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Challenges and Opportunities in Algorithmic Solutions for
Re-Balancing in Bike Sharing Systems

Jie Wu�

Abstract: In recent years, the booming of the Bike Sharing System (BSS) has played an important role in offering a

convenient means of public transport. The BSS is also viewed as a solution to the first/last mile connection issue in

urban cities. The BSS can be classified into dock and dock-less. However, due to imbalance in bike usage over

spatial and temporal domains, stations in the BSS may exhibit overflow (full stations) or underflow (empty stations).

In this paper, we will take a holistic view of the BSS design by examining the following four components: system

design, system prediction, system balancing, and trip advisor. We will focus on system balancing, addressing the

issue of overflow/underflow. We will look at two main methods of bike re-balancing: with trucks and with workers.

Discussion on the other three components that are related to system balancing will also be given. Specifically, we

will study various algorithmic solutions with the availability of data in spacial and temporal domains. Finally, we will

discuss several key challenges and opportunities of the BSS design and applications as well as the future of dock

and dock-less BSS in a bigger setting of the transportation system.
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1 Introduction

In recent years, the booming of the Bike Sharing
System (BSS) has played an important role in offering a
convenient means of publication transport. The BSS is
also viewed as a solution to the first/last mile connection
issue, getting people between public transport hubs
(such as subway stations and bus stops) and home in
large urban cities, such as New York City (NYC) and
Shanghai. As an integral part of smart city, BBS offers
healthy lifestyle for citizens and green transportation
in urhan cities. A recent survey has showed that 40%
of BSS users drive less[1], which is very desirable in a
crowed urban city.

The BSS can be classified into dock and dock-
less. Sample dock BSSs include Citi Bike (NYC),
Capital Bikeshare (DC), Indego (Philadelphia), GoBike

� Jie Wu is with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

�To whom correspondence should be addressed.
Manuscript received: 2019-12-29; accepted: 2020-01-03

(Bay Area), public bicycles (Shanghai, Beijing, and
Hangzhou), BikeMi (Milan), BuBi (Budapest), and
Esztergom Bicikli (Esztergom). Dock-less BSSs include
LimeBike, Spin, JUMP (bikes and electric scooters);
Bird (electric scooters) in the US; Mobike, ofo, and
Hellobike in China; and U-Bicycle and OV-fiets in
Europe[2]. As of May 2018, more than 1600 bike-sharing
programs were in operation worldwide, providing more
than 18 million bicycles for public use of transport[3]

with China, Italy, United States, Germany, and Spain
being the top-5 countries that use BSSs.

In a typical BSS, there are several stations scattered
in a given region. Each station has a capacity limit
in terms of the number of slots used to hold bikes.
Users make use of the BSS through a pair of activities:
renting a bike from one station and returning the bike
to the same or another station. Because of variations
in bike demand, imbalance may occur in bike usage
at stations over spatial and temporal domains. Figure
1 shows bike rent and return distributions in NYC
across two domains: spatial (different locations in
Manhattan) and temporal (morning and evening). The
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(a) AM rush hours: 8:00 – 10:00 AM (b) PM rush hours: 5:00 – 7:00 PM

Fig. 1 Users’ demands in morning and evening rush hours
in Manhattan.

usage discrepancies at different stations in the BSS
may result in overflow (full stations that exceed the
station capacity to hold a return bike) or underflow
(empty stations with no bike to rent). Therefore, bike re-
balancing, e.g., moving bikes from an overflow station
to an underflow station is needed (see Fig. 2). Note
that Fig. 2 shows bike re-balancing in a dock BSS.
Overflow/underflow also occurs in dock-less BSSs.
The author in this paper witnessed a phenomenon of
overflow/underflow of a dock-less BSS in Shanghai in
the summer of 2018. This overflow/underflow frequently
occurs at subway entrances with heavy traffic flows at
different time slots of a day (as shown in Fig. 3).

In this paper, we will take a holistic view of addressing
bike re-balancing by looking at four components: system
design, system prediction, system balancing, and trip
advisor. The focus is on system balancing, addressing
the issue of overflow/underflow. Discussion on the other
three components that are related to system balancing
will also be given. In system balancing, we will consider
two groups of solutions for bike re-balancing: The
first uses tracks for bike re-balancing and the other
recruits workers with incentive. We will discuss various

Overflow Underflow

Bike re-balancing

Fig. 2 Bike re-balancing between an overflow station and an
underflow station.

Fig. 3 Overflow in a dock-less BSS in Shanghai (June 2018).

algorithmic solutions related to bike re-balancing. The
focus will be on some open challenges.

The remainder of the paper is organized as follows:
Section 2 discusses some key design issues related to
bike-balancing at each design stage of four components.
Section 3 focuses on bike re-balancing using tracks
and Section 4 studies bike re-balancing by recruiting
workers with incentive. Section 5 discusses extensions
from solutions for one dimensional domain to two
dimensional domains. Section 6 presents some future
directions on challenges and opportunities in BSSs, with
a focus on bike re-balancing. Section 7 discusses the role
of bike sharing in a bigger setting of the transportation
system. Section 8 concludes the paper.

