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Modified Multi-Key Fully Homomorphic Encryption Based on
NTRU Cryptosystem without Key-Switching
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Abstract: The Multi-Key Fully Homomorphic Encryption (MKFHE) based on the NTRU cryptosystem is an important

alternative to the post-quantum cryptography due to its simple scheme form, high efficiency, and fewer ciphertexts

and keys. In 2012, López-Alt et al. proposed the first NTRU-type MKFHE scheme, the LTV12 scheme, using the

key-switching and modulus-reduction techniques, whose security relies on two assumptions: the Ring Learning With

Error (RLWE) assumption and the Decisional Small Polynomial Ratio (DSPR) assumption. However, the LTV12

and subsequent NTRU-type schemes are restricted to the family of power-of-2 cyclotomic rings, which may affect

the security in the case of subfield attacks. Moreover, the key-switching technique of the LTV12 scheme requires a

circular application of evaluation keys, which causes rapid growth of the error and thus affects the circuit depth. In

this paper, an NTRU-type MKFHE scheme over prime cyclotomic rings without key-switching is proposed, which has

the potential to resist the subfield attack and decrease the error exponentially during the homomorphic evaluating

process. First, based on the RLWE and DSPR assumptions over the prime cyclotomic rings, a detailed analysis

of the factors affecting the error during the homomorphic evaluations in the LTV12 scheme is provided. Next, a

Low Bit Discarded & Dimension Expansion of Ciphertexts (LBD&DEC) technique is proposed, and the inherent

homomorphic multiplication decryption structure of the NTRU is proposed, which can eliminate the key-switching

operation in the LTV12 scheme. Finally, a leveled NTRU-type MKFHE scheme is developed using the LBD&DEC

and modulus-reduction techniques. The analysis shows that the proposed scheme compared to the LTV12 scheme

can decrease the magnitude of the error exponentially and minimize the dimension of ciphertexts.

Key words: NTRU-type Multi-Key Fully Homomorphic Encryption (MKFHE); prime cyclotomic rings; Low Bit

Discarded (LBD); homomorphic multiplication decryption structure
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encrypted data at different public keys (users), and
the final ciphertext can be jointly decrypted by all the
involved users. Moreover, the operation process between
the ciphertexts of different users can be entrusted to the
cloud offline, avoiding the interaction between users in
the secure Multi-Party Computing (MPC) protocol. So,
the MKFHE can be widely used in ciphertext retrieval[1],
secure MPC[2–4], privacy-preserving protocol[5], etc.

In 2012, López-Alt et al.[6] proposed the concept
of MKFHE for the first time and constructed the
first MKFHE scheme LTV12 based on the NTRU
cryptosystem (called NTRU-type MKFHE). Many
studies on the MKFHE have been reported[7–14]. Similar
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to the traditional single-key Fully Homomorphic
Encryption (FHE), the MKFHE mainly includes NTRU-
type MKFHE, GSW-type MKFHE[8–11], and BGV-
type MKFHE[12]. Among the three types of MKFHE
schemes, the NTRU-type MKFHE scheme is the fastest
in encryption and decryption, and has the simplest form,
and uses the least ciphertexts and keys. The underlying
scheme of the NTRU encryption has been used to design
various cryptographic primitives, including the digital
signatures[15], identity-based encryption[16, 17], and multi-
linear maps[18, 19].

The security of the NTRU-type homomorphic
encryption schemes is based on the Ring Learning
With Error (RLWE) assumption and Decisional Small
Polynomial Ratio (DSPR) assumption. Stehlé and
Steinfeld showed that the DSPR assumption could
be reduced to the RLWE assumption under certain
conditions (refer to Ref. [20] for details). The RLWE
represents an algebraic variant of the LWE[21], whose
hardness can be reduced to the hardness of the worst-
case problems on ideal lattices in the standard model.
However, recently, it has been shown that subfield
attacks[22–25] affected the asymptotic security of NTRU-
type schemes for large moduli q: Yu et al.[26, 27]

considered a variant of NTRU encrypt over prime
cyclotomic rings and obtained the INDistinguish-ability
under Chosen-Plaintext Attack (IND-CPA) secure results
in the standard model assuming the hardness of the worst-
case problems on ideal lattices, which was shown to be
a good choice to resist the subfield attacks.

In LTV12[6], the leveled NTRU-type MKFHE scheme
was adopted by using the key-switching (known as the
relinearization) and modulus-reduction techniques[28, 29].
However, the key-switching process needed to be
carried out before reducing the modulus during the
homomorphic evaluations, which increased the error
significantly. Hitherto, much work on the design and
security research of the NTRU-type FHE scheme has
been done[30, 31], but there are few outstanding results of
the NTRU-type MKFHE.

The main contributions of this work can be
summarized as follows.

(1) The NTRU-type MKFHE (LTV12) over prime
cyclotomic rings is adopted, and the parameters that
affect the growth of error during the homomorphic
evaluations are analyzed.

(2) A Low Bit Discarded and Dimension Expansion
of Ciphertexts (LBD&DEC) technique is used to
modify the inherent decryption structure of the NTRU-

type MKFHE, which eliminates the key-switching in
homomorphic multiplication and reduces the ciphertext
dimension.

(3) A leveled NTRU-type MKFHE scheme over prime
cyclotomic rings, which successfully eliminates the
relinearization and greatly decreases the error magnitude,
is designed.

