
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 05/13 pp604–613
DOI: 10 .26599 /TST.2019 .9010068
Volume 25, Number 5, October 2020

C The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

A Memory-Related Vulnerability Detection Approach Based
on Vulnerability Features

Jinchang Hu, Jinfu Chen�, Lin Zhang, Yisong Liu, Qihao Bao, Hilary Ackah-Arthur, and Chi Zhang

Abstract: Developing secure software systems is a major challenge in the software industry due to errors or

weaknesses that bring vulnerabilities to the software system. To address this challenge, researchers often use the

source code features of vulnerabilities to improve vulnerability detection. Notwithstanding the success achieved by

these techniques, the existing studies mainly focus on the conceptual description without an accurate definition of

vulnerability features. In this study, we introduce a novel and efficient Memory-Related Vulnerability Detection

Approach using Vulnerability Features (MRVDAVF). Our framework uses three distinct strategies to improve

vulnerability detection. In the first stage, we introduce an improved Control Flow Graph (CFG) and Pointer-related

Control Flow Graph (PCFG) to describe the features of some common vulnerabilities, including memory leak, double-

free, and use-after-free. Afterward, two algorithms, namely Vulnerability Judging algorithm based on Vulnerability

Feature (VJVF) and Feature Judging (FJ) algorithm, are employed to detect memory-related vulnerabilities. Finally,

the proposed model is validated using three test cases obtained from Juliet Test Suite. The experimental results

show that the proposed approach is feasible and effective.

Key words: vulnerability feature; Control Flow Graph (CFG); Memory Leak (ML); Double-Free (DF); Use-After-Free (UAF)

1 Introduction

Recent years have witnessed a significant interest
in vulnerability analysis from different perspectives,
such as vulnerability prediction, classification, and
vulnerability detection based on data collected from
open-source repositories. Generally, the detection-
based approaches rely on source-code features for this
detection[1, 2]. Currently, some progress has been made
with regards to the research on software vulnerabilities,
but the research on software vulnerability features or
characteristics is still limited. Previous studies mainly

� Jinchang Hu, Jinfu Chen, Lin Zhang, Yisong Liu, Qihao
Bao, Hilary Ackah-Arthur, and Chi Zhang are with the
School of Computer Science and Communication Engineering,
Jiangsu University, Zhenjiang 212013, China. E-mail:
2211708037@stmail.ujs.edu.cn; jinfuchen@ujs.edu.cn;
1228175948@qq.com; liuyisong@ujs.edu.cn; qihaobao@
stmail.ujs.edu.cn; hilaryaa@ujs.edu.cn; 2211708035@stmail.
ujs.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2019-10-24; accepted: 2019-11-05

focus on the conceptual description[2] of vulnerability
without an accurate definition of vulnerability feature.
In addition, there are limited studies on the formal
description of vulnerability features. Memory leak[3],
double-free[4], and use-after-free[4, 5] are closely related
to the use of dynamic memory, and are the major
causes of vulnerabilities. The study on vulnerability
features will promote the research on the prevention
and detection of vulnerabilities. To further improve the
body of the literature on vulnerability analysis, this
study introduces a novel and efficient Memory-Related
Vulnerability Detection Approach using Vulnerability
Features (MRVDAVF).

Our framework employs three distinct strategies
based on vulnerability features to improve vulnerability
detection. In the first stage, we introduce an
improved Control Flow Graph (CFG) and Pointer-
related Control Flow Graph (PCFG) to describe the
features of memory leak, double-free, and use-after-
free vulnerabilities. Next, two algorithms, namely

Jinchang Hu et al.: A Memory-Related Vulnerability Detection Approach Based on Vulnerability Features 605

Vulnerability Judging algorithm based on Vulnerability
Feature (VJVF) algorithm and Feature Judging (FJ)
algorithm, are utilized to detect memory-related
vulnerabilities. Furthermore, we benchmark the model
against four vulnerability detection tools, namely
MRVDAVF, cppcheck[6], flawfinder[7], and splint[8, 9].
The main contributions of this paper are as follows.

(1) We conducted a meta-data analysis of memory-
related vulnerabilities to determine the characteristics
of memory leak, double-free, and use-after-free
vulnerabilities.

(2) We propose an improved CFG – PCFG model
using vulnerability features to improve vulnerability
feature definition.

(3) We propose an efficient and effective vulnerability
detection tool called MRVDAVF to detect memory leak,
double-free, and use-after-free vulnerabilities.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 describes the
formalization of vulnerability feature. Section 4 details
the vulnerability detection framework of MRVDAVF.
Section 5 reports the experimental analysis. Finally,
Section 6 provides a conclusion to this paper.

2 Related Work

The research on software vulnerability mainly focuses on
the causes, classification, and detection of vulnerabilities.
There is little authoritative research on vulnerability
feature definition and feature formalization. The
representative studies on the features of memory leak,
double-free, and use-after-free vulnerabilities are as
follows.