2 Four System Components

We first discuss four components of a BSS, focusing on
issues related to bike re-balancing.

2.1 System design

System design[4–6] includes the selections of the number
of stations, station location, station capacity, and the
number of bikes in circulation. Clearly, with the increase
in the number of stations and their capacity, the need
for bike re-balancing will be reduced. However, such an
increase will incur cost for BSS operators. Therefore,
sensible balance is needed on cost and effect in the
system design phase.

At first glance, system design resembles the classic
facility location problem[7]: It consists of a set of
potential facility sites (i.e., stations in a BSS) and a
set of demand points (i.e., users in a BSS) that must
be serviced. The goal is to pick a subset of facilities
to open (i.e., the number and locations of stations in a
BSS) to minimize the sum of the distance from each
bike demand location to its nearest facility and plus
the total cost of the stations. However, the dynamic of
stations where bikes are returned makes the BSS system
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design more challenging. This is because the capacity
of each station varies even if we can accurately predict
rent locations, as in the classic facility location problem.
Bike re-balancing can be viewed as an external means
to make the service level of a BSS more predictable and
accountable.

2.2 System prediction

System prediction deals with data collection and
prediction of bike demands over spatial and temporal
domains. The prediction process is rather complex.
It involves user mobility modeling[8] and traffic
prediction[9] across both spatial and temporal domains.
To reduce complexity, some researchers used the cluster-
based approach[10], which groups similar stations into
clusters to reduce the computation complexity.

Bike usage prediction deals with not only more
predictable common contextual factors, such as time and
space, but also opportunistic contextual factors, such as
special social and traffic events. Some events propagate
along the physical vicinity (e.g., a special social event at
a physical location) as well as the logical one (through
a social network). In this case, the traffic prediction at
different stations may be correlated. All of these will
bring uncertainty in traffic prediction, making bike re-
balancing more challenging.

2.3 System balancing

System balancing deals with bike re-balancing over both
spatial and temporal domains. One common approach is
to partition the two-dimensional domain into a sequence
of slices of the one-dimensional domain. For example, if
the two-dimensional domain is sliced based on the time,
then each slice deals with only the spatial domain, i.e.,
balancing bikes across the physical space with a fixed
time slot.

System balancing usually has two approaches:
dedicated truck service[11–17] or incentive-based worker
recruitment[18–21]. In dedicated truck service, one or
more trucks are used to move around stations to pick-up
and drop-off bikes at different stations according to their
overflow and underflow situations. In incentive-based
worker recruitment, an incentive mechanism is used to
recruit individual workers to re-balance bikes on a per-
bike basis. One particular interesting model is to recruit
workers from BSS users who are willing to go through a
small detour in their regular bike journey.

2.4 Trip advisor

Trip advisor[22], operated by the BSS operator, can
serve two purposes. On one hand, it provides BSS users

some guidance on the availability of nearby stations for
rent/return. On the other hand, it can also give advice
on route selection to avoid traffic or the distributed trip
selection game among users.

Trip advisor can also suggest bike selection to BSS
users to balance individual bike usage at different
stations[23]. For example, when two bike return stations
are equivalent to a bike user, the trip advisor can
recommend the user to return the bike to the station
with fewer bikes to increase the overall system utility
and enhance the long-term service level[23]. Trip advisor
can also recommend choices that may lead to bike re-
balancing, provided there is little or no deviation from
the optimal choice made for the user.

3 Bike Re-Balancing Through Trucks

In dedicated truck service, one or more trucks are used
to move around stations to pick-up and drop-off bikes
at different stations according to their overflow and
underflow situations. To simplify our discussion, we
assume that one truck is used with a capacity of l at a
particular time slice. A station with Cm (�m) stands
for overflow (underflow) by m slots as shown in Fig.
4. �l 6 m 6 l is always true; otherwise, we can split
a station into multiple adjacent stations in such a way
that �l 6 m 6 l holds for each new station. Overall,
overflow and underflow stations are balanced, i.e., the
total amount of C values equals that of � values.

3.1 Constructing a legitimate Hamiltonian circle

Firstly, a typical solution involves finding a certain
Hamiltonian circle among overflow/underflow stations
as a starting point. One sweep is used to visit each station
to reset each station value to 0 through bike pick-up for a
positive station or bike drop-off for a negative station as
shown in Fig. 4. This problem is more challenging than
the classic Hamiltonian circle problem during the routing
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Fig. 4 A sample bike re-balancing using a truck sweeping
along a given Hamiltonian circle.
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process (i.e., finding a Hamiltonian circle), the truck
itself cannot be negative (the number of bikes carried by
the truck falls below zero) or exceed the truck capacity
(i.e., more than l). For example, if l D 4 in Fig. 4,
then if the truck goes to the station with 3 bikes after
completing its first move with 2 bikes, then 2 + 3 exceeds
the truck capacity, generating an illegitimate route.

