riders’
and drivers’ locations before sending them to the SP.
Then the SP computes the encrypted distances based
on the encrypted locations and returns them to the rider.
The rider decrypts the distance and selects the closest
driver. Although ORide achieves better matching results
compared to PrivateRide, its cryptographic solution
incurs much higher computation overhead. Moreover,
this solution encrypts drivers’ locations; as a result, the
SP does not know the locations of the drivers. Hence,
this model is not compatible with the current ride-hailing
services and not incrementally deployable. In addition,
ORide computes distance between a rider and driver
using the Euclidean distance, while the actual distance
depends on roads connecting them, as drivers are
constrained to move along the roads. To provide more
accurate ride matching results, pRide[20] matches riders
to drivers based on road network distances. However,
pRide relies on homomorphic encryption and hence it
incurs high computation overhead. Zhao et al.[21] studies
privacy issues with drivers and presents attacks that can
determine driver’s sensitive information, including their
locations and daily driving behaviors. The work relies
on Application Programming Interface (API) reverse
engineering techniques that enable attackers to extract
nearby driver’s information from the SP through the
mobile app. Unlike this work, our solution focuses on
protecting rider’s location privacy.

The proposed location privacy preserving solution
protects riders’ pick-up and drop-off locations to
overcome inference attacks that aim to infer where
riders live and work. The preliminary version of this
work appeared in Ref. [1]. To protect the full mobility
traces, some researchers have proposed anonymization
techniques that obfuscate the whole users’ mobility

traces[22, 23]. However, they can not be directly adapted
to the ride-hailing system. Moreover, existing work[24, 25]

highlights the privacy vulnerability of anonymized traces
by exploiting users’ side information such as users’
observed locations and co-locations.

3 Preliminary

In this section, we introduce ride-hailing services, the
security model, the design goals, and the basic concept
of Voronoi diagram which is an essential part of our
solutions.

3.1 Ride-hailing services

The ride-hailing service involves three parties: riders,
drivers, and an SP. Riders are typically smartphone users
who need to hail a ride. Drivers are car owners who are
willing to offer rides. The SP receives ride requests from
riders and matches the requests with available drivers.

Ride matching is primarily based on the locations of
the rider and drivers. It is initiated when a rider sends
a ride request to the SP that includes his pick-up and
optionally drop-off locations. Then the SP selects among
available drivers the closest driver to the rider’s pickup
location. To do so, drivers have to continuously report
their locations to the SP.

After matching a driver to a ride request, the SP allows
the driver and rider to coordinate the ride by sending each
party the information of the other, i.e., name, reputation,
and phone number. If both parties accept the ride, the
SP continuously shares the driver’s location with the
rider. Once the driver picks up the rider, he notifies the
SP with the start of the ride. During the ride, the driver
continuously updates the SP with his actual location.
At the end of the ride, the driver provides the SP with
the distance traveled and the trip duration. The SP uses
this information to calculate the ride’s fare. The SP first
charges the rider, then it deposits to the driver account an
amount that equals the amount charged to the rider minus
the service fees. Finally, the driver becomes available
again to offer a new ride.

3.2 Security model

We assume the SP is an honest but curious adversary
who has the incentive to track riders’ precise locations.
The SP can use collected location traces of the riders
to profile and infer sensitive information about them,
improve its own service, or to sell the collected data
to other third parties (e.g., advertisement agencies).
However, the SP has no incentive to attack the riders’
and drivers’ mobile devices by providing them with
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malicious application. Because such malicious behavior
can be detected via reverse engineering the application,
and hence harms its reputation and leads to business loss
over its competitors.

In the system, drivers continuously update the SP
with their actual locations, because they are workers
who provide ride offers to riders and in return receive
money for such a service. We also assume that drivers do
not disclose riders’ locations to the SP, because drivers
are normally independent workers who do not have the
incentive to collude with the SP.

3.3 Design goals

We have the following design goals for ride-hailing
services:

(1) Preserving rider’s personalized location
privacy: The goal is to provide ride-hailing service
without disclosing the riders’ actual locations to the SP.
Moreover, the service has to satisfy the riders’ needs for
personalized location privacy throughout the operation
of the service.

(2) Maximizing the accuracy of ride matching: If
privacy is not considered, ride matching matches a
rider with the closest driver, since it minimizes the
riders’ waiting time and the drivers’ driving distance.
However, such matching will require a rider to reveal
his accurate location information and sacrifice privacy.
When considering privacy, the design goal is to select
a driver who is as close as possible to the rider’s pick-
up location while preserving his personalized location
privacy.

3.4 Voronoi diagram

In this paper, Voronoi diagram is leveraged for launching
location inference attacks, and our enhanced privacy
preserving solution addresses such location inference
attacks by constructing Voronoi diagrams.