The rest of this paper is organized as follows. In
Section 2, the basic mathematical techniques used in
this work, and the RLWE and DSPR assumptions
are presented. In Section 3, the NTRU-type MKFHE
over prime cyclotomic rings is introduced, and its
cryptographic properties are analyzed. In Section 4,
the inherent homomorphic decryption structure is
modified by using the LBD&DEC technique, and
the detailed analysis of the size of error, ciphertext,
and evaluation key, etc., is provided. In Section 5, a
multi-key somewhat homomorphic encryption scheme
is designed by using the LBD&DEC technique, and
the parameter comparison between our scheme and
the LTV12 scheme is given. In Section 6, a leveled
NTRU-type MKFHE scheme without key-switching is
presented. The conclusion is provided in Section 7.

2 Preliminary

Assume � denotes the security parameter, and negl.�/
denotes a negligible function of �; a denotes the row
vector, ai represents the i-th element of a, and aT

represents the column vector. The element located in the
i -th row and the j -th column of matrix C is represented
as C Œi; j �. In general, vectors can be regarded as a
row matrix. Let v and w 2 Rm, where R denotes the
cyclotomic rings, and assume the dimension of vector v
and w ism, so v�wDhv;wiD v1w1C v2w2C � � �Cvkwk

denotes the inner product, v and w 2 Rm.
In this paper, the prime cyclotomic rings R D

ZŒx�=˚n.x/ and Rq D R=qR are used, where ˚n.x/D

xn�1 C xn�2 C � � � C 1 (n denotes a prime), q D
q.�/ denotes a prime, and it satisfies q D 1 mod n.
Addition and multiplication operation on these rings are
component-wise in their coefficients, and the coefficients
of Rq are reduced to the range Œ�q=2; q=2/, except
for q D 2. We require the ability to sample from the
probability distribution �, i.e., the truncated discrete
Gaussian distribution DZn;� , with Gaussian parameter � ,
deviation r D �

p
2 , and Gaussian function e� x2=�2

.
Refer to Ref. [32] for a detailed description of the
discrete Gaussian distribution. Let � D �.�/ be a B-
bound error distribution over R whose coefficients are
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in the range Œ�B;B�. For the probability distribution D,
x Ddenotes that x is sampled fromD.

The vector length is generally measured by the
Euclidean norm. For v 2 R, we use kvk1 D

max06i6n�1 jvi j to denote the standard l1-norm and
use kvk1 D

Pn�1
iD0 jvi j to denote the standard l1-norm.

The security of our scheme is based on the RLWE and
DSPR assumptions. Following Refs. [26] and [27], a
brief introduction to these assumptions over the prime
cyclotomic rings is provided.

Definition 1 RLWE assumption: Let � be a
security parameter. q = q.�/ 2 Z is a prime integer.
˚n.x/ D x

n�1Cxn�2C� � �C1 (n is a prime) is the sub-
cyclotomic polynomial. For the polynomial ring defined
by R D ZŒx�=˚n.x/ and Rq D R=qR, and an error
distribution � D �.�/ over R, the RLWE assumption
states that the following two distributions cannot be
distinguished: (1) one samples .ai ; bi / uniformly from
RnC1

q , and (2) one first draws ai  Rn
q uniformly,

and samples .ai ; bi / 2 R
nC1
q by choosing si  Rn

q and
ei  � uniformly, and set bi D hai ; si i C ei .

Definition 2 DSPR assumption: Let � be a
security parameter. q = q.�/ 2 Z is a prime integer.
˚n.x/ D x

n�1 C xn�2 C � � � C 1 (n is a prime) is
the sub-cyclotomic polynomial. For the polynomial
ring R D ZŒx�=˚n.x/ and Rq D R=qR, and a B-
bound error distribution � D �.�/ over R, the DSPR
assumption states that the following two distributions
cannot be distinguished: (1) a polynomial h D 2g=f ,
where f = 2f 0 C 1, and it is reversible over Rq , and (2)
a polynomial h sampled uniformly at random over Rq .

Two subroutines: Here two subroutines
BitDecomp. / and Powersof 2. /, which are widely used
in the FHE schemes, are introduced. Assuming that
l D dlog qe, these two subroutines can be expressed as
follows.

BitDecomp (x2Rq): Rq 7!Rl
2. On input x 2 Rq ,

outputs x 7! .x0; x1; : : : ; xl�1/ 2 f0; 1g
l (For

convenience, we denote BitD.x/ 2 Rl
q).

Powersof2 (x 2 Rq): Rq 7! Rl
q . On input x 2 Rq ,

outputs x 7! .x; 2x; : : : ; 2l�1x/, where 2l�1<q=2 (For
convenience, we denote Pof2.x/2Rl

q).
It’s obviously to verify that hBitD.x/;Pof 2.y/i D
hx; yi mod q, where hx; yi denotes the product of
polynomials x; y 2 Rq .

Key-switching technique: The relinearization
technique in the LTV12 scheme is also known as
the key-switching technique[28, 29]. The key-switching
technique can be used to reduce the dimension of

expanded ciphertext to the normal level. Generally, it
can be used to transform a ciphertext c 2 Rq (under the
secret key f) to another ciphertext cevk 2 Rq (under the
secret key fevk) while the corresponding message stays
unchanged. Let l D dlog qe, the key-switching process
mainly consists of two procedures.