Among existing approaches, two methods partition a
given Hamiltonian circle into positive-pieces, negative-
pieces, and zero-pieces. The positive-pieces and
negative-pieces are used alternatively in the visit
sequence to keep the load within the truck capacity.
To identify these pieces, a construction process starts
from a given node, called start node, which can be
either positive or negative node (zero nodes are not
involved), and then connects these pieces following
the clockwise direction of the given Hamiltonian circle
to form a legitimate Hamiltonian circle that satisfies
the truck’s capability constraint. The following is the
construction process that identifies each piece and its
label: If the start node is a positive C (negative �),
follow the circle to find the next station to connect until
the load summation reaches a predefined threshold l 0

(�l 0) or a negative (positive) value. In the former case,
the process is complete and the corresponding piece
is called a positive (negative) piece, and in the latter
case, location is either shifted back one station or the
current station is partitioned into two virtual stations in
such a way that the load summation becomes zero by
connecting one virtual station; such a piece is called
positive zero (negative zero). Positive and negative zero-
pieces can be simply called zero-pieces if their signs do
not play any role in a solution.

3.2 MATCH method

In the method proposed in Ref. [24], called MATCH
here, l 0 is set to l=2. Figure 5a shows such a partition
with s3 as the start node, assuming that l 0 D 3. The
given Hamiltonian circle is then partitioned into positive-
pieces, negative-pieces, and zero-pieces in one sweep.
MATCH performs a minimum-weight perfect matching
between positive-pieces and negative-pieces (zero-pieces
are not included). Here, positive-pieces and negative-
pieces form matching pairs, pi and p0

i for i D 1; 2; 3,
in which the distance of each pair defined is based
on the geographic distance between two closest nodes
(called bridge nodes denoted by �), one each from
the pair. The path is constructed beginning from the
start node and following the given circle. The only

(a) MATCH

(b) GREED

Fig. 5 Constructing a legitimate Hamiltonian circle by
partitioning a given circle into positive-pieces (white),
negative-pieces (dark), and zero-pieces (gray).

constraint is that when a piece is visited, its matching
piece is co-visited at the same time. This is done through
traversing the matching pair using two gateway nodes
on the pair. However, the selected start node may not be
legitimate, as load summation at the truck may become
negative. It is proved that l 0 is defined in such a way that
we can always find a legitimate start node with the same
circle constructed from the random start node.

In Fig. 5a with the initial start node s3, the
visitation sequence generated by MATCH is .s3; s7;

s8; s4; s5; s6; s9; s2; s10; s1; s3/ (the traversal between
matching pairs p3 and p0

3 through two gateways s3

and s7 generates the following visitation order: s3, s7,
s8, s7, s3, and s4. By keeping only first visit record,
we have the following sequence: .s4; s7; s8; s5/). The
number of bikes on the truck (i.e., load summation) after
visiting each station is .1; 0; �2; 0; �1; 0; �3; 0; �3; 0/.
This sequence is not legitimate as it contains negative
values, with �3 being the smallest. A legitimate start
node can be found by shifting the initial start node on
the newly constructed circle from s3 to s1 based on the
smallest value �3 (i.e., shifting back one station on the
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new circle). The resulting sequence becomes .s1; s3;

s7; s8; s4; s5; s6; s9; s2; s10; s1/. The load summation
sequence becomes .3; 4; 3; 1; 3; 2; 3; 0; 3; 0/, which is
clearly legitimate with all non-negative values and
all values being less than l : the truck capacity. The
complexity of MATCH is O.n3/, where n is the number
of stations. MATCH guarantees an approximation ratio
of 6.5[24], compared to the optimal solution to a problem
that is NP-hard.

3.3 GREED method

In another method in Ref. [25], called GREED here, a
different approach is used to connect pieces, where l 0

is set to l .D 6/ in Fig. 5b. The legitimate Hamiltonian
circle starts with any positive station as a start node
which will generate either a positive piece or a positive
zero piece. If a positive piece is generated, the process
finds the closest negative station along the circle to
connect. If that negative station ends up with a negative
piece, the process will find the closest positive station
and the same process continues. If the negative station
ends up with a negative zero piece, the closest negative
station is sought again. This process continues by
alternating positive-pieces, and negative-pieces. Note
that positive zero-pieces will not change the load
summation of the truck. In the above process, once a
piece is visited, it is removed from the circle so that the
remaining non-visited stations still form a Hamiltonian
circle with an updated adjacency relationship. For
example, once p1 finds the matching negative piece p3 in
Fig. 5b, both p1 and p3 are removed and the remaining
pieces p2 and p4 are then connected forming a positive
zero piece with start node s3. The visiting sequence
generated by GREED is .s1; s2; s5; s6; s7; s8; s3; s4; s9;

s10; s1/. The load summation sequence is .3; 6; 5;

6; 5; 3; 4; 6; 3; 0/. The complexity of GREED is lower,
which is O.n2/. However, the algorithm does not
guarantee any approximation ratio. To find a good start
node, multiple start nodes can be used and then the best
start node is selected based on the GREED result.