The Voronoi diagram[26, 27] is a data structure in the
field of computational geometry that represents the
proximity information about a set of nodes. It partitions
the space with a set of nodes into polygons such that
each polygon contains exactly one node. Every point
inside a given polygon is closer to the node inside this
polygon than to any other nodes. Figure 1 shows a
Voronoi diagram and its dual graph represented by the
dashed lines. The dual graph of a plane graph G has
a vertex for each face of G and an edge for every
two faces of G that are separated by an edge. Each
vertex lies inside one Voronoi polygon, and each edge

Fig. 1 Voronoi diagram of a set of drivers’ locations. The
dashed lines represent the dual graph for the Voronoi
diagram of a set of drivers’ locations, where the horizontal
and vertical represent the coordinates of an area.

connects two vertices in two Voronoi polygons. In our
context, Fig. 1 shows the Voronoi diagram of a set of
drivers’ locations. Each driver location is enclosed by
a Voronoi polygon. Locations inside one polygon are
closer to the driver inside this polygon than any other
drivers. In the following sections, we will illustrate how
Voronoi diagram can be leveraged for launching location
inference attacks and how to defend against such attacks.

4 Baseline Privacy Preserving Ride-Hailing

In this section, we first introduce the baseline privacy
preserving ride-hailing solution, and then explain why it
suffers from location inference attacks.

4.1 System overview

Our system consists of three parties: riders, drivers,
and SP, as illustrated in Fig. 2. The SP handles the
incoming ride requests from riders and matches such
requests to drivers who can serve them. When the
SP receives a ride request which includes the rider’s
geographical region and the optionally obfuscated drop-
off location, it constructs and sends the rider a list
of drivers close to the rider, based on the provided
geographical region. The rider receives the list, picks

Fig. 2 System model.
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a driver, and notifies the SP with the selected driver.
The SP allows the driver and rider to coordinate
the ride through direct communication. Through the
established communication channel, they can share
sensitive information such as actual pick-up location,
drop-off location, and obfuscated locations. In addition,
the driver continuously shares his actual location updates
while heading to the pick-up location.

On reaching the cloaked region where the rider is
located, he updates the SP with the same cloaked region
of the rider. Then, the driver picks up the rider, and
notifies the SP with an obfuscated pick-up time of the
ride. During the ride the driver continuously sends SP
the cloaked region until moving out of it. Afterwards,
the driver continuously sends his actual location to the
SP. After the end of the ride, the driver notifies the SP
with an obfuscated drop-off time of the ride and becomes
available again to offer a new ride. Next, we describe
the details of the baseline solution, which includes three
components: ride initiation, ride matching, and temporal
cloaking.

4.1.1 Ride initiation
A rider initiates a ride request to the SP as follows.
He sends a geographical region, denoted as Q, which
contains his actual pick-up location and its cloaking
region. As shown in Fig. 3, to construct Q, the
rider specifies his privacy preference as a cloaking
region[28], where his location is indistinguishable from
other locations inside the region. Specifically, the rider
specifies the cloaking region as a square of an area
equals S2 centered at the actual location L. Then a
location, denoted as L0, is chosen uniformly at random
from points inside the cloaking region. Q is generated
centering at L0 with a diagonal 2R. To ensure that the
cloaking region lies inside Q, R should be greater than
or equal to the diagonal of the cloaking region, i.e.,
R >

p
2S . Using the same method, the rider can

generate an obfuscated drop-off location. Afterwards,
the rider sends the ride request with the geographical

Fig. 3 Construction of geographical region Q.

area Q to the SP. Once the SP receives the ride request,
it uses Q to filter out all drivers that are irrelevant to the
rider’s pick-up location and sends to the rider a list of
drivers’ locations in Q.

4.1.2 Ride matching
Following the ride initiation process, the SP sends the
rider a set of candidate drivers’ locations which are
within the geographical region Q. Then, the rider selects
the closest driver based on his location and notifies the
SP with the selected driver.

4.1.3 Temporal cloaking
The cloaking region protects rider’s location privacy
from the spatial perspective. Similarly, cloaking can also
be done from the temporal perspective. To obfuscate the
pick-up and drop-off times, the SP discretizes the time
of the day into time intervals. Then, a driver reports
to the SP the time interval where an event occurs. For
example, if the time interval is 2 minutes, an event such
as rider pick-up occurring between 0:10 and 0:12 would
be reported to the SP at 0:12.

4.2 Location inference attacks

In this subsection, we first show how the SP can launch
a location inference attack with the knowledge of ride
matching. Then, we show another location inference
attack which exploits knowledge of temporal cloaking
along with information about driver’s car speed to
improve the inference of riders’ locations.

4.2.1 Location inference attack with knowledge of
ride matching

In the baseline approach, a rider selects the driver closest
to his location. This gives the SP an opportunity to
launch location inference attacks. The SP knows all
drivers’ locations and the selected driver location, and it
knows that the rider’s location is closest to the selected
driver’s location than any other driver’s location. The SP
can launch an attack by constructing a Voronoi diagram
based on the drivers’ locations. Every driver’s location
is enclosed by a Voronoi polygon which consists of all
locations closer to that location than any other driver’s
location. By using the Voronoi diagram, the SP can infer
the rider’s location is within the Voronoi polygon of the
selected driver, denoted by PD� . When the cloaking
region is larger than PD� , the SP can reduce rider’s
cloaking region into a smaller region represented by
PD� .