(1) KeySwitchGen .f 2 RIfevk 2 Rq/: For h 2 Rq;

s� ; e� 2 R
l
q , output the evaluation key as

evkf!fevk WDfk�Dhs�C2e�CPof2.f /2Rl
qg�D1;:::;l :

(2) KeySwitch .c; k� ; q/: Compute the ciphertext
vector c0 D BitD.c/ 2 Rl

q , and output cevk D c0 � k� D

hBitD.c/; k� i 2 Rq .
There are some useful conflusions in the following.
Lemma 1 [26] Let ˚n.x/ D x

n�1 C xn�2 C � � � C 1,
and R D ZŒx�=˚n.x/, where n is a prime. For any
a; b 2 R, it holds that

kabk162.n � 1/kak1kbk1;

kabk 6 2
p
n�1kakkbk:

According to Lemma 1, the following Lemma 2 can
be drawn.

Lemma 2 Let a; b 2 R be sampled from a
discrete Gaussian distribution with parameter B

p
2 

and bound B , under the worst-case conditions, the
bound of ab mod ˚n.x/ is kabk1 6 2.n � 1/B2,
for convenience, mod ˚n.x/ is omitted. In particular,
when the bound of b is 1, it holds that kabk1 6
2.n � 1/B .

Remark According to Lemma 2, if a; b; c 2 R,
we have kabck162.n�1/kabk1kcjj1622.n�1/2B3.
So Lemma 2 yields the following corollary.

Corollary 1 Let � be a security parameter, for the
polynomial ring given by R D ZŒx�=˚n.x/, ˚n.x/ D

xn�1 C xn�2 C � � � C 1, where n is a prime, � D �.�/
is a B-bound error distribution, and q = q.�/ 2 Z is a
prime integer, let s1; s2; : : : ; sk  �. Then, we haveQk

iD1 si


1

6 2k�1.n � 1/.k�1/Bk :

3 Basic NTRU-Type Multi-Key Somewhat
Homomorphic Encryption (MKSHE) over
Prime Cyclotomic Rings

The NTRU key pairs consist of ring elements .h; f /,
such that h D Œ2g=f �q , where g and f denote small
elements sampled from a B-bounded distribution � and
f is invertible in Rq , respectively. Further recall that an
NTRU ciphertext has the form of Oc WD ŒmC hOs C 2 Oe�q
for small elements Os and Oe sampled from �, and m can
be recovered by computing Œf Oc�q.mod 2/.
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The NTRU-type homomorphic encryption naturally
supports the homomorphic evaluations between
ciphertexts of different users (secret keys), which
can be easily proven. Generally, it is assumed that
there are four users A;B;C , and D, corresponding
to the four public keys .pkA; pkB ; pkC ; pkD/ and
four secret keys .skA; skB ; skC ; skD/, respectively.
Plaintexts .mA; mB ; mC ; mD/ can be encrypted as
. OcA; OcB ; OcC ; OcD/, where Oci WD hi Os C 2 Oe Cmi 2 Rq ,
i 2 fA;B;C;Dg. Set fpkA; pkB ; pkC g 2 K1; fpkB ;

pkC ; pkDg 2 K2, so K1 \ K2 D fpkB ; pkC g, and
K D K1 [ K2 D fpkA; pkB ; pkC ; pkDg. It should
be noted that since the method to process the cubic
(or larger order) of a ciphertext product is similar
to quadratic order, only the quadratic order of the
ciphertext product is considered in this paper.

In particular, the two joint ciphertexts can be denote
as Oc1 D OcA OcB OcC and Oc2 D OcB OcC OcD , which can be
decrypted to the joint plaintexts m1 D mAmBmC and
m2 D mBmCmD , respectively, by using the joint secret
keys FK1

D fAfBfC and FK2
D fBfCfD . That is

FK1
Oc1 D FK1

m1 C v1 and FK2
Oc2 D FK2

m2 C v2.
Similarly, to decrypt Oc1 Oc2 D OcA Oc

2
B Oc

2
C OcD we need to

multiply FK1
FK2
DfAf

2
B f

2
CfD . Thus, the magnitude

of the coefficients of FK1
FK2

grows exponentially with
the degree of the evaluated circuit. Namely, after L
multiplications, the needed joint secret key will represent
the product of L polynomials, and the magnitude of the
coefficients in this product will increase exponentially
with L. In order to solve these problems, the joint secret
key FK = fAfBfCfD , which has no quadratic items,
is used to complete homomorphic decryption. Since
K1; K2 � .K1 [K2/, we have

ŒFK. Oc1 C Oc2/�q D

ŒFK.mAmBmC CmBmCmD/C fDv1 C fAv2�q:

However, since there are no f 2
B and f 2

C in FK , the
multiplication cannot be decrypted correctly. Thus, we
have

ŒFK Oc1 Oc2�q ¤
�
FKmAm

2
Bm

2
CmD C errormult

�
q
;

where errormult represents the error of homomorphic
multiplication decryption.

Therefore, the key-switching technique is used in the
LTV12 scheme to re-linearize Ocmult = Oc1 Oc2, and switch
ŒFK Oc1 Oc2�q to the decryption structure given by

ŒFK. Oc1 Oc2/�q D
�
FK1

FK2
. Oc1 Oc2/C errormult

�
q
:

Although Ocmult = Oc1 Oc2 is decrypted by FK , and the
dependence of the coefficient’ magnitude of the joint
secret key on the circuit degree is eliminated, the error

grows rapidly during the key-switching process. In the
following, the error growing trend is explained in detail.