Caballero et al.[4] pointed out that one important
feature of double-free and use-after-free is that the
occurrence of such vulnerabilities is a result of the
creation and use of dangling pointers; hence, the focus
is the creation of dangling pointers. Yamaguchi et al.[10]

studied the features of memory leak and use-after-
free using control-flow vulnerability description. The
findings show that the proposed model is effective. The
major limitation of their study is that the technique
mainly focuses on exploiting vulnerability features
to detect vulnerabilities based on graph traversal;
however, the description of vulnerability features
is not detailed enough. Zeng et al.[11] studied the
features of memory-related vulnerabilities, including
memory leak and use-after-free. They designed a
detection method for memory-related vulnerabilities
based on memory information management and memory

block lifecycle. Their method makes good use of the
features of memory information for the memory-related
vulnerabilities. Nevertheless, the vulnerability features
were not formalized. Wang et al.[12] formally defined the
features of software vulnerabilities, which include the
initial vulnerability node set, state space, vulnerability
syntax rule set, and pre- and post-determination
conditions. However, their description of vulnerability
features is relatively general. Liu et al.[13] defined a
formal description method for the semantic features of
memory leak vulnerabilities and defined syntax detection
rules based on the formal features, but their method
can only describe memory leak formally. Han et al.[14]

studied the features of use-after-free and showed that the
feature of use-after-free is allocating memory, releasing
and using the released memory in the program, and
these three operations appear in order. However, the
vulnerability feature described in their study is not
formalized in depth.

Generally, great achievements have been made in the
research on the features of memory leak, double-free,
and use-after-free, but the existing research lacks an
authoritative method to define and describe the features
of the various vulnerabilities. Therefore, analyzing
the vulnerability features in-depth and formalizing the
definition and description of a vulnerability feature
are of great significance, as this can further promote
vulnerability detection.

3 Vulnerability Feature Formalization

The feature of software vulnerability is the special
quality that can distinguish one kind of software
vulnerability from others. The unified definition and
formal description of a software vulnerability feature
will promote vulnerability model construction and
vulnerability detection.

3.1 Definition of vulnerability feature

Software vulnerabilities are hidden in the source code
of the software. Although software vulnerabilities
have various types and forms, they often have lexical
features, syntax features, and semantic features from
the viewpoint of the source code. Taking the program
code in Fig. 1 as an example, if the parameter x

with the value of 1 is passed to the function test (), a
double-free vulnerability can occur. In Fig. 1, pointer
variables (such as pointer variable “data” declared in
Line 3), malloc function (Line 4), and free function
(Lines 8 and 10) constitute the lexical features of

606 Tsinghua Science and Technology, October 2020, 25(5): 604–613

1. int test (int x) /* custom functions: test() */

2. {

3. char * data;

4. data = (char *)malloc(100*sizeof(char));

5. if (x ==1)

6. {

7. data=&x;

8. free(data);

9. }

10. free(data);

11. return 0;

12. }

Fig. 1 Example program code.

vulnerability, which are named as vulnerability risk
factors � in this paper. The pointer definition statement
(Line 3), the memory allocation statement (Line 4),
and the memory release statement (Lines 8 and 10)
are syntax features of vulnerabilities, which are called
vulnerability-related risk nodes N in this paper. The
dependencies on memory allocation, memory release,
and pointer definition constitute the semantic features
of vulnerability, which are called vulnerability-related
constraints C in this paper. Therefore, the vulnerability
feature of a program can always be described based on
lexical, syntax, and semantic perspectives.

Definition 1 defines vulnerability feature � for three
vulnerabilities: memory leak, double-free, and use-after-
free.

Definition 1 Vulnerability Feature ��� : �.Vul-
Type/ D fN; C g. VulType represents the vulnerability
type, N represents the vulnerability-related risk
nodes, and N D fN1; N2; : : : ; Nig; i D 0; 1; 2; : : : : For
a program Prog, we call all program statements
containing vulnerability risk factors � as vulnerability-
related risk nodes N: C is a set of vulnerability-related
constraints, which represents the constraints among
elements in vulnerability-related nodes N: C D C1

jjC2jj � � � jjCj jj � � � ; j D 0; 1; 2; : : : : That is, the feature
of vulnerability may include multiple vulnerability-
related constraints.

3.2 PCFG

At present, researchers worldwide usually design
specific vulnerability detection algorithms to detect
memory-related vulnerabilities based on the CFG[15, 16]

of the program. The CFG was first proposed by Frances
E. Allen in 1970. It shows the control-flow information
of the program in the form of a graph. Each node
in a CFG corresponds to a statement in the program.
The deficiency of the CFG is that the information

contained in the graph is limited, and consequently,
the vulnerability detection algorithm is not optimally
implemented. This paper proposes an improved CFG
called PCFG. While CFG contains nodes of program
statements, PCFG only contains the nodes of pointer
definition, pointer access, and memory allocation and
release, as well as related nodes, which can ensure the
complete structure of the program. Each node in a PCFG
graph has a feature property

Definition 2 PCFG: PCFG = .N; E; Entry; Exit/:
Here, N is a set of nodes, and 8n 2 N , n D .id; ln;

nextn id; nf/, where id denotes the number of Node n in
the PCFG, ln denotes the line number of Node n in the
source program, nextn id denotes the id of the next node
in the PCFG that n points to, and nf denotes the feature
of the node that stores the pointers and feature operations
involved. Moreover, E is a set of edges, and it is used
to represent the pointing relation between nodes. For
example, hni ; nj i indicates that there is a control flow
from ni to nj . Entry is the entry node of PCFG, and Exit
is the exit node of PCFG.