Figure 4 describes the location inference attack. The
“ı” symbol represents the drivers’ locations, and the



748 Tsinghua Science and Technology, December 2020, 25(6): 743–757

Fig. 4 Location inference attack with knowledge of ride
matching, where the horizontal and vertical represent the
coordinates of an area.

constructed Voronoi diagram partitions the region based
on the distance to the drivers’ locations. The square
represents the cloaking region of size AR D S2. The
gray polygon represents the Voronoi polygon P �

D of the
closest driver. The “�” symbol represents the location
of the driver closest to the rider’s pick-up location. The
pick-up location is represented by a “+” symbol. Since
the rider chooses the closest driver to his location, the
SP infers that the rider’s actual location lies within PD� .

To quantify the effect of the attack on location privacy,
we introduce the following notations. Let O denote the
cloaking region which is divided into a grid of K cells.
Each location is represented by the cell it falls into. The
probability of being in a cell i is denoted by pi . Next,
we quantify the effects of the attack using a metric called
Leaked Information, which is defined as follows.

Leaked Information D H.O/ � H.OjPD�/ (1)

where H.O/ D
PR

iD1 pi log
1

pi

. H.�/ denotes the

entropy of a random variable[29], where pi represents the
probability of the rider being located inside cell i . H.O/

evaluates the SP’s prior knowledge about rider’s location
and it is the entropy of the prior probability. We assume
that the SP does not have any side information before the
attack and the best he can do is to reveal O . Hence, the
actual rider’s location can be within any cell inside O

with probability equal to
1

K
. Here, the prior probability

is represented by a uniform distribution which provides
the maximum entropy before launching the attack, and
hence H.O/ D log K. H.OjPD�/ measures the SP’s
posterior knowledge after launching the attack and it
is the entropy of the posterior probability. Hence, the
privacy leakage is measured in terms of the change in
SP’s knowledge. Next, we quantify the attack using

another metric called Disclosed Area, which is defined
as follows:

Disclosed Area D
AR � Ap

AR

(2)

The Disclosed Area metric measures the proportion
of the area of the cloaking region disclosed after running
the attack. AR denotes the size of the cloaking region
and Ap denotes the size of PD� .

Using these two metrics, we quantify the effects of the
attack based on a dataset consisting of mobility traces of
taxi cabs collected in Shanghai, China[30] (more details
in Section 6). Figures 5 and 6 show the cumulative
distribution functions of the Leaked Information and
Disclosed Area, respectively. It can be seen that both
Leaked Information and Disclosed Area increase as S

increases. This is because more drivers can be located
inside O when AR is larger. With many drivers inside
O , many constructed Voronoi polygons lie inside O , and
the SP can infer that the rider’s location is only inside
one of them which is PD� . As shown in Fig. 6, even
with small O , a square with S D 250 m, only around
20% cases do not disclose any information about O .
For cloaking regions with larger AR, privacy breach is
nearly inevitable. For example, when S D 1000 m, in
80% cases, the disclosed area is larger than 75%.

Fig. 5 Leaked Information for the location inference attack.

Fig. 6 Disclosed Area for the location inference attack.
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4.2.2 Location inference attack with knowledge of
temporal cloaking

The temporal cloaking technique does not prevent the
SP from exploiting temporal information along with side
information such as driver’s car speed to infer more
precise locations. The inference attack is described as
follows. Let v denote the maximum driver speed, and
T denote the time difference between the time of the
last known driver’s location and the obfuscated time for
pick-up. Let the maximum distance between any two
points inside the cloaking region PD� be dmax. Then the
SP may prune part of O by computing the maximum
distance a driver can travel when moving at speed v. The
maximum travel distance equals vT . Then the attack is
successful if dmax > 2vT .

As shown in Fig. 7, when dmax of PD� , i.e., the gray
polygon, is larger than the maximum travel distance
a driver can travel, it indicates that part of PD� is
unreachable by the driver at the pick-up time, and
hence the actual pick-up location cannot lie within the
unreachable region, i.e., the region shown by dashed
lines. Hence, the SP can further reduce the cloaking
region PD� . Similar attacks can be used to improve the
inference of the drop-off location.

5 Enhanced Privacy Preserving Ride-
Hailing

To overcome the location inference attacks in the
baseline solution, we propose an enhanced solution for
privacy preserving ride-hailing in this section. We first
present our solution and then give its privacy analysis.

Fig. 7 Location inference attack with knowledge of
temporal cloaking, where the horizontal and vertical
represent the coordinates of an area.

5.1 Enhanced ride matching

Similar to the baseline solution, as shown in Fig. 2, after
the ride initiation process, the SP sends a set of candidate
drivers’ locations within the geographical region Q

to the rider. Then the rider runs the enhanced ride
matching algorithm, which consists of two parts. The
first part is a spatial cloaking algorithm that constructs a
cloaking region based on drivers’ locations and rider’s
privacy preference. The second part is a driver selection
algorithm that picks a single driver among the set of
drivers located within the cloaking region. The driver is
chosen according to a probabilistic mechanism.