3.1 Scheme

The correctness and error of the NTRU-type multi-
key homomorphic encryption scheme in the LTV12
scheme are analyzed. For prime cyclotomic rings, the
correctness of the LTV12 scheme does not change, but
the error is different compared to the LTV12 scheme
on power-of-two cyclotomic rings. The basic LTV12
scheme over prime cyclotomic rings is described in this
section, and a detailed analysis of the factors affecting
the error growth during the homomorphic evaluations is
provided.

Let � be a security parameter, q = q.�/ 2 Z is a prime
integer, ˚n.x/ D x

n�1 C xn�2 C � � � C 1 (n is a prime)
is the sub-cyclotomic polynomial. For the polynomial
ring R D ZŒx�=˚n.x/ and Rq D R=qR, if the error
distribution � = �.�/ over R is B-bound, the �dlog qe is
also a B-bound error distribution space.

As stated earlier in this section, we let K1 and K2

denote the two public-key sets containingN users. In the
LTV12 scheme, the exponential dependence of the error
on N is not eliminated, so it is assumed that there is an
a-priori upper bound onN , that isN �n", with constant
"2 .0; 1/. Without loss of generality, we assume K1\

K2Dfpki1
; : : : ; pkij

g, K1[K2 D fpk1; pk2; : : : ; pkrg,
where j 2 Œ0; N �, r 2 ŒN; 2N �.

The basic NTRU-type MKSHE over prime cyclotomic
rings can be expressed as follows. This expression
represents the basic MKSHE (called BC-MKSHE)
scheme, whose security is based on the RLWE and
DPSR assumptions over prime cyclotomic rings.

(1) BC-MKSHE:KeyGen.1�/: Sample f 0; g  �,
and set f = 2f 0C 1, so that f � 1.mod 2/. If f is not
invertible in Rq , resample f 0  �. Set h D 2g=f 2

Rq , so pk WD h 2 Rq , sk WD f 2 R. For all � 2
f1; : : : ; lg (here l D dlog qe ), sample s� ; e�  �l ,
compute the evaluation key vector k� D hs� C 2e� C

Pof2.f / 2 Rl
q .

Output: .pk; sk; evk/ D .h; f; k� /.
(2) BC-MKSHE:Enc.pk; m/: Sample Os; Oe  �.

Output the ciphertext: Oc WD mC hOs C 2 Oe 2 Rq .
(3) BC-MKSHE:Dec.sk1; sk2; : : : ; skN ; Oc/: Let u WD

.sk1sk2 � � � skN / Oc 2 Rq .
Output: m0 WD u.mod 2/.
(4) BC-MKSHE:KeySwitch. Qc; k� ; q/: Given the

ciphertext Qc and the evaluation key k� , and output
ŒhBitD. Qc/; k� i�q .

(5) BC-MKSHE:Eval:Add. Oc1; Oc2/: Given two
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ciphertexts Oc1 and Oc2 with the corresponding public-
key sets K1 and K2, output the ciphertext Ocadd D

Œ Oc1 C Oc2�q 2 Rq .
(6) BC-MKSHE:Eval:Mult. Oc1; Oc2;KeySwitch/:

Given two ciphertexts Oc1 and Oc2 with the corresponding
public-key sets K1 and K2, let Qc0 D Oc1 Oc2. For
j 2 Œ0; N �,

(a) If jD0, output Ocmult D Qc0 2 Rq .
(b) If j ¤ 0, for t 2 Œ1; j �, compute Qct D

KeySwitch. Qct�1; kt;� ; q/ 2 Rq .
Let Ocmult D Qcj at the end of the iteration.

3.2 Correctness analysis

Multi-key homomorphism: Let FK1 and FK2 be
the joint decryption keys for ciphertext Oc1 and Oc2,
respectively. Also, let Ft D Ft�1.ft /

�1, t 2 Œ1; j �,
where F0 D FK1

FK2
. According to the LTV12 scheme,

the addition and multiplication on ciphertexts can be
decrypted using the product of the users’ secret keys in
set K D K1 [K2. For given two ciphertexts Oc1 and Oc2

with the corresponding public-key sets K1 and K2, we
have FK1

Oc1 D FK1
m1 C v1, FK2

Oc2 D FK2
m2 C v2,

and kFK1
Oc1k1 D kFK2

Oc2k1 <  , where v1 and v2

denote the error. Then, in the case of addition, we have
FK OcaddDFK.m1Cm2/CFK�K1

v1CFK�K2
v2Cv1v2:

Therefore, Ocadd decrypts correctly. The multiplication
case is more complex, and in that case, we have

Ft Qct DFtf
�1

t .BitD. Qct�1/ � 2gt s� /C

2Ft .BitD. Qct�1/ � e� /C Ft�1 Qct�1:

For all t 2 Œ1; j �, by using the key-switching
technique, we can get the decryption structure in the
following form:

FK Ocmult D Fj Qcj D errormult C FK1
FK2
Qc0 (1)

where FKDFj Df1f2� � �fr has no quadratic item of
ft . Equation (1) represents the inherent decryption
structure of the NTRU-type homomorphic multiplication.
By rounding of ŒFK1

FK2
Qc0�q , we get FK1

FK2
m1m2,

and thus Ocmult can be decrypted correctly by FK . This
inherent decryption structure that is deduced by using
the key-switching technique is a guarantee that we can
successfully decrypt Ocmult by FK .