Definition 3 Executable Path (Path): In PCFG, if
a program path is a sequence of statements represented
as hn0; n1; n2; : : : ; nmi, and it satisfies .ni�1; ni / 2 E;

where i D 1; 2; : : : ; m; then this program path can be
called an executable path of PCFG.

Definition 4 Data Dependency (DataDep): For
any two nodes nx and ny of PCFG, if there is an
executable path from nx to ny , and there is a variable
var defined in nx and used in ny , where var is not
redefined anywhere else in the path from nx to ny , it
is said that ny is data-dependent on nx and is denoted as
DataDep.nx; ny ; var/.

Definition 5 Successor Node: For any two nodes nx

and ny of PCFG, if there is an executable path from nx

to ny , it is said that ny is the successor node of nx , and
their relationship is denoted as Suc.nx; ny/.

3.3 Formalization of vulnerability features

3.3.1 Related definition
The heap memory can be dynamically allocated for a
program if necessary when the program is running. A
programmer can request a certain size of memory from
the heap by calling the corresponding function to release
memory after usage; otherwise, the allocated memory
would be leaked. Definitions 6 –10 give the elements
needed for vulnerability feature formalization.

Definition 6 DefPointerVariable(pv): DefPointer-
Variable(pv) is used for the declaration or definition of a

Jinchang Hu et al.: A Memory-Related Vulnerability Detection Approach Based on Vulnerability Features 607

pointer variable pv, abbreviated as DPV(pv).
Definition 7 MemoryMallocFunction(pv): Memo-

ryMallocFunction(pv) is used to represent the memory
allocation function, abbreviated as MMF(pv). Common
memory allocation functions include malloc, calloc, and
realloc of C programming language, and new, new [] of
C++ programming language.

Definition 8 MemoryFreeFunction(pv): Memory-
FreeFunction is used to represent the memory release
function, abbreviated as MFF(pv). Common memory
release functions include free of C programming
language, delete, and delete [] of C++ programming
language. In this paper, MMF(pv)/MFF(pv) is used
to represent the match of the memory allocation and
release functions and MMF(pv)/*MFF(pv) is used to
represent the mismatch of the memory allocation and
release functions.

Definition 9 UsePointerVariable(pv): UsePointer-
Variable(pv) is used to denote the use of pointer variable
pv, abbreviated as UPV(pv).

Definition 10 Has(n, Operation/Function): Has(n,
Operation/Function) denotes that the current node n

contains certain defined operations or functions. The
operations include DPV(pv), UPV(pv), MMF(pv),
and MFF(pv). For example, .9 n 2 Prog/ ^ Has.n;

DPV(pv)/ indicates that a pointer variable pv is defined
in a node n of a program Prog.

3.3.2 Memory leak
Memory Leak (ML) (CWE-401)[3, 17, 18] refers to the
situation where a part of the heap memory allocated to a
program is not released until the program ends, resulting
in a reduction of system memory. Memory leak may
eventually cause the program to run slowly or even lead
to the collapse of the computer system. According to the
definition of vulnerability feature, the feature of memory
leak is �.ML/ D fN; C g. For memory leak, the specific
formal descriptions of vulnerability-related risk nodes N

and vulnerability feature constraint C are given below.
(1) N D fN DPV; N MMF; N MFFg; N MFF D fn j .9n 2

Prog; 9pv 2 Prog/
V

Has.n; MFF(pv)/g.
Interpretation: N includes all nodes of N DPV,

N MMF, and N MFF. N DPV includes all the nodes that
declare or define the pointer variables, N MMF includes
all the nodes that allocate memory for pointer variables,
and N MFF includes all the nodes that release the
allocated memory to which their pointer variables point.

(2) C D C1jjC2jjC3.
(a) Unreleased Allocated Memory: C1 D .9pv 2

Prog/
V

..9ni ; nj 2Prog/
V

Has.ni ; DPV.pv//
V

Has.nj ;

MMF(pv)/
V

Suc.ni ; nj /
V

DataDep.ni ; nj ; pv//
V

:

..9nk 2 Prog/
V

Has.nk; MFF.pv//
V

Suc.nj ; nk/
V

DataDep.ni ; nk; pv//.
Interpretation: The constraint C1 represents a

situation where in an executable path, a pointer variable
pv is defined in ni , and then the program allocates
memory for pv in nj (nj is the successor node of ni

and nj is data-dependent on ni). However, there is no
node that releases the allocated memory that pv points
to until the program ends.

(b) Pointer Reassigning: C2 D .9pv 2 Prog/
V

..9ni ; nj 2Prog/
V

Has.ni ; DPV(pv)/
V

Has.nj ;MMF
.pv//

V
Suc.ni ; nj /

V
DataDep.ni ; nj ; pv//

V
..9nk 2

Prog/
V

Has.nk; MMF(pv)/
V

Suc.nj ; nk/
V

DataDep
.ni ; nk; pv//.