3.4 HYBRID method

Comparing MATCH with GREED, it is shown in
Ref. [25] that MATCH outperforms GREED in a
relatively sparse mode (i.e., a small number of stations)
as its primary factor or a small geographical area as its
secondary factor while GREED is better in a dense mode
or a large geographical area. One possible extension is
to combine MATCH and GREED to form a two-level

hybrid solution. In general, a BSS may not have a
uniform distribution of stations. Instead, stations in
a dense population area are clustered. In the hybrid
solution, called HYBRID, MATCH is used for intra-
cluster bike re-balancing and GREED is used for inter-
cluster bike-balancing.

Figure 6 show a sample distribution of dock stations in
Beijing[26] and Table 1 shows a performance comparison
among MATCH, GREED, and HYBRID based on the
real set of data (i.e., distribution of bike stations in Fig. 6).
In Fig. 6, it is shown that stations in the center city
are unevenly distributed among roughly five clustered
centers. When including the suburbs, there are seven
clusters. The map is first divided by a mesh. The size of
each square is 0.4 km (longitude) � 0.3 km (latitude).
The threshold is set as 1, i.e., a grid has a station if there
is at least one station. As a result, 550 stations are found.
A sparse sampled map is generated with a mesh size
of 0:8 km�0:6 km and a threshold of 4. As a result, 76
stations are included in the sparse sampled dataset. The
capacity of the truck is set as 20. The re-balancing
target of each station is randomly set by following
Poisson distribution with a mean of 7. The sign of
the re-balancing target (C or �) is randomly decided
with equal possibility. The last station’s target is set to
guarantee that the sum of targets among all stations is 0.

Table 1 shows the results in terms of total travel
distance of bike re-balancing, one for center-city
(Beijing) and the other for the whole city, by including
both center city and its suburbs. The simulation results
show that HYBRID has 57.3% (6.48% for sparse

Beijing City Suburb

Fig. 6 A sample distribution of dock stations in Beijing[26].

Table 1 Results in terms of total travel distance among
MATCH, GREED, and HYBRID based on the real set of data
in Fig. 6.

(km)
Area MATCH GREED HYBRID
City 2.064 1.108 0.881

City + suburb 3.016 1.923 1.080
City (sparse) 1.435 1.781 1.342

City + suburb (sparse) 2.597 2.575 1.827
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sampled map) and 20.5% (24.6% for sparse sampled
map) less distance in the center city and 64.2% (29.6%
for sparse sampled map) and 43.8% (29.0% for sparse
sampled map) less distance in the entire city compared
to MATCH and GREED, respectively. The number in
each entry represents the average travel distance in km
for per re-balancing bike, where the total number of re-
balancing bikes is a summation of absolute values in
all re-balancing targets divided by 2. Obviously, travel
distance is relatively large for cases with suburbs, and
more trucks should be used to cover different geographic
regions, as will be discussed in Section 6.

4 Bike Re-Balancing Through Workers

Bike re-balancing through workers with incentive
focuses on recruiting individual workers, who can be
BSS users. As each worker can only move one bike at a
time, we use C=� sign to denote an overflow/underflow
spot (for dock-less BSS) or a station (for dock BSS).
Usually, the BBS operator gives monetary incentives for
workers. Here, we focus on approaches where workers
are BSS users who plan to use bikes on their journey
anyway and are willing to take a detour with either
monetary reward or one or multiple free-rides. We use u

and u0 to represent a user’s current location and his/her
intended destination.

4.1 Incentive method for individual workers

In Ref. [21], a monetary incentive approach is studied
in a dock-less BSS (and also can be used in a dock
BSS), where a bike user is asked to walk to a location
that is within d distance from u. The monetary award
is based on the walking distance from u, with the
amount as either a linear or quadratic function of the
distance. The following global optimization program is
formulated: Given a fixed amount of total budget and
bike demands over spatial and temporal domains, how
do we set the amount of the monetary award for each
location to maximize the service level of the system? It is
assumed that for each walking distance upper bounded
by d (as shown in Fig. 7a), users set their monetary
award threshold for each distance in advance. Users
will accept the request if the monetary award meets the
threshold. The pricing distribution is calculated through
reinforcement learning based on past data. This approach
can be extended by providing incentives at both source
and destination[27] as shown in Fig. 7b, as long as the
total walking distance at source (˛) and destination
(d � ˛) is bounded by d , where ˛ is a tunable parameter.

(a) Source incentive

(b) Source and destination incentive

Fig. 7 Incentive worker recruitment with monetary
rewards based on walking distance.

In fact, this extension is more powerful than the original
approach. Instead of solving the overflow problem as
in Ref. [21], the extension basically recruits a worker to
solve a pair of overflow and underflow spots. The only
difference is that in the extension reinforcement learning,
the pricing at both source and destination needs to be
considered.