In the spatial cloaking algorithm, the actual pick-
up location of a rider, denoted as L

p
R, is hidden

inside a cloaking region. The rider specifies his privacy
preference in the form of an area of size AR. The
privacy preference corresponds to hiding the rider’s
actual location inside an area of size at least AR.
With such privacy preference, the cloaking algorithm
generates the cloaking region as follows. First, let
LD D fLD1

; : : : ; LDn
g denote the set of n drivers’

locations provided by the SP. The algorithm constructs
the Voronoi diagram and its dual graph from LD . The
Fortune’s algorithm is used to generate the Voronoi
diagram from the set of n drivers’ locations in the
region as follows. The algorithm maintains a sweep line
and a beach line. The sweep line is a vertical straight
line which moves from left to right as the algorithm
progresses. The beach line is a piecewise curve to the
left of the sweep line and composed of several parabolas.
During the execution of the algorithm, at any point, the
points to the left of the sweep line have been already
included into the Voronoi diagram, while the other points
to the right of the sweep line have not been considered
yet. For every point to the left of the sweep line, a
parabola of points equidistant from that point and from
the sweep line is constructed. Then the beach line is the
union of all the constructed parabolas. As the sweep line
moves to the right, the vertices at which two parabolas
cross form the edges of the Voronoi diagram.

The constructed Voronoi diagram divides the area into
a set of Voronoi polygons represented by fP1; : : : ; Png.
The dual graph of the Voronoi diagram corresponds to
constructing a Delaunay triangulation[31] on the set LD .
To construct the Delaunay triangulation, we sort the set
LD of n drivers’ locations in ascending order. Then we
divide the set LD into two subsets LL

D and LR
D , such

that the points in LL
D are lexicographically smaller than
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the points in LR
D . Afterwards, we use the divide and

conquer approach to recursively construct the Delaunay
triangulations for the points in LL

D and LR
D . Then we

merge the two solutions to obtain the final result. The
merge is done by obtaining the union of the convex hulls
of LL

D and LR
D . After obtaining the dual graph, we label

each node LDi
of the dual graph with two labels, which

are the Euclidean distance between LDi
and the L

p
R,

denoted as DDi
D dist.LDi

; L
p
R/, and the area of the

Voronoi polygon Pi , denoted as APi
.

The APi
is computed using the polygon triangulation

method. The polygon triangulation method divides the
polygonal area into a set of triangles. Then the area
of the polygon is computed as the summation of the
areas of all of the triangles within the polygonal area. A
simple polygon is monotone with respect to a line, when
any other line perpendicular to that line intersects the
polygon at most twice. Assuming a polygon is monotone
with respect to the y-axis, then a greedy algorithm can
be used to scan the polygon from top to bottom while
adding diagonals whenever it is possible. If a polygon is
not monotone, it can first be partitioned into monotone
sub-polygons using a sweep-line approach.

The enhanced ride matching problem can be
formulated as follows.

Definition 1 Let the dual graph of the Voronoi
diagram denote G D .V; E/, where V D fLD1

; : : : ;

LDn
g and each location LDi

lies inside a Voronoi
polygon Pi . Find a subgraph GS D .VS ; ES /, ES � E

that satisfies the following: (1) the drivers’ locations in
VS are as close as possible to the rider’s location L

p
R;

that is, for any driver’s location LDi
2 VS and driver’s

location LDj
… VS , DDi

6 DDj
, (2) the area covered

by the Voronoi polygons of the drivers in VS , denoted as
AT D AP1

C � � � C APjVS j
, must be equal to at least AR.

The problem can be solved using a greedy algorithm.
The intuition of the algorithm is to construct a subgraph
that includes a set of drivers’ locations by sequentially
picking a driver’s location that is closest to the rider’s
location until the size of the area AT covered by the
selected driver’s polygons exceeds the required threshold
AR. Hence, the algorithm progressively expands the
covered area by aggregating drivers’ polygons until the
privacy preference AR 6 AT is satisfied.

To construct the subgraph, the algorithm traverses
the dual graph G. However, the traversal of G cannot
be done using a straight forward Breadth-First search.
Because it is not always the case that immediate neighbor
nodes are closer than faraway neighbors. For example, as

shown in Fig. 8, the distance between a rider’s location
at node a and the location of its neighbor node c is
larger than the distance between it and the location of
its two-hop neighbor node b. Based on this observation,
the algorithm uses a priority queue QS in traversing
G and the traversal works as follows. Initially, VS

contains the location of the driver closest to the rider,
i.e., the root node. Next, the algorithm explores and
adds the neighbor nodes of the root node to QS . Then
it picks a node among the neighbors from QS that has
the smallest distance, inserts it into VS , and explores
and adds its neighbors to QS . Hence at every step,
the algorithm chooses, among all nodes in QS , a node
that is a neighbor to any node in VS without favoring
root’s neighbors over others. The choice from neighbors
is to preserve the connectivity of the cloaking region
constructed by the drivers’ polygons of VS .