Interpretation: The constraint C2 represents a
situation where in an executable path, a pointer variable
pv is defined in ni , and then the program allocates
memory for pv in nj (nj is the successor node of ni

and nj is data-dependent on ni). However, the program
reallocates memory for pv in a node nk (nk is the
successor node of nj and nk is data-dependent on ni)
of the program instead of releasing the initial allocated
memory that pv points to, so the initial allocated memory
that pv points to would be leaked.

(c) Mismatched Memory Allocation and Release:
C3 D .9path 2 Prog/

V
.9pv 2 path/

V
..9ni ; nj 2

path/
V

Has.ni ; DPV(pv)/
V

Has.nj ; MMF(pv))
V

Suc
.ni ; nj /

V
DataDep.ni ; nj ; pv//

V
..9nk 2 path/

V
Has

.nk; �MFF(pv)/
V

Suc.nj ; nk/
V

DataDep.ni ; nk; pv//.
Interpretation: The constraint C3 represents a

situation where in an executable path, a pointer variable
pv is defined in ni , and then the program allocates
memory for pv in nj (nj is the successor node of ni

and nj is data-dependent on ni), and finally, the memory
release function is called to release the allocated memory
pointed by pv in node nk (nk is the successor node
of nj and nk is data-dependent on ni). However, the
memory release function does not match the memory
allocation function; thus, the allocated memory pointed
by pv would be leaked.

3.3.3 Double-free
Double-Free (DF) (CWE-415)[4, 19] refers to the situation
where in the process of running a program, the allocated
memory pointed by a pointer is released, but the release
function to the pointer is later called again. This causes
a data structure error in the memory management and

608 Tsinghua Science and Technology, October 2020, 25(5): 604–613

eventually leads to unknown defects in the program or
the system. According to the definition of vulnerability
feature, the feature of double-free is �.DF/ D fN; C g.
For double-free, the specific formal descriptions of
vulnerability-related risk nodes N and vulnerability
feature constraint C are given below.

(1) N D fN DPV; N MMF; N MFFg; and N DPV D fn j

.9n2Prog; 9pv2Prog/
V

Has.n; DPV(pv)/g; N MMF D

fn j .9n 2 Prog; 9pv 2 Prog/
V

Has .n; MMF(pv)/g;
N MFF Dfnj.9n2Prog; 9pv2Prog/

V
Has.n; MFF(pv)/g:

Interpretation: N includes all nodes of N DPV,
N MMF, and N MFF. N DPV includes all the nodes that
declare or define the pointer variables, N MMF includes
all the nodes that allocate memory for pointer variables,
and N MFF includes all the nodes that release the
allocated memory to which their pointer variables point.

(2) CD.9pv2Prog/
V

..9ni ; nj ; nk 2Prog/
V

Has.ni ;

DPV(pv)/
V

Has.nj ; MMF(pv))
V

Has.nk; MFF(pv)/
V

Suc.ni ; nj /
V

DataDep.ni ; nj ; pv/
V

Suc.nj ; nk/
V

DataDep.ni ; nk; pv//
V

..9nu 2 Prog/
V

Has.nu; MFF
(pv))

V
Suc.nk; nu/

V
DataDep.ni ; nu; pv//.

Interpretation: The constraint C represents the
situation where in an executable path, a pointer variable
pv is defined in ni ; after allocating memory for pv in nj

(nj is the successor node of ni and nj is data-dependent
on ni) and then releasing the allocated memory pointed
by pv in nk (nk is the successor node of nj and nk is data-
dependent on ni), pv points to the unknown memory
address. However, the program calls the memory release
function to pv again in nu (nu is the successor node of
nk and nu is data-dependent on ni), which would lead
to double-free.

3.3.4 Use-after-free
Use-After-Free (UAF) (CWE-416)[5, 20–22] refers to the
situation where a pointer is not to null after releasing
the allocated memory for the pointer; hence, accessing
the pointer may affect the running of the program or
lead to unpredictable consequences. According to the
definition of vulnerability feature, the feature of use-
after-free is �.UAF/ D fN; C g. For use-after-free, the
specific formal descriptions of the vulnerability-related
risk nodes N and vulnerability feature constraint C are
given below.

(1) NDfN DPV; N MMF; N MFFg; and N DPVDfn j.9n 2

Prog; 9pv2Prog/
V

Has.n; DPV.pv//g; N MMF D fn j

.9n2Prog; 9pv2Prog/
V

Has.n; MMF(pv)/g; and N MFF

D fnj.9n 2 Prog; 9pv 2 Prog/
V

Has.n; MFF(pv)/g.
Interpretation: N includes all nodes of N DPV,

N MMF, N MFF, and N UPV. N DPV includes all the nodes
that declare or define the pointer variables, N MMF

includes all the nodes that allocate memory for pointer
variables, N MFF includes all the nodes that release the
allocated memory to which their pointer variables point,
and N UPV includes all the nodes that access the pointer
variables.