Error analysis: Assume that there is no intersection
between the public keys of the N users in K1 or K2.
For instance, consider the worst case of the ciphertext
Oc1 encrypted by the public-key set K1, and let Oc1

be the multiplication of all users’ fresh ciphertexts,
i.e., Oc1 D Oc

1
1 Oc

1
2 � � � Oc

1
N denotes the ciphertext of m1 D

m1
1m

1
2 � � �m

1
N , where Oc1

i denotes a fresh ciphertext, so
Oc1
i fi D m

1
i fi C v

1
i .

By applying Lemma 2 and Corollary 1, we easily
get

 Oc1
i fi


1
< .2B C 1/ C 3.n � 1/.2B C 1/2. Let

.2B C 1/ C 3.n � 1/.2B C 1/2 D  0, then in the
above-mentioned worst case, Oc1FK1

D . Oc1
1f1/. Oc

1
2f2/� � �

. Oc1
NfN /. So  can be bounded by

 6 2N �1.n � 1/N �1. 0/
N <

23N �1.n � 1/2N �1.2B C 1/2N :

Necessarily, let  < q=2.
Based on Corollary 1, we have kFKk1 6

2r�1.n � 1/r�1.2B C 1/r , and for convenience,
we set Er 6 2r�1.n � 1/r�1.2B C 1/r .

Since the error generated by homomorphic addition is
much smaller than the multiplication, we analyze only
the error generated by the homomorphic multiplication.
Thus, it can be written
kFj Qcj k1 < 3l.n � 1/ErC1 C kFj �1 Qcj �1k1 (2)

Then, we obtain
kFj �1 Qcj �1k1 < 3l.n � 1/ErC2 C kFj �2 Qcj �2k1:

Thus, the final error is bounded in the following:

kFj Qcj k1 < 3l.n � 1/

jX
tD1

ErCt C 2.n � 1/ 
2
D

3l.n�1/ErCj

 
1C

j �1X
tD1

E�t

!
C2.n�1/ 2 <

6l.n � 1/E2N C 2.n � 1/ 
2 (3)

Based on Eq. (3), it can be found that there are two
main factors affecting the error growth, which are the
number of union secret keys N and the length of vector
BitD. Qcj /. Hence, these two factors can be used to control
the error growth by applying the two following methods:

(1) Exponential dependence of the error on N can be
reduced by eliminating the key-switching operations;

(2) Error magnitude can be decreased by reducing the
length of a ciphertext vector.

4 Modified Multi-Key Homomorphic
Multiplication Decryption Structure

The key-switching technique causes fast error growth.
The main way to decrease the error is to eliminate
the key-switching in the BC-MKSHE. However, to
ensure that the scheme works correctly, the decryption
structure of the homomorphic multiplication has to be
modified. In Refs. [31] and [33], the decryption structure
of a single-key homomorphic encryption scheme was
studied. Chen[33] extended the ciphertext to the vector
form, and performed the homomorphic decryption in the
vector space. The main disadvantage of this approach
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is that the increase in the ciphertext dimension makes
the homomorphic evaluations more complex. However,
in our multi-key homomorphic encryption scheme,
the homomorphic decryption structure is improved by
expanding the ciphertext dimension, and the Low Bit
Discarded (LBD) method is used to control the ciphertext
space size.

4.1 LBD technique

In Ref. [34], the efficiency of the fully homomorphic
encryption scheme was enhanced by discarding the lower
bits. In this section, the LBD based on the functions
BitDecomp( ) and Powersof2( ) is presented.

LBD: By discarding elements with small coefficients
(i.e., low bits) of Powersof2( ) vector, a lower-dimension
vector that has no influence on the final decryption
is obtained. For instance, for a given ciphertext ci

and a secret key fi , the inner product of BitD.ci / and
Pof 2.fi / can be obtained,

BitD.ci / � Pof2.fi / D

.ci;1; ci;2; : : : ; ci;l/.2
0fi ; 2

1fi ; : : : ; 2
l�1fi / D

20ci;1fi C ci;22
1fi C � � � C ci;l2

l�1fi (4)

where ci;� 2 R2; l D dlog qe, � 2 Œ1; l�. Compared
to 2l�1ci;lfi , the value of 2d�1ci;dfi (d � l) is
small. Thus, when l is large, discarding the terms
of ci;1fi ; 2ci;2fi ; 2

2ci;3fi ; : : : ; 2
d�1ci;dfi has a little

effect on the overall value of Eq. (4). Further, the
LBD function can be defined as LBDd1!d2

.Pof2.fi //,
which means that the columns from d1 to d2 (we
denote as (d1 ! d2)) of vector Pof2.fi / are discarded.
According to Eq. (4), assume that the .1! d/ columns
of Pof2.fi / are discarded, to ensure the correctness
of the mathematical operation, we should discard the
.1! d/ columns of BitD.ci /. Therefore, we get

LBD1!d .BitD.ci // � LBD1!d .Pof2.fi // D

.ci;dC1; : : : ; ci;l/.2
dfi ; : : : ; 2

l�1fi / D

ci;dC12
dfi C � � � C ci;l2

l�1fi (5)

According to Eq. (5), the dimensions of vectors
BitD.ci / and Pof 2.fi / are reduced after the LBD, while
the operation efficiency is improved.