The second part of the enhanced ride matching is the
driver selection algorithm, which uses a set S equivalent
to VS but ordered according to the distance from the root
node. It divides S into two sets S1 and S2, such that S1

contains locations that are closer to the rider’s location
when compared to locations in S2. Then a single driver
is selected among S1 and S2 with probability equal to
w � pi and pi , respectively. The parameter w denotes a
weight factor. Setting w D 1 is equivalent to selecting
a driver uniformly at random from the two sets S1 and

S2, every driver can be selected with probability
1

jS j
.

Setting w to a value larger than one allows the driver
selection algorithm to favor closer drivers. Finally, the

parameter pi is equal to
1

wjS1j C jS2j
.

Fig. 8 Distance between a rider’s location at node a and the
location of its neighbor node c is larger than the distance
between it and the location of its two-hop neighbor node b,
where the horizontal and vertical represent the coordinates
of an area.
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Spatial cloaking and driver selection are summarized
in Algorithm 1. We use a regular binary heap to
implement the priority queue. The time complexity of
the algorithm is as follows. Lines 1 and 2 construct
the Voronoi diagram and its dual graph using the
Fortune’s algorithm, and the Delaunay triangulation.
The Fortune’s algorithm uses a binary search tree to
describe the beach line, and a priority queue to store
future events that may affect the beach line structure.
The algorithm operates by progressively moving the
sweep line to the right. At each step, the next event is
retrieved from the priority queue, and the beach line is
updated based on the changes caused by that event. As
there are a total of O.n/ events, and each event requires
O.log n/ time, the total running time is O.n log n/. The
Delaunay triangulation algorithm is based on a divide
and conquer approach in which a line is used to split the
vertices into two sets. Then the algorithm computes the
triangulation for each set, and the two sets are merged.
The running time of such algorithm is O.n log n/[32].
Lines 3 – 6 iterate on all nodes in V to label them, which

Algorithm 1 Enhanced ride matching
Input: Rider’s pickup location L

p

R
and set of n drivers’ locations

LD D fLD1
; : : : ; LDn

g.
Output: An optimal driver location that satisfies the privacy

requirement AR.
1: Construct Voronoi diagram from set LD

2: Construct the dual graph G D .V; E/ of the Voronoi diagram
where V D LD and each location LDi

lies inside a Voronoi
polygon Pi .

3: for each node LDi
do

4: Compute the Voronoi polygon area APi

5: Compute the distance DDi
D dist.LDi

; L
p

R
/

6: Label the node with fAPi
; DDi

g

7: end for
8: Set VS to the node u with the smallest distance DDi

among
all nodes in V

9: Set AT to the area APi
of the Voronoi polygon of u

10: Initialize priority queue QS and push in QS the children of u

11: while AT < AR do
12: Find and remove a node v 2 QS with the smallest distance

among all nodes in QS

13: Add to AT the area APi
of the Voronoi polygon of v

14: Add v to VS

15: Push in QS the children of v

16: end while
17: Set S to VS and sort it in ascending order by distance
18: Divide S into two sets S1 and S2

19: Pick a driver location L�
D

from S1 with probability w � pi

or from S2 with probability pi

20: return L�
D

takes O.n/. The traversal of the dual graph in Lines
7 – 14 runs in time O.jVS jCjES j/, where jVS j D O.n/

and jES j D O.n/ as stated in the following lemma.
Lemma 1 Any planar graph on n > 3 vertices has

at most 3n � 6 edges and at most 2n � 4 faces.
Proof In a maximal planar graph, no edges can be

added to it without making it non-planar graph. All faces
of a maximal planar graph are bounded by three edges,
and each edge will be on the boundary of two faces. Let
number of edges be e and number of faces be f , then
3f D 2e. Substituting this into the Euler’s formula,
which states that for a connected planar graph n D 2 C

e � f , then the number of edges is given by e D 3n � 6,
and the number of faces is given by f D 2n � 4 . Since
any planar graph must have equal, or fewer edges than a
maximal planar graph with the same number of vertices,
then any planar graph will have e 6 3n � 6 and f 6
2n � 4 . �

Thus, the running time of the graph traversal is O.n/

and an iteration of it runs in O.log n/ because each
iteration consists of (1) finding and removing the node
with the smallest distance among all nodes in QS , which
requires O.log n/, and (2) adding to QS the node’s
children, which requires O.log n/. Therefore, Lines 7–
14 require O.n log n/ time. Lines 15 – 17 have the time
complexity of O.n log n/ for sorting VS using merge
sort algorithm. Hence, the time complexity of the greedy
algorithm is O.n log n/.