(2) C D .9pv 2 Prog/
V

..9ni ; nj ; nk 2 Prog/
V

Has.ni ; DPV.pv//
V

Has.nj ; MMF.pv//
V

Has.nk;

MFF.pv//
V

Suc.ni ; nj /
V

DataDep.ni ; nj ;pv/
V

Suc
.nj ; nk/

V
DataDep.ni ; nk; pv//

V
..9nu 2Prog/

V
Has

.nu; MFF.pv//
V

Suc.nk; nu/
V

DataDep.ni ; nu; pv//.
Interpretation: The constraint C represents the

situation where in an executable path, a pointer variable
pv is defined in ni ; after allocating memory for pv in nj

(nj is the successor node of ni and nj is data-dependent
on ni) and then releasing the allocated memory pointed
by pv in nk (nk is the successor node of nj and nk is data-
dependent on ni), pv points to the unknown memory
address. However, the program tries to access pv in nu

(nu is the successor node of nk and nu is data-dependent
on ni), which would lead to use-after-free.

4 Vulnerability Detection Framework

4.1 Module analysis

As shown in Fig. 2, the detection framework of
MRVDAVF consists of four modules: Abstract Syntax
Tree (AST) generation module, node feature extraction

AST generation

Node feature
extraction

Vulnerability
report

Vulnerability
judging

PCFG
generation

Source code

Vulnerability
judging rule

Vulnerability
feature

Feature
analysis

Vulnerability
source code

Fig. 2 Detection framework of MRVDAVF.

Jinchang Hu et al.: A Memory-Related Vulnerability Detection Approach Based on Vulnerability Features 609

module, PCFG generation module, and vulnerability
judging module. The details of these modules are given
below.

(1) AST Generation Module: The AST generation
module mainly uses the front-end of the GCC compiler
to parse the source code and store the AST of the source
code in text form. Since directly extracting PCFG from
AST in text form is relatively inefficient, storing AST in
the designed data structure is necessary.

(2) Node Feature Extraction Module: Node feature
extraction module extracts the key information (the
pointers and feature operations involved) of the node
from AST and finally takes the extracted information as
the feature property of the node in PCFG.

(3) PCFG Generation Module: According to the
definition of PCFG, PCFG only contains pointer
definition, pointer access, and memory allocation and
release, as well as the related nodes to ensure the
complete structure of the program. Figure 3 shows the
data structure of the PCFG node. PCFG can be generated
by traversing AST recursively, and only considering
pointer-related nodes (the nodes of pointer definition,
pointer access, and memory allocation and release,
as well as related nodes, which ensure the complete
structure of the program) should be considered when
adding nodes. The consideration of pointer-related nodes
would reduce the overhead of analyzing unnecessary
nodes in the subsequent vulnerability judging module.

(4) Vulnerability Judging Module: The vulnerability
judging module traverses the executable path of the
PCFG of the program. In the traversal process, it
analyses whether the nodes on the current path satisfy
the vulnerability feature, and then judges whether there
exists a vulnerability according to the vulnerability
Judging Rule 1 discussed below.

4.2 Vulnerability judging algorithm based on
vulnerability feature

Based on the formalization of the vulnerability feature

typedef struct PCFGNode

{

 int id; // unique identification

 int lnum; // line number

 int nextid; // id of the next node

 bool isCond; // whether conditional node or not

 int leftid rightid; // id of left and right branch

 vector<string> nf; // node feature

} PCFGNode;

Fig. 3 Data structure of PCFG node.

and PCFG of the target program, we can judge whether
vulnerabilities exist in a program. The following judging
rule would be used in the analysis process:

Judging Rule 1: For a program Prog, if the
vulnerability-related risk nodes N for an executable
path p 2 Path is not NULL, and there are elements
in the vulnerability-related risk point N that satisfy
the vulnerability-related constraint C , then vulnerability
exists in the program.

Based on Judging Rule 1, VJVF is proposed, which
is given in Algorithm 1. The main idea of VJVF is to
traverse PCFG, record vulnerability-related risk nodes
N during traversal, and judge whether vulnerabilities
exist in the FJ algorithm.

The input of the VJVF algorithm is the PCFG of the

Algorithm 1 VJVF algorithm
Input: PCFG
Output: err /*output the set of information including all
vulnerability-related risk nodes N */

1: root = PCFG.head; /* Obtain the head node of PCFG */
2: vector<unsigned int> pointers; /* Pointer set */
3: vector<stack<unsigned int>> deps; /* Record all

vulnerability-related risk nodes */
4: VulTraverse(root.id); /* Traverse PCFG recursively */
5: VulTraverse(id); /* The body of VulTraverse () */
6: begin
7: if (id = 0) then
8: return;
9: end if

10: node = PCFG.getNodeById(id);
11: flag = has(pointers, node); /* Judge whether pointers

associated with PCFGNode exist in pointers */
12: if (flag) then
13: pos = index(pointers, node);
14: if (isMMF(node) k isMFF(node) k isUPV(node)) then
15: deps[pos].push(id);
16: end if
17: else
18: stack<unsigned int> newStack;
19: newStack.push(id);
20: deps.push back(newStack);
21: pointers.push(id);
22: end if
23: err=FJ(deps); /* Check for vulnerabilities with FJ algorithm

*/
24: VulTraverse(node.left);
25: TraverseBack(); /* Roll back of PCFG nodes */
26: VulTraverse(node.next);
27: TraverseBack(); /* Roll back of PCFG nodes */
28: VulTraverse(node.right);
29: return err;
30: end