If we set l D dlog qe and d D dlog q0e, the LBD
technique can be described,

LBD1!d .BitD.ci // � LBD1!d .Pof2.fi // D

lX
�D1

ci;�2
��1fi �

dX
�D1

ci;�2
��1fi D

.BitD.ci / � Pof2.fi //lDdlog qe�

.BitD.ci / � Pof2.fi //dDdlog q0e (6)

According to Eq. (6), the LBD is based only on the
functions BitDecomp./ and Powersof 2./.

4.2 Modified method

In this section, the LBD technique is employed to
improve the homomorphic decryption process.

Method 1: In the BC-MKSHE scheme, the LBD
technique can be used to discard redundant bits of
the evaluation key vector to simply the key-switching
operations. So we have Method 1 in the following.

Step 1 (Discard low bits of the evaluation key
vector): Let ˇ and d be positive constants, and l D
dlog qe. Perform the LBD functions to obtain the
evaluation key. Output: Qk�DLBDˇ!dČ �1.k� / 2 R

l�d
q .

Step 2 (Simplify KeySwitch function): Compute
the ciphertext vector LBDˇ!dCˇ�1.BitD. Qc// 2 Rl�d

q .
Output is as follows:

KeySwitchLBD.Qc; Qk� ; q/ D

ŒhLBDˇ!dCˇ�1.BitD. Qc//;LBDˇ!dCˇ�1.k� /i�q:

Step 3 (Compute the homomorphic multiplication
of ciphertexts): Given two ciphertexts Oc1 and Oc2 with
the corresponding public-key sets K1 and K2, let Qc0 D

Oc1 Oc2. For j 2 Œ0; N �,
QQc t D KeySwitchLBD. Qct�1; Qkt;� ; q/ 2 Rq:

Set cmult D QQcj at the end of the iteration.
Correctness verification of Method 1: Sample
Qs� ; Qe� �l�d , we have
Ft
QQc t DFtf

�1
t .LBDˇ!dCˇ�1.BitD. Qct�1// � 2gt Qs� /C

2Ft .LBDˇ!dCˇ�1.BitD. Qct�1// � Qe� /�

Ft�1

0@dCˇ�2X
&DˇC1

2&�1
Qct�1;&

1AC Ft�1 Qct�1 (7)

where Qct�1;& 2 R2 and & is a constant variable.
According to Eq. (6) and since Fj �1.mod 2/ � 1, we
set ˇ > 1 to ensure that Ft�1.

PdCˇ�2

&DˇC1
2&�1 Qct�1;& /

is an even element. Thus, if ˇ > 1, we have Ft
QQc t �

.mod 2/ D Ft�1 Qct�1.mod 2/. Further, according to
Eq. (7), the error magnitude is given in the following:

kFj
QQcj k1DkFjf

�1
j .LBDˇ!dCˇ�1.BitD. Qcj �1// �

2gj Qs� / k1 C k2Fj .LBDˇ!dCˇ�1.BitD. Qcj �1// �

Qe� /k1 C

Fj �1

0@dCˇ�2X
&DˇC1

2&�1
Qcj �1;&

1A
1

C

kFj �1 Qcj �1k1< .3.l�d/C.2
dC2
�4//�

.n�1/ErC1CkFj�1 Qcj�1k1 (8)
For any a; b 2 Rq , it holds that ka � bk1 6 kak1C
kbk1. Since Ft D Ft�1.ft /

�1, the magnitude of
kFjf

�1
j gj Qs�k1; kFj Qe�k1, and kFj �1 Qcj �1;&k1 in Eq.
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(8) are the same. Compared to Eq. (2), it can be found
that when d > 1, kFj

QQcj k1 > kFj Qcj jj1, which means
that low bits are discarded, the error increases. Moreover,
the value of kFj

QQcj k1 increases with the use frequency
of key-switching. Thus, it seems that this method does
not provide satisfactory results.

Method 2: LBD&DEC is proposed to modify the
decryption structure of the NTRU-type MKSHE. First,
the LBD technique is employed to discard redundant
elements in the plaintext vector, and then the plaintext
vector is encrypted to expand the ciphertext dimension.
Finally, the decryption structure in the vector space is
improved. Referring to Method 1, some bits of the
plaintext vector from the second column are discarded
to ensure the correctness of the decryption. Accordingly,
the modified decryption structure can be improved by
the following steps:

Step 1 (Discard the plaintext vector): Let l D
dlog qe, d is a positive constant. Compute the plaintext
vector Om D LBD2!dC1.Pof 2.m// (m 2 f0; 1g).

Output: Om D .m; 2dC1m; � � � ; 2l�1m/ 2 Rl�d
q .

Step 2 (Ciphertext expansion): Let pk WD h 2 Rq ,
sk WD f 2 R. Sample s; e �l . Use public key pk
to encrypt the plaintext vector Om D .m; 2dC1m; : : : ;

2l�1m/.
Output: c WD OmC hsC 2e 2 Rl�d

q .
Step 3 (Set the decryption structure): For given

two ciphertext vectors c1 and c2 with the corresponding
public-key sets K1 and K2, compute the matrix C,

C D LBD2!dC1.BitD.cT
1// 2 R

.l�d/�.l�d/
q :

Output: cmult D C � cT
2 2 R

l�d
q .

Step 4 (Select decryption element): Select the first
element cmult;1 from the ciphertext vector cmult. Here,
FK D Fj D f1f2 � � � fr and K D K1 [K2.