We use Fig. 9 to illustrate how our algorithm works.
Figure 9 shows the constructed cloaking region, the
selected driver by our algorithm, and one of the drivers
that can be selected by PrivateRide[9]. VS initially
contains the location of the closest driver, and AT equals
to the area of the closest driver’s polygon, represented by

y

x

Fig. 9 Construction of the spatial cloaking region, where the
horizontal and vertical represent the coordinates of an area.
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the light gray polygon. The algorithm explores and adds
the neighbor nodes of the root node, until it constructs
the cloaking region that satisfies the privacy preference
AR. The cloaking region is represented by the light and
dark gray regions. Then a single driver is selected among
the set of drivers within this region. The driver selected
by our algorithm is represented by a “ˇ” symbol. The
driver selected by PrivateRide is picked among the set
of drivers inside the square region, i.e., the cloaking
region represented by the square. Because PrivateRide
considers all drivers co-located with the rider at the same
cloaking region have a distance equals zero from that
rider’s location, it cannot distinguish between them. The
driver represented by “˚” symbol, at the boundary of
the cloaking region, can be selected by PrivateRide. The
closest driver is represented by the “�” symbol. As
observed, our algorithm does not select the closest driver
due to the privacy requirements, but it still selects a
driver closer than that selected by PrivateRide. This is
because PrivateRide may select the driver located in the
boundary of the square region, while our algorithm uses
nearby drivers to generate the cloaking region.

5.2 Enhanced temporal cloaking

We presented location inference attacks against the
baseline temporal cloaking which obfuscates the actual
pick-up and drop-off times into time intervals. It allows
the SP to prune some parts of the cloaking region to
launch attacks, by observing that a driver cannot reach
them at his maximum speed. To protect against this
attack, the temporal information should be obfuscated
so that the possible travel distance of a driver within the
given time covers the whole cloaking region.

Algorithm 2 shown the details of the enhanced
temporal cloaking algorithm. In this algorithm, the
cloaking region is represented by a set of points X ,
which represents the vertices of the Voronoi polygons
lying inside the cloaking region. The SP with some
statistic information can determine the maximum speed

Algorithm 2 Enhanced temporal cloaking
Input: Cloaking region represented by a set of points X ,

maximum driver speed v, last known time where driver’s
actual location is reported td , and a random value r .

Output: An obfuscated time t 0.
1: Compute the smallest enclosing circle for the set of points X

2: Set dmax to the circle diameter
3: Set t to dmax

v

4: Set t 0 equals td C t C r

5: return t 0

v of a driver within this region. In addition, the SP
knows the time of the last actual location reported by
the driver before entering the rider’s cloaking region,
denoted by td .

In Lines 1 and 2 of Algorithm 2, we use the
randomized incremental algorithm proposed in Ref. [33]
to compute the smallest enclosing circle of the points X .
As the smallest enclosing circle has at least two points
of X on its boundary, the maximum traveling distance
between any two points inside the circle, denoted by
dmax, corresponds to the obtained circle diameter. In
Line 3, t denotes the time delay which should be added
to obfuscate the actual time and is computed according
to dmax. In Line 4, we set the obfuscated time. A random
value r is added to the obfuscated time to prevent the
SP from knowing dmax that reveals information about
the cloaking region. The cloaking algorithm has a time
complexity of O.n/.

5.3 Fare calculation

The SP computes the ride’s fare by using the pick-up and
drop-off cloaking regions, the reported driver’s mobility
trace outside the cloaking regions, and the duration of
the ride. With the privacy preserving solution, the SP
calculates the fare based on obfuscated distance and
duration. Thus, we consider a pricing mechanism where
protecting rider’s location privacy comes at a premium,
and the riders are willing to pay more to protect their
location privacy. Then, a ride’s distance can be computed
based on the real distance traveled by the driver plus the
maximum distance a driver can drive inside the pick-
up/drop-off cloaking region.

In the enhanced ride matching, to preserve rider’s
location privacy at the drop-off location, a driver should
not directly report his actual location to the SP after
the ride ends. This is because when the driver’s actual
location is revealed after the drop-off, the SP can infer
rider’s drop-off location. One solution to protect the
rider’s drop-off location is to allow the driver to drive
outside of the rider’s cloaking region before reporting
his actual location. Another solution is to allow the
driver to wait for some time proportional to the cloaking
region size before reporting the actual location. In both
solutions, the driver would not be able to accept new
rides for some time, which may adversely affect his
business. To compensate the drivers, the riders who
want to preserve their location privacy should pay
extra amount proportional to the time the driver has
to wait or the extra distance he has to drive out of
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the cloaking region. More specifically, we consider the
maximum distance/time a driver can drive inside the
drop-off cloaking region. The maximum distance inside
a cloaking region is obtained using the perimeter of the
cloaking region, and the ride duration is computed based
on the obtained maximum distance.

5.4 Privacy analysis

To better understand the privacy level of our enhanced
solution, we compare the probability of rider being
located in different Voronoi polygons within the cloaking
region O , after observing the chosen driver’s location
L�

D . Let Pi and Pj be two Voronoi polygons that lie

inside O , then the ideal case is that
Prob.Pi jL

�
D/

Prob.Pj jL�
D/

6 w.