610 Tsinghua Science and Technology, October 2020, 25(5): 604–613

target program, and the output is err. The err records the
set of information including all the vulnerability-related
risk nodes N that causes the vulnerability. Lines 1–3 in
the Algorithm 1, declare the relevant variables, and Line
4 calls the VulTraverse() function to traverse the PCFG
and judge whether a vulnerability exists. Lines 5–30 are
the main body of the VulTraverse() function. Lines 7–22
traverse the nodes of PCFG and record the information
of vulnerability-related risk nodes N . Lines 23–28 judge
whether there exists vulnerability in PCFG recursively.
Line 29 returns all the information of vulnerability-
related risk nodes N that causes the vulnerability. The
execution time of the VJVF algorithm is mainly spent on
node traversal; hence the execution time is linear with the
number of nodes traversed. Since the total number of the
nodes analyzed will not be more than the total number of
PCFG nodes, the time complexity of the VJVF algorithm
is O.n/, where n is the total number of PCFG nodes.

4.3 Feature judging algorithm

The FJ algorithm, given in Algorithm 2, is a sub-
algorithm called by the VJVF algorithm. Its main task is
to analyze the information of vulnerability-related risk
nodes N by traversing in the program, and then judging
whether there exist elements in vulnerability-related risk

Algorithm 2 FJ algorithm
Input: deps /* The set of all vulnerability-related risk
nodes N*/
Output: st /* Stack information, which records the
information of the vulnerability-related risk node n that leads
to the vulnerability*/

1: for (int i D 0I i < deps.size() �1I i C C/ do
2: st = depsŒi �;
3: if (the nodes in st satisfy the vulnerability-related

constraints of use-after-free) /* Judge whether there exists
a use-after-free */ then

4: return UseAfterFreeError(st); /* Throw corresponding
exception information */

5: else if (the nodes in st satisfy the vulnerability-related
constraints of double-free) /* Judge whether there exists
double-free */ then

6: return DoubleFreeError(st); /* Throw corresponding
exception information */

7: else if (the nodes in st satisfy the vulnerability-related
constraints of memory leak) /* Judge whether there exists
a memory leak */ then

8: return MemoryLeakError(st); /* Throw corresponding
exception information */

9: end if
10: end for

nodes N that satisfy the vulnerability-related constraint
C . If the condition is met, we can conclude that there is
a corresponding vulnerability in the program.

The input of the algorithm is deps, which records
the set of all vulnerability-related risk nodes N ; and
the output is st, which records the information of
the vulnerability-related risk node n that leads to a
vulnerability. Lines 3 and 4 judge whether there is use-
after-free vulnerability; Lines 5 and 6 judge whether
there is double-free vulnerability; and Lines 7 and 8
judge whether there is memory leak vulnerability.

5 Experimental Analysis

Comparative experiments among four vulnerability
detection tools (cppcheck, flawfinder, splint, and
MRVDAVF) were carried out. Three types of test
case sets, consisting of CWE401 Memory Leak,
CWE415 Double Free, and CWE416 Use After Free,
were selected from Juliet Test Suite for C/CPP[23–25]

and employed in the experiments. The details of the
preprocessed test case sets are shown in Table 1.

The total number of vulnerabilities in the original
test case set is recorded as TVN, the total number of
vulnerabilities in the tool report is recorded as TRN, the
number of true positives in the tool report is recorded
as TTP, and the number of false negatives in the tool
report is recorded as TFN, where TRN D TTP C TFN.
According to the definition of False Negative Rate (FNR)
and False Positive Rate (FPR), we know that FNR D

.TVN � TTP/=TVN and FPR D TFN=TRN. The lower
the FNR and FPR, the better the detection ability of the
detection tool.

Table 2 presents the detection results of flawfinder,
cppcheck, splint, and MRVDAVF on three test case sets.

Compared with flawfinder, cppcheck, and splint,
MRVDAVF has the least FNR and FPR in detecting
memory leak and use-after-free. In detecting double-
free, cppcheck has the lowest FNR, but MRVDAVF has
the lowest FPR. Therefore, compared with the other
three tools, MRVDAVF generally has a better ability
to detect memory leak, use-after-free, and double-free
vulnerabilities.

Table 1 Test case sets selected from juliet test suite.

Test case set Number of files Number of
total lines TVN

ML 1032 141 760 1032

DF 560 73 624 560

UAF 398 654 99 398

Jinchang Hu et al.: A Memory-Related Vulnerability Detection Approach Based on Vulnerability Features 611

Table 2 Detection results of four detection tools on three test case sets.
Test case set TVN Tool TRN TTP TFN FNR (%) FPR (%)