4.2 Incentive method for a group of workers

In Ref. [28], a more general incentive approach is
studied to address bike re-balancing among overflow
and underflow stations in a dock BSS (and also in a
dock-less BSS). Here, the approach deals with multiple
workers through matching, rather than each individual
worker assignment. Figure 8 shows a simple example
with one user, two overflow stations, and two underflow
stations. The user walks from u to rent a bike at
one of two overflow stations, returns at one of two
underflow stations, and finally walks to his/her intended
destination u0. Obviously detour occurs, compared to a
straight line between u and u0, i.e., the shortest distance
between u and u0. In this case, there are four possible
choices for the user: .s1; s3/, .s1; s4/, .s2; s3/, and
.s2; s4/. When there are multiple users, the problem
becomes 3-dimensional perfect matching among users,

+

+

−

−
u u′

s1 s3

s2 s4

Fig. 8 Incentive worker recruitment through minimizing
total detour using 3-dimensional perfect matching.
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overflow stations, and underflow stations. For example,
if there are two users: u1 and u2, the number of
possible matching becomes 23 D 8. In general, multiple-
dimensional perfect matching is an NP-hard problem. In
Ref. [28], a two-round of the perfect bipartite matching is
used to approximate the 3-dimensional perfect matching
problem with a 3-approximation using the geometric
properties of locations. This approximation is done by
first matching overflow and underflow stations and then
matching users to overflow-underflow pairs.

5 Complexity in the Spatial and Temporal
Domains

So far, our discussion has focused on one slice that
deals with the spatial domain only. Adding the temporal
domain will significantly increase the complexity of the
problem.

5.1 Time-space view

Let us first take a time-space view of the system from
the classic distributed computer system[29]. Figure 9
shows such a view with three stations. Each station
has its value (i.e., the number of bikes) as its local
state. A bike rented from a station and the corresponding
bike returned to another station complete a bike journey,
even if the bike can be returned to the same station.
The classic distributed computer system modeling and
analysis can still be applied here, where global state
(total number of bikes) equals the summation of local
stations (all bikes available for rent), plus bikes in
transit (on road by normal bike users, on trucks, or
being ridden by workers for bike re-balancing). Our
bike re-balancing scheme can also be represented using
a similar view. As shown in Fig. 9, each slanted arrow
line corresponds to a bike re-balancing event between
two stations. Each slice corresponds to a time period
represented by a vertical dotted line. Ideally, each re-
balancing event does not go across two slices (called a
“cut” in the distributed computing community). If we set

t t + 1

Time

s1

s2

s3

Fig. 9 A time-space view of bike re-balancing with slanted
arrow lines representing bike re-balancing activities between
pairs of stations.

the re-balancing activity granularity to a relatively long
period, e.g., one or two hours, each re-balancing effort
can be done within that time frame for a relatively small
region under the study period. Thus, the cut issue can be
mitigated and hence ignored.

5.2 Reducing re-balancing frequency through look
ahead

One main challenge in extending the single slice solution
to cover multiple slices lies in the global determination of
re-balancing frequency and the corresponding target for
each re-balancing. The idea used here is to reduce the re-
balancing frequency. For example, setting frequency to k

means that re-balancing is applied at every k slices. That
is, the system conducts re-balancing in the current slice,
but with the k-slice view (called k-hop look ahead), such
that once the target is set and done in the current slice,
it can last at least k slices; otherwise, the frequency k

needs to be reduced either uniformly for all slices or at
each re-balancing activity. However, this one-policy-fits-
all approach does not work well since demand varies
across time and space. Another approach called greedily
look-ahead, which is inspired by a method in Ref. [11],
uses look-ahead data to make the best target move at the
current slice such that the target configuration will last
the longest in the number of slices, given that all future
data are known. This greedily look-ahead approach may
still be outperformed in some cases as shown later.
Note that the complexity of both k-hop look ahead and
greedily look ahead is O.kn log n/.

Figure 10a illustrates why in k-hop look ahead, it is
better in general to have a larger k, even if all moves
are done at the current slice. We assume that all new
updates (i.e., load re-balancing) are completed in the
current slice before bike rent (�) and bike return (C)
occur at the end of the current slice. Rent and return
activities are represented by a short outward vertical
arrow line for bike rent and a short inward vertical arrow
line for bike return in Fig. 10. Suppose the initial state
of three stations is (s1; s2; s3/ D .1; 2; 3/. The current
activity vector at Slice t is .�2, 0, 0/, meaning 2 bikes
will be rented out at Station s1 at the end of Slice t .
Clearly, either s2 or s3 should move one bike to Station
s1. However, when k D 1 without the look ahead feature,
s3 has the same position as s2 in terms of the priority.
If s3 is selected to move one of its three bikes and the
activity vector at Slice t C1 turns out to be .0, 1, �3/, s2

has to move one of its bikes to s3 at Slice t C 1. When
k D 2 with one slice look ahead, it is clear that it is
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(a) An example of 2-hop look ahead outperforming
1-hop look ahead

t t + 1 t + 2

s1

s2

s3

1

0

1

−1

1

1

+2

−1

−1

−1

1

(b) An example of 1-hop look ahead outperforming greedily look ahead

Fig. 10 Illustration of various look ahead schemes.

better to move one bike from s2 to s1 to save one move.
Look ahead may not always generate a better result.