For w D 1, the SP may deduce that the rider has equal
probability of being located in Pi or Pj . The SP may
have some side information on the prior probability of
the rider to be within each polygon, represented by
Prob.Pi / and Prob.Pj /. For example, the probability
for the rider to be in a shopping area may be higher than
the probability of being at a lake. Hence, our privacy
preserving solution has the following property.

Theorem 1 The enhanced privacy preserving ride-
hailing solution guarantees strong privacy for rider’s
actual location inside a cloaking region O if it satisfies
the following for all prior probabilities and any chosen
driver L�

D from S .
Prob.Pi jL

�
D/

Prob.Pj jL�
D/

6 w �
Prob.Pi /

Prob.Pj /
; 8Pi ; Pj 2 O (3)

Proof The proof is by contradiction. Assume it is
safe for a rider to release the cloaking region O to the
SP. Then the SP knows the locations of drivers inside
O , and it also knows that the algorithm uses the location
information of nearby drivers to generate O . It can
deduce that the rider tends to be close to the center of
the cloaking region. With such information, the SP can
improve the inference of the rider’s actual location as
follows. For each driver’s location LDi

, it computes the
distances between that location and all other drivers’
locations, denoted by Di D fdistj .LDi

; LDj
/g8j ¤i ,

and obtains the variance of the computed distances,
represented by Var.Di / D EŒ.Di � �/2�. Then, the
SP chooses the Voronoi polygon of the driver’s location
with the smallest variance, i.e., arg mini Var.Di /. The
chosen polygon contains the rider’s actual location with
high probability, and thus the inference of the rider’s
location can be improved.

However, in our solution, a rider releases the chosen

driver’s location L�
D only to the SP, and no more

information is released about the cloaking region. We
obtain a contradiction and thus, the described inference
attack is not possible without knowing the cloaking
region O . Hence, the observed L�

D has limited effect on
the probabilities deduced by the SP. �

6 Performance Evaluations

In this section, we evaluate the performance of the
enhanced privacy preserving solution and compare it
to PrivateRide[9]. We first introduce the evaluation setup
and then present the evaluation results.

6.1 Evaluation setup

The evaluations are based on a real dataset consisting of
mobility traces of taxies collected during a single day in
Shanghai, China[30]. The dataset includes time-stamped
location traces collected using GPS devices. Each record
includes an OCCUPIED variable that indicates whether
the taxi is vacant or occupied. It is equal to 1 when
the taxi is occupied and 0 otherwise. Hence, the ride
records are a sequence of consecutive records where
OCCUPIED equals 1.

A ride is defined by the start time, end time, pick-up
location, drop-off location, ride time, and ride distance.
The start time and the pick-up location are obtained from
the first record of the ride records. The end time and the
drop-off location are obtained from the last record of the
ride records. The ride distance is calculated using the
haversine formula[34], as the distance between the pick-
up and drop-off location. The total number of rides in
the dataset is 60 000. We filter out rides that have a total
distance of zero or last for less than 5 minutes, and only
consider rides inside an area of about 44 km � 44 km.
Finally, we have 25 000 rides in our evaluations.

We compare our enhanced solution with PrivateRide
by evaluating the accuracy of their ride matching. In
the evaluation, our enhanced ride matching is referred
to as our algorithm. The performance of both solutions
is evaluated based on a metric called Relative Extra
Distance, which measures the extra distance a driver has
to drive compared to the distance covered by the closest
driver to the rider’s location. We set R D 4000 m if not
mentioned otherwise.

6.2 Evaluation results

In this section, we present the evaluation results. For
comparison purpose, we implemented the cloaking
algorithm in PrivateRide. We set the area of the cloaking
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region to AR. More specifically, if AR = 62 500 m2, the
region is divided into square cells of 250 m � 250 m.

6.2.1 Effects of privacy preference (AR) and weight
factor (w) on the ride matching accuracy

We first evaluate the effect of AR and w on ride matching
accuracy. The ride matching accuracy is measured by
the Relative Extra Distance, which shows the extra cost
for both drivers and riders. As shown in Fig. 10, by
imposing higher privacy preference with larger AR, the
matching accuracy decreases. In addition, an increase
in w leads to an increase in the matching accuracy, and
hence a decrease in the extra distance.

Compared to PrivateRide, our algorithm, under the
same AR, achieves higher matching accuracy. As AR

increases, the accuracy gap between our algorithm and
PrivateRide increases, which shows that our algorithm
outperforms PrivateRide. As shown in Fig. 10a, when
AR D 2000 m � 2000 m, in 80% of the rides, the
Relative Extra Distance of our algorithm under different
ws is up to 831 m for w D 1, 760 m for w D 2, and
675 m for w D 4, while it is up to 1560 m in PrivateRide.
In this case, comparing our algorithm with w D 4

to PrivateRide, the savings in the extra cost can be

calculated as follows:
1560 � 675

1560
� 100% D 56:7%.

As shown in Fig. 10b, when AR D 1000 m � 1000 m;

in 80% of the rides, the Relative Extra Distance of our
algorithm with w D 1 is up to 380 m, but up to 666 m in
PrivateRide.