ML 1032

Cppcheck 311 122 189 88.18 60.77
Flawfinder 2304 260 2044 74.81 88.72

Splint 340 132 208 87.21 61.18
MRVDAVF 926 630 296 38.95 31.97

DF 560

Cppcheck 500 426 74 23.93 14.80
Flawfinder 560 0 560 100 100

Splint 228 114 114 79.64 50.00
MRVDAVF 218 218 0 61.07 0

UAF 398

Cppcheck 293 0 293 100 100
Flawfinder 434 0 434 100 100

Splint 197 108 89 72.86 45.18
MRVDAVF 386 245 141 38.44 36.53

6 Conclusion

Memory leak, double-free, and use-after-free
vulnerabilities all have certain features. The study on
vulnerability features will promote research on the
prevention and detection of vulnerabilities. This study
analyzes in-depth the features of three memory-related
vulnerabilities (including memory leak, double-free, and
use-after-free), and MRVDAVF is proposed. First, we
define the vulnerability feature by analyzing numerous
source codes containing memory-related vulnerabilities.
Then we propose PCFG, which consists only of the
nodes of pointer definition, pointer access, and memory
allocation and release, as well as related nodes to
ensure the complete structure of the program. We also
formalize the features of three vulnerabilities based on
feature definition and PCFG. The study describes the
detection framework of MRVDAVF and details VJVF
algorithm and FJ algorithm. To validate the effectiveness
of vulnerability feature analysis and the feasibility of the
MRVDAVF, comparative experiments are carried out
among four vulnerability detection tools (MRVDAVF,
cppcheck, flawfinder, and splint). Compared with
cppcheck, flawfinder, and splint, MRVDAVF has a better
detection ability for memory leak, use-after-free, and
double-free vulnerabilities. The experimental results
show that MRVDAVF is feasible and effective.

Acknowledgment

This study was funded by the National Natural Science
Foundation of China (Nos. U1836116 and 61872167),
the Project of Jiangsu Provincial Six Talent Peaks (No.
XYDXXJS-016), and the Graduate Research Innovation
Project of Jiangsu Province (No. KYCX17 1807).

References

[1] W. R. Fitriani, P. Rahayu, and D. I. Sensuse, Challenges
in agile software development: A systematic literature
review, in Proc. of the 8th International Conference on
Advanced Computer Science and Information Systems, Bali,
Indonesia, 2017, pp. 155–164.

[2] L. J. Liu, Y. Q. Shi, and R. Tao, The research of
component-based software development application on data
management in smart education, Advances in Intelligent
Systems and Computing, vol. 279, no. 7, pp. 1099–1108,
2014.

[3] Z. B. Xu, J. Zhang, and Z. X. Xu, Melton: A practical
and precise memory leak detection tool for C programs,
Frontiers of Computer Science, vol. 9, no. 1, pp. 34–54,
2015.

[4] J. Caballero, G. Grieco, M. Marron, and A. Nappa,
Undangle: Early detection of dangling pointers in use-
after-free and double-free vulnerabilities, in Proc. of
International Symposium on Software Testing and Analysis,
Minneapolis, MN, USA, 2012, pp. 188–195.

[5] H. Yan, Y. L. Sui, S. P. Chen, and J. L. Xue, Spatio-
temporal context reduction: A pointer-analysis-based static
approach for detecting use-after-free vulnerabilities, in
Proc. of International Conference on Software Engineering,
Gothenburg, Sweden, 2018, pp. 327–337.

[6] J. S. Liu, Y. S. Chen, L. X. Zhang, J. Deng, and W. X.
Zhang, The evaluation of the embedded software quality
based on the binary code, in Proc. of IEEE International
Conference on Software Quality, Reliability and Security
Companion, Vienna, Austria, 2016, pp. 167–170.

[7] J. C. Liu, L. Q. Chen, L. M. Dong, and J. Wang, UC Bench:
A user-centric benchmark suite for C code static analyzers,
in Proc. of International Conference on Information Science
and Technology, Wuhan, China, 2012, pp. 230–237.

[8] H. Shahriar, H. M. Haddad, and I. Vaidya, Buffer overflow
patching for C and C++ programs: Rule-based approach,
ACM Sigapp Applied Computing Review, vol. 13, no. 2, pp.
8–19, 2013.

612 Tsinghua Science and Technology, October 2020, 25(5): 604–613

[9] C. Chahar, V. S. Chauhan, and M. L. Das, Code analysis
for software and system security using open source tools,
Information Security Journal: A Global Perspective, vol.
21, no. 6, pp. 346–352, 2012.

[10] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, Modeling
and discovering vulnerabilities with code property graphs,
in Proc. of IEEE Symposium on Security and Privacy, San
Jose, CA, USA, 2014, pp. 590–604.

[11] J. P. Zeng, Q. H. Yang, H. L. Wang, B. P. Xu, and W. Huang,
Design and implementation of memory leak detection tool
of C/C++ based on dynamic instrumentation, (in Chinese),
Application Research of Computers, vol. 32, no. 6, pp. 1737–
1741, 2015.

[12] T. Wang, L. S. Han, C. Fu, D. Q. Zhou, and M. Liu,
Static software vulnerability detection model and detection
framework, (in Chinese), Computer Science, vol. 43, no. 5,
pp. 80–86, 2016.

[13] Z. Q. Liu, B. Xu, D. Liang, C. Liu, Z. J. Jiang, and C. L. Du,
Semantics-based memory leak detection for C programs,
in Proc. of International Conference on Fuzzy Systems and
Knowledge Discovery, Changsha, China, 2016, pp. 2283–
2287.

[14] X. H. Han, S. Wei, J. Y. Ye, C. Zhang, and Z. Y. Ye, Detect
use-after-free vulnerabilities in binaries, (in Chinese),
Journal of Tsinghua University, vol. 57, no. 10, pp. 1022–
1029, 2017.