Output Dec.FK ; cmult;1/.mod 2/.
We modify Oc 2 Rq to obtain c WD Pof2.m/ C hOs C

2Oe 2 Rl
q instead of c WD Pof2.m C hOs C 2 Oe/, so that

the error generated by the term of Pof2.hOs C 2 Oe/ can be
removed. In Section 4.3, the advantages of this change
will be introduced when calculating the error magnitude.

Correctness verification of Method 2: According to
Step 2, set ˛ D f1; 2g, we get

cT
˛ WD

266664
20m˛ C hs˛;1 C 2e˛;1

2dC1m˛ C hs˛;dC2 C 2e˛;dC2

:::

2l�1m˛ C hs˛;l C 2e˛;l

377775 2 Rl�d
q :

Thus, we have BitD.cT
1/ 2 R

.l�d/�l
2 . To keep the

correctness of BitD.cT
1/ � c

T
2, we perform Step 3. After

discarding the .2! dC1/ columns of matrix BitD.cT
1/,

an .l � d/ � .l � d/ matrix is obtained,
C DLBD2!dC1.BitD.cT

1// D266664
.c1;1/1 .c1;1/dC2 � � � .c1;1/l
.c1;dC2/1 .c1;dC2/dC2 � � � .c1;dC2/l

:::
:::

: : :
:::

.c1;l/1 .c1;l/dC2 � � � .c1;l/l

377775 :
So, according to Step 4, we use the joint secret key

FK to decrypt cmult.

cmult�FK.mod 2/ D C � cT
2 � FK.mod 2/ D LBD2!dC1.BitD.cT

1// � c
T
2 � FK.mod2/ D266664

.c1;1/1 .c1;1/d + 2 � � � .c1;1/l
.c1;dC2/1 .c1;dC2/d + 2 � � � .c1;dC2/l

:::
:::

: : :
:::

.c1;l/1 .c1;l/dC2 � � � .c1;l/l

377775 �
266664

20m2 C hs2;1 C 2e2;1

2dC1m2 C hs2;dC2 C 2e2;dC2

:::

2l�1m2 C hs2;l C 2e2;l

377775 � FK

e0
2;&

Dhs2;&C2e2;&

D

266664
.c1;1/1 .c1;1/d +2 � � � .c1;1/l
.c1;dC2/1 .c1;dC2/d +2 � � � .c1;dC2/l

:::
:::

: : :
:::

.c1;l/1 .c1;l/dC2 � � � .c1;l/l

377775�
266664

20m2FK C FKe
0
2;1

2dC1m2FK C FKe
0
2;dC2

:::

2l�1m2FK C FKe
0
2;l

377775 D
266666666666664

.c1;1/1.2
0m2FK C FKe

0
2;1/C

lX
&DdC2

.c1;1/& .2
&�1m2FK C FKe

0
2;& /

.c1;dC2/1.2
0m2FK C FKe

0
2;1/C

lX
&DdC2

.c1;dC2/& .2
&�1m2FK C FKe

0
2;& /

:::

.c1;l/1.2
0m2FK C FKe

0
2;1/C

lX
&DdC2

.c1;l/& .2
&�1m2FK C FKe

0
2;& /

377777777777775
:
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We set c1FK1
D Om1FK1

Cv0
1 and c2FK2

D Om2FK2
C

v0
2, let kv0

1jj1 D kv
0
2jj1 < �. Thus, the first element is

selected as decryption,
cmult;1FK D .c1;1/1.2

0m2FK C FKe
0
2;1/C

lX
&DdC2

.c1;1/& .2
&�1m2FK C FKe

0
2;& / D

lX
&D1

.c1;1/& .2
&�1m2FK C FKe

0
2;& /�

dC1X
&D2

.c1;1/& .2
&�1m2FK C FKe

0
2;& / D

lX
&D1

.2&�1c1;1/&m2FK C

lX
&D1

.c1;1/&FKe
0
2;&�0@dC1X

&D2

.c1;1/&FKe
0
2;& C

dC1X
&D2

.2&�1c1;1/&m2FK

1A D
m1m2FKC

0@m2FK�K1
v0

1;1C

lX
&D1

.c1;1/&FK�K2v
0
2;1�

dC1X
&D2

.c1;1/&FK�K2v
0
2;1�m2

dC1X
&D2

.2&�1c1;1/&FK

1A (9)

where kv0
1;1k1 D kv0

1jj1 and kv0
2;1k1 D kv0

2jj1.
So we can get cmult;1FK.mod 2/ D m1m2. The error
magnitude is bounded by kcmult;1FKk1 6 q=2.

4.3 Parameters analysis

As already explained, by using the LBD&DEC
technique, the original, inherent decryption structure
of the NTRU-type MKHE can be modified.