Figure 10b shows another example using the greedily
look ahead approach, which makes a re-balancing move
at the current slice so that it can last with the maximum
number of slices without re-balancing, given that all
future activity vectors are known a priori. In Fig. 10b,
station state is initially (1, 0, 1), with activity vectors
being (�1; 2; 0), (�1; 0; 0), and (0; �1; �1) for Slices t ,
t C 1, and t C 2, respectively. Using the greedily look
ahead approach, the re-balancing involves moving one
bike from s3 to s1 so that the resulting configuration can
survive two slices. However, at Slice t C 2 with state
(0, 2, 0), s2 has to move at least one bike to s3 to meet
the demand. If we look at only one slice, i.e., k D 1, no
action is needed at Slice t , one bike moves from s2 to s1

at Slice t C 1, and no action is needed at Slice t C 2.

5.3 Extensions to look ahead

To develop more sophisticated greedy solutions, the k in
k-hop look ahead can be dynamically adjusted. When
the re-balancing at the current slice can only last k0 (< k)
slices, re-balancing is needed after k0. If k is the value
either used in a feasible k-hop look ahead or derived
from the greedily look ahead, we can consider greedily
look and act ahead. The main difference in this approach
is that it can not only look ahead but also act ahead in the
next k slices instead of limiting actions within the current
slice only. In the example of Fig. 10b, the algorithm can

pre-assign actions at future slices, for example, moving
one bike from s2 to s1 for Slice t C 1 when it starts its
view for Slice t . However, the complexity of such an
algorithm will increase since actions at multiple slices
need to be decided jointly with dynamic programming as
a possible solution. More work is needed to gain insights
on solution complexity as well as cost-effective trade-
offs.

6 Challenge and Opportunity

This section studies future challenges and opportunities
associated with BSSs, focusing on bike re-balancing.
Finally, a comparison is drawn between dock and dock-
less BSS in terms of their applications and future
developments.

6.1 Model extensions

So far, the models we have discussed have various
constraints. For example, in Fig. 10 we assume that
all bike re-balancing activities can be done in one slice
without any “cut”. In addition, normal bike usage may
not be completed in one slice (as shown in Fig. 10) with
different global state values after each slice: 3 after Slice
t , 2 after Slice t C 1, and 0 after Slice t C 2. In reality,
there are at least four models that can be constructed
depending on the activity completion time, before or
beyond the current slice, for each bike re-balancing
activity and each normal bike usage activity.

The capacity of trucks and workers will also affect the
availability of bikes at each station when re-balancing
activities go beyond one slice. In fact, such capacity will
affect the value of the global state, making the service
level less predictable from slice to slice. In addition, it is
still open as to how to partition spatial and temporal
domains so that other efficient solutions, other than
slicing, can be explored.

6.2 Scalable design

As the size of a BSS increases in density and spatial
domain, it is natural to study the scalability issue
of different solutions. Solutions based on worker
recruitment are scalable by design, so we focus on
solutions based on the number of trucks used. Results
in Fig. 10 show scalability issues for a large coverage
area and a large number of stations. Figure 11 shows
another simple example to illustrate the challenges in
scalable design. Suppose there are two populated regions
separated by a given distance. Two trucks are used to
individually cover regions. The question is whether to
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(a) Two individual circles

(b) One merged circle

Fig. 11 A simple example to illustrate subtle decisions with
clustering.

keep two regions separate with two trucks or merge two
regions with one truck. Obviously, the former will save
travel distance, resulting in a larger service frequency to
stations, while the latter will reduce the cost (of using
only one truck). This problem has been addressed in
Ref. [30] on an Autonomous Underwater Vehicle (AUV)
application under the ocean for sensor data collection
applications. The problem in the BSS is newer, with
a different setting and objective, and hence, worthy of
further study.

The partition approach is a viable solution to address
the scalability issue. One approach is based on geometric
partitioning[31], assuming that stations and traffic are
uniformly distributed, and more importantly, rent and
return pairs exhibit locality so that most pairs fall within
individual partition grids. A more effective method is
clustering[32], such as k-means or balanced k-means,
which can deal with non-uniform station distribution and
non-uniform traffic distributions.

6.3 Gaming and incentive among BSS operators
and workers

Game theoretical approaches[33] can be explored,
especially for worker recruitment approaches. In general,
BSS operators and workers form a Stackelberg game,
while homogeneous and heterogeneous workers can
form different sub-games with a Nash equilibrium. In
game theoretical analysis, pricing[20] plays an important
role on gaming analysis, especially the pricing design in
relation to detour distance.