[15] K. S. Kumar and D. Malathi, A novel method to find
time complexity of an algorithm by using control flow
graph, in Proc. of International Conference on Technical
Advancements in Computers and Communications,
Melmaurvathur, India, 2017, pp. 66–68.

[16] A. V. Phan, M. L. Nguyen, and L. T. Bui, Convolutional
neural networks over control flow graphs for software
defect prediction, in Proc. of International Conference on
Tools with Artificial Intelligence, Boston, MA, USA, 2017,
pp. 45–52.

[17] Q. Gao, Y. F. Xiong, Y. Q. Mi, L. Zhang, W. K. Yang, Z. P.
Zhou, B. Xie, and H. Mei, Safe memory-leak fixing for C
programs, in Proc. of International Conference on Software
Engineering, Firenze, Italy, 2015, pp. 459–470.

[18] X. H. Sun, S. H. Xu, C. K. Guo, J. Xu, N. P. Dong,
X. J. Ji, and S. Zhang, A projection-based approach for
memory leak detection, in Proc. of Computer Software and
Applications Conference, Tokyo, Japan, 2018, pp. 430–435.

[19] Y. Chen, M. Khandaker, and Z. Wang, Pinpointing
vulnerabilities, in Proc. of ACM Asia Conference on
Computer and Communications Security, New York, NY,
USA, 2017, pp. 334–345.

[20] D. Dewey, B. Reaves, and P. Traynor, Uncovering
use-after-free conditions in compiled code, in Proc. of
International Conference on Availability, Reliability and
Security, Washington, DC, USA, 2015. pp. 90–99.

[21] J. Feist, L. Mounier, and M. L. Potet, Statically detecting
use after free on binary code, Journal of Computer Virology
and Hacking Techniques, vol. 10, no. 3, pp. 211–217, 2014.

[22] S. Liu and X. J. Qin, Parallelly refill SLUB objects
freed in slow paths: An approach to exploit the use-
after-free vulnerabilities in linux kernel, in Proc. of
International Conference on Parallel and Distributed
Computing, Applications and Technologies, Taipei, China,
2017, pp. 387–390.

[23] NSA center for assured software, Juliet test suite
1.2 for C/C++, https://samate.nist.gov/SRD/around.php#
juliet documents, 2018.

[24] A. Ibing and A. Mai, A fixed-point algorithm for automated
static detection of infinite loops, in Proc. of IEEE
International Symposium on High Assurance Systems
Engineering, Daytona Beach, FL, USA, 2015, pp. 44–51.

[25] A. Wagner and J. Sametinger, Using the Juliet test suite to
compare static security scanners, in Proc. of International
Conference on Security and Cryptography, Vienna, Austria,
2014, pp. 244–252.

Jinchang Hu is a master student in
the School of Computer Science and
Communication Engineering, Jiangsu
University, China. He received the BE
degree from Jiangsu University, China,
in 2017. His research interests include
software testing and service computing.

Jinfu Chen received the BE degree from
Nanchang Hangkong University, Nanchang,
China, in 2004, and the PhD degree
from Huazhong University of Science and
Technology, Wuhan, China, in 2009. He
is a professor in the School of Computer
Science and Communication Engineering,
Jiangsu University, Zhenjiang, China. His

major research interests include software testing, software
analysis, and trusted software. Prof. Chen is a member of the
ACM and China Computer Federation.

Lin Zhang is a master student in the School
of Computer Science and Communication
Engineering, Jiangsu University, China.
She received the BEng degree from Jiangsu
University, China, in 2015. Her research
interests include software testing and
service computing.

Yisong Liu received the BE degree
from Hunan University, Changsha, China,
in 1988, the MS degree from Jiangsu
University, Zhenjiang, China, in 1999, and
the PhD degree from Nanjing University of
Science and Technology, Nanjing, China,
in 2009. He is a professor in the School
of Computer Science and Communication

Engineering, Jiangsu University, Zhenjiang, China. His major
research interests include computer graphics, human-computer
interaction techniques, and software engineering.

Jinchang Hu et al.: A Memory-Related Vulnerability Detection Approach Based on Vulnerability Features 613

Qihao Bao is a master student in the School
of Computer Science and Communication
Engineering, Jiangsu University, China.
He received the BE degree from Jiangsu
University, China, in 2017. His research
interests include software testing and
service computing.

Hilary Ackah-Arthur received the BS
degree from the University of Cape Coast,
Ghana, in 2007, the MS degree from
HAN University of Applied Sciences, The
Netherlands, in 2011. Since 2011, he
has been a lecturer with the Computer
Science Department, Takoradi Technical
University, Ghana. He is currently pursuing

the doctorate degree at the School of Computer Science and
Communication Engineering, Jiangsu University, China. His
research interests include software analysis and testing, service
computing, and information systems and security. Mr. Ackah-
Arthur is a member of IEEE Computer Society.

Chi Zhang is a master student in the School
of Computer Science and Communication
Engineering, Jiangsu University, China.
He received the BE degree from Jiangsu
University, China, in 2017. His research
interests include software testing and
service computing.