6.2.2 Computational overhead
In this subsection, we evaluate the computational

overhead of the algorithm. As shown in Table 1, for
a rider, the computational overhead introduced by our
algorithm varies based on R. It can be observed that
the computation overhead of our algorithm is small.
When R ranges from 500 to 2000 m, it is only about
1.12 to 2:64 ms. Even when R increases to 5000 m,
the computation overhead is till only about 8 ms. In
PrivateRide, riders receive a single driver selected by
the SP, hence there is no computational overhead. In
addition, with higher privacy requirement, R goes higher
and the download time increases. This is because more
drivers are located within the considered region, and
hence more drivers’ information is downloaded by the
rider.

6.2.3 Communication overhead

We evaluate the communication overhead of the
algorithm which occurs as riders have to download a
list of candidate drivers from the SP. We set AR D

62 500 m2 and w D 2, and vary the query range R. As
shown in Fig. 11, the list of drivers needed to be
downloaded from the SP that depends on the query
range R. The parameter R is controllable, however,
it depends on the privacy requirement specified by
the rider, i.e., the size of the cloaking region. For
instance, if the rider wants to hide his actual location
within an area of AR D 250 m � 250 m, the query
range should be R > 353:55 m. With higher privacy
requirement, R goes higher and the communication
overhead increases. With a reasonable cloaking region
of size AR D 1000 m � 1000 m, on average, the rider

(a) AR D 2000 m � 2000 m (b) AR D 1000 m � 1000 m (c) AR D 250 m � 250 m

Fig. 10 Effect of AR on ride matching accuracy (Relative Extra Distance).

Table 1 Computational time of our algorithm.
Setting (m) Download time (ms) Algorithm computational time (ms) Upload time (ms) Total time (ms)
R D 500 .2:27 ˙ 1:24/ � 10�5 1:12 ˙ 0:21 0:0143 ˙ 0:0076 1:15 ˙ 0:22

R D 1000 .4:93 ˙ 2:74/ � 10�5 1:41 ˙ 0:36 0:0143 ˙ 0:0076 1:47 ˙ 0:38

R D 2000 .1:58 ˙ 0:86/ � 10�4 2:64 ˙ 0:82 0:0143 ˙ 0:0076 2:81 ˙ 0:88

R D 5000 .7:96 ˙ 4:16/ � 10�4 8:66 ˙ 2:20 0:0143 ˙ 0:0076 9:47 ˙ 3:94
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Fig. 11 Communication overhead to download the drivers’
locations from the SP.
has to download 296 bytes. Even when the cloaking
region is of size AR D 2500 m � 2500 m, on average,
the rider has to download 1530 bytes.

6.2.4 Effect of privacy preference (AR) on the delay
due to temporal cloaking

We evaluate the time delay t generated by the enhanced
temporal cloaking algorithm. We study the effect of
AR on the introduced time delay. As shown in Fig. 12,
the time delay introduced by the temporal cloaking
algorithm varies with AR. The delay is small, especially
when AR ranges from 250 m � 250 m to 500 m � 500 m.
In about 90% of the cases, the delay is less than
2 minutes. In PrivateRide, the temporal cloaking
introduces fixed delay. However, as shown in Section
3.2, the SP can improve the inference of riders’ locations
with the knowledge of such static temporal cloaking.

6.2.5 Effect of privacy preference (AR) on fare
calculation

In our solution, the SP calculates the fare of the ride
based on the pick-up and drop-off cloaking regions. We
consider protecting rider’s location privacy that comes
at a premium, and hence the calculated fare is higher

Fig. 12 Time delay introduced by the enhanced temporal
cloaking algorithm for different AR.

than the original fare (computed by current ride hailing-
service). We evaluate the percentage increase in the
fare by the enhanced privacy preserving ride-hailing. We
study the effect of AR on the introduced fare increase.
As shown in Fig. 13, the fare increase varies with
AR. When AR D 250 m � 250 m, in about 80% of
the cases, the fare increase percentage is less than 11%.
While in case AR D 500 m � 500 m, in about 80% of
the cases, the fare increase percentage is less than 14%.
Finally, in case AR D 1000 m�1000 m, in about 80% of
the cases, the fare increase percentage is less than 23%.
In general, as AR increases, the fare increases, which
means that a rider with higher privacy requirement has to
pay higher fare as a premium for protecting his location
privacy.

7 Conclusion

In this paper, we addressed the problem of preserving
riders’ location privacy in ride-hailing services with
two techniques, the baseline solution and the enhanced
solution. Although the baseline solution can provide
riders with personalized location privacy, we identified
two inference attacks against it. To deal with
these inference attacks, the enhanced solution relies
on enhanced ride matching and temporal cloaking
techniques. The enhanced solution provides riders
with personalized location privacy while limiting the
matching accuracy loss. Evaluation results showed
that our solution outperforms previous work by
providing more accurate matching results with negligible
computational overhead.
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