The incentive mechanism is a key in worker
recruitment. Using the problem in Ref. [28] as an
example as illustrated in Section IV B, Fig. 12 shows
how the solution for detour minimization on one slice

Fig. 12 Reinforcement incentive through slice iterations.

can be extended to multiple slices. Note that the ability
of detour minimization also depends on the number
of available workers. The more available workers, the
more likely it is for the BSS operator to find suitable
matches between workers and stations so that detour
distance can be further reduced. Given a fixed size of
the worker pool W , we assume that each worker has
a probability P of joining the crowdsourcing activity
for bike re-balancing. If it is assumed that each bike
re-balancing activity will receive a fixed monetary or
non-monetary (e.g., one or multiple free rides) award for
each worker, then detour distance will play an important
role in a user’s willingness to participate (represented
by P ). That is, the P value changes over the rounds
(moving slices along the time in Fig. 12), and a small
detour at Slice t will increase the value P for Slice t C1,
which in turn increases the worker pool P � jW j at Slice
t C 1. A larger worker pool will generate a better set
of matchings between workers and stations, resulting
in smaller detours at Slice t C 1. Further investigation
of the impact of this reinforcement incentive is another
direction for future research.

6.4 Algorithmic solutions vs. Machine Learning
(ML) with data analytic

This paper focuses on class algorithmic solutions. The
main purpose is to gain more insights from these
solutions. There are many other approaches, for example,
various optimization approaches, including integer and
linear programming[14, 16, 34, 35], which are usually more
powerful; and machine learning[11, 13, 21], which is more
effective with the support of a large dataset.

One future challenge is how to integrate merits
from different approaches. Currently, the ML approach
is widely used in many subareas of bike re-
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balancing, including the determination of pricing in
the incentive approaches[18, 21], user mobility, and traffic
prediction[8, 9]. Many ML approaches use a blackbox
approach without providing much insights that can
benefit future design. One possible direction is to apply
algorithmic and ML co-design to address a complex
problem. For example, ML can be used for future data
and traffic prediction while algorithmic solutions are
applied using data and traffic information.

Another important issue is the robustness of a solution.
By robustness, we mean the degree of deviation from
the intended performance when there is perturbation
of data. One solution can be low efficient but robust,
while another solution is efficient but non-robust.
Quantification of robustness for both algorithmic and ML
solutions for bike re-balancing remains under-exploited,
which deserves more research.

6.5 Integration of different system components

There are three other system components that affect the
performance of bike re-balancing in addition to system
balancing. They are system design, system prediction,
and trip advisor. We will discuss design issues that affect
the performance of bike re-balancing.

System design includes deciding the location and
capacity of stations (which usually indirectly determine
the total number of bikes in circulation) in addition
to the number of stations in a dock BSS. The number
and capacity of stations as well as the number of bikes
determine the cost of a BSS. More stations, capacity
per station, and bikes will reduce the frequency of
bike re-balancing. However, it will increase the cost
of maintaining stations and bikes. Having too many
stations without increasing the number of bikes will also
inadvertently increase the frequency of underflow per
station. Given a fixed amount of expenditure, there is
a trade-off among the cost on stations, bikes, and bike
re-balancing.

System prediction clearly plays a key role in
system design as well as system balancing. Almost all
algorithmic and ML approaches rely on data available
through either data collection or data predictions. The
effectiveness of bike re-balancing depends on the
accuracy of prediction. For example, a typical look
ahead solution uses look ahead data that may or may not
be accurate. In general, the quality of data deteriorates
over time, especially ones used for multi-slice look
ahead. The question is how to incorporate this data
accuracy decay in the algorithmic design. The discount

factor used in a typical reinforcement learning[21] can
be applied. As data collection and prediction both incur
cost, it is important to know the data granularity for each
solution to achieve a good balance between its cost and
effectiveness.

Trip advisor can act as an assistant to bike re-balancing
with little or no service level degradation for the user.
For example, when a user can pick up or return a
bike from two equivalent sites, the advisor can make
a judicial decision for the user that will benefit the BSS
performance, e.g., rent a bike from an overflow station
and return a bike to the underflow station. However,
giving the user advice that may hurt the user’s interest
is more subtle, as it involves moral and legal issues,
unless some kind of incentive is applied to compensate
the user’s loss.

6.6 Dock vs. dock-less BSS

Currently, both dock and dock-less BSSs exist in
different urban cities of various countries. The US
has more dock BSSs while China has mostly of dock-
less BSSs. It is clear that the dock-less BSS is more
convenient to the user since it can pick up and drop
off at any location, provided that a sufficient number
of bikes are available. However, the dock-less BSS
creates various challenges to BSS operators in terms
of management and maintenance. For example, it is
reported in Ref. [36] that the bike-share oversupplies in
China, resulting in huge piles of abandoned and broken
bicycles (similar to the one shown in Fig. 3).

Here we focus on technical issues related to the co-
existence of BSSs: dock and dock-less. One possible
collaboration occurs among different BSS operators. For
example, one truck can be used for bike re-balancing
among different companies. This problem poses some
unique challenges as each company owns different
stations. Bikes from one company must be returned to
the station of the same company. However, the truck
can serve multiple companies and the corresponding
Hamiltonian circle would consist of stations from
different companies. Truck load can be shared among
bikes from different companies as well.

7 A Bigger Picture

This section starts with a new classification of the
transportation system and provides personal predictions
on some future trends. We also include transportation
systems with the goal of shared mobility, which includes
all modes of travel that offer short-term access to
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transportation on an on-needed basis[37].

7.1 Classification

We first classify the transportation system into active and
passive modes. An active system, such as a bus, taxi, or
autonomous shuttle, moves around even when there is
no demand from a user. The movement trajectory can
be either fixed (such as a subway, bus, or autonomous
shuttle[38]), on-demand (such as taxi for ride-hailing and
Uber and Lyft for ride-sharing), or hybrid. There exist
several hybrid modes, either in the actual system or in
the research project. One mode is a restricted version
of on-demand movement where the vehicle travels only
along a subset of routes, e.g., every other street and
avenue in Manhattan to save overall travelling distance
at the expense of the user who may have to travel one
street/avenue at both source and destination. Another
mode is a flexible version of a bus where the vehicle
follows a fixed route with controlled deviation based on
demand[39]. A passive system, such as a ZipCar, bike,
or scooter, remains motionless when there is no demand
from a user. In a typical passive system, the vehicle is
operated by the user, with and without power, such as
e-scooters vs. regular scooters and motorcycles/e-bikes
vs. bicycles.

The BSS belongs to the passive mode of the
transportation system. The ZipCar, bike, and scooter
systems are similar in terms of their functions. Therefore,
re-balancing issues and their solutions discussed in this
paper also apply to both ZipCar and scooters. However,
while bikes and scooters address the first/last mile issue,
the ZipCar solves the first/last ten-mile issue. These
issues are different in scale and quantity.

7.2 Future of BSSs

Because of various government regulations, various
forms of transportation systems aiming for shared
mobility exist. For example, many cities put caps
on the number of total vehicles/bikes that a company
can provide. Several Chinese cities have implemented
license plate control. The chance is high for BSS to
last for a long time. Traditional bikes are likely to be
replaced by small-sized scooters (which are popular in
Germany and France). Man-powered bikes and scooters
will be superseded by e-bikes or two-wheeled e-scooters.
Therefore, future BSSs may well be called Scooter-
Sharing Systems (SSSs). In the case of dock and dock-
less BBSs, dock-less BSSs have largely disappeared
in some cities in the US, including Washington, DC.
They are still going strong in the bicycle kingdom:

China. But ofo, the largest dock-less BSS in China,
has recently suffered financially due to challenges in
bike management and fierce competition[40].

In order for BSSs to flourish long-term, the
following two issues need to be addressed: (1) shared
responsibility; (2) safety and regulation. It is important
that the user acts responsibly when placing a bike in a
dock-less BSS. The question is how to encourage people
to share responsibility. One possible solution is using a
system that maintains personal credit scores. Higher
ratings correspond to preferential access to services
while lower ratings entail higher costs or blocked access
to services. When BSSs are used together with other
transportation systems, safety is an important issue. In
the current system, there are three different lanes on a
road: sidewalk, bike lanes, and car lanes. Some issues
have been reported, such as when scooter riders block the
sidewalk with parked scooters and ride on the sidewalk
rather than using bike lanes. The first fatality involving
an e-scooter was reported in September 2018[41]. As
BSS companies scale up their service to mini-cars, like
the ones in MIT’s CityCar project[42](see Fig. 13), will a
fold-able mini-car be considered as a regular car in a car
lane or a bike in the bike lane, or will new regulation be
introduced for such mini-cars? These problems certainly
give food for thought in the future development of BSSs.

Looking forward, both active and passive modes of
the transportation system will likely co-exist for a long
period of time. Among the passive mode, BSSs in
form of ZipCar, bikes, or scooters will certainly play
an important role. The approaches discussed in this
paper on re-balancing will still be relevant in managing
such systems.

8 Conclusion

In this paper, we discussed various solutions to improve
bike re-balancing in both dock and dock-less bike

Fig. 13 Vision of folded cars in the MIT’s CityCar
project[42].
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sharing systems. We focused on algorithmic solutions
to problems that span both time and space. Similar to
the classic time-space view of a distributed computing
system with a set of communicating processes, a BSS
can be represented as a set of stations with a given
capacity. Bike re-balancing among stations can be
represented as a slanted arrow line from one station
to another station, similar to process communication
in a distributed computing system. Several unique
challenges in truck-based and worker-based solutions
were examined, with discussion of various solutions
and some open problems. Finally, we discussed several
challenges and opportunities associated with bike re-
balancing, including scalable design, gaming, incentive
among BSS operators and workers, algorithmic solutions
vs. machine learning with data analytic, integration of
different system components, and dock vs. dock-less
BSSs.
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