Theorem 1 Set LBD constant d , c˛FK˛
D

Om˛FK˛
C v0

˛, and kv0 k̨1< �. Let cmult;1 be the first
column of the ciphertext vector cmult D C � cT

2 2 R
l�d
q ,

and C D LBD2!dC1.BitD.cT
1// 2 R

.l�d/�.l�d/
q . Then,

we have
cmult;1FK D m1m2FK C vmult;1

and
kvmult;1k1 6 .2.n � 1/.l � d/C 1/��

3

2
ErC2 C 3N.n � 1/.l � d/ErC1

�
C

.1CN.2dC2
�4/.n�1/ .2.n�1/.l�d/C1//�

.2dC2
� 4/.n � 1/Er ;

where Er = 2r�1.n � 1/r�1.2B C 1/r .
Proof According to Eq. (9), the error of cmult;1FK

can be bounded as follows:

kcmult;1FKk1 D

m1m2FKC0@m2FK�K1
v0

1;1 C

lX
&D1

.c1;1/&FK�K2v
0
2;1 �

dC1X
&D2

.c1;1/&FK�K2v
0
2;1�m2

dC1X
&D2

.2&�1c1;1/&FK

1A
1

6

km1m2FKk1 C km2FK�K1
v0

1;1k1C
0@ lX

&D1

.c1;1/& �
XdC1

&D2
.c1;1/&

1AFK�K2v
0
1;1


1

C

m2

dC1X
&D2

.2&�1c1;1/&FK


1

6ErC2.n�1/Er�N�C

.4.n�1/2.l�d//Er�N�C .2
dC2
�4/.n�1/Er (10)

Thus, the starting error can be easily obtained as
�0 < 3.n � 1/.2B C 1/2. Then, the magnitude of �
is calculated. For N users having a set of public-keys
K1, the worst case is that c1 is the product of all the
users’ fresh ciphertexts. Specifically, for N D 2, we
have fc1

1; f1g and fc1
2; f2g, where c1

1 and c1
2 denote the

fresh ciphertext vectors. The magnitude of � is bounded,
�N D2< .2.n�1/.2BC1// .2.n�1/.l�d/C1/ �0C

.2dC2
� 4/.n � 1/E2:

Further, as ND3, set fc0
1 D c1

1c1
2; f

0
1 D f1f2g and

fc1
3; f3g. So the magnitude of � is bounded,

�N D3 < .2.n � 1/.2B C 1// �N D2C

.4.n � 1/2.l � d//E2�0C

.2dC2
� 4/.n � 1/E3:

Accordingly, for N users, set fc0
1 D c1

1 : : : c
1
N �1; f

0
1 D

f1 : : : fN �1g and fc1
N ; fN g. So, the magnitude of � is

bounded,
� 6 .2.n � 1/.2B C 1//�N �1C

.4.n � 1/2.l � d//EN �1�0C

.2dC2
� 4/.n � 1/EN :

This yields to the following relationship:
� 6 .2.n � 1/.2B C 1//N�0C

.3N.n � 1/.l � d/EN C1/C

N.2dC2
� 4/.n � 1/EN D

3

2
EN C2 C 3N.n � 1/.l � d/EN C1C

N.2dC2
� 4/.n � 1/EN (11)
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By combining Eqs. (10) and (11), we get
kcmult;1FKk1 6 ErC.2.n � 1/.l � d/C 1/��

3

2
ErC2 C 3N.n � 1/.l � d/ErC1

�
C

.1CN.2dC2
�4/.n�1/.2.n�1/.l�d/C1//�

.2dC2
� 4/.n � 1/Er :

So, the decryption structure is obtained cmult;1Fr D

m1m2Fr C vmult;1. Since
kcmult;1Frk1 D km1m2Frk1 C kvmult;1k1:

Further, we obtain
kvmult;1k1 6 .2.n � 1/.l � d/C 1/��

3

2
ErC2 C 3N.n � 1/.l � d/ErC1

�
C

.1CN.2dC2
�4/.n�1/ .2.n�1/.l�d/C1//�

.2dC2
� 4/.n � 1/Er : �

According to Theorem 1, it can be found that when

dD0, kvmult;1k16.2.n�1/lC1/
�3
2
ErC2C3N.n�1/l�

ErC1

�
. This denotes the error generated only by the

ciphertext dimension extension technique.
Theorem 2 Set LBD constant d . The LBD&DEC

technique can decrease both the ciphertext dimension
and error magnitude, and d satisfies the following
relationship:
d D fmax.d/j.2d

�1//d 6 3.n�1/.2BC1/=2; d > 0g:

Proof Take the homomorphic multiplication as an
example, the LBD technique is to decrease the ciphertext
dimension and error magnitude. If the LBD technique is
not used in the ciphertext vector, the decryption structure
is assumed as c�

mult �FK D BitD..c�
1/

T/ � .c�
2/

T �FK . The
decryption can be completed by using the first column
of c�

mult � FK ,
c�

mult;1FK Dm1m2FK Cm2FK�K1
v�

1;1C

lX
&D1

.c�
1;1/&FK�K2

v�
2;1:

Assume the magnitude of errors v�
1;1 and v�

2;1 is �0.
According to Eq. (10),
kc�

mult;1FKk1 6 ErC.2.n � 1/l C 1/ 2.n�1/Er�N�
0:

Obviously, the LBD can reduce the ciphertext
dimension from l to .l �d/, but we want to decrease the
error magnitude at the same time. Note that the starting
error is �0 < 3.n�1/.2B C 1/

2. According to Theorem
1, when d D 0, we can obtain

�0 6 3EN C2=2C 3N.n � 1/lEN C1:

Compared to Eq. (11), there is a constant d > 0 that
makes �0 > �, which is given by

3N.n � 1/dEN C1 > N.2
dC2
� 4/.n � 1/EN

) 3.n � 1/.2B C 1/ >
.2dC1 � 2/

d
(12)

It can be easily found that .2d � 1//d is incremental
of d .d > 0/. So, d has an upper bound that makes � be
the closest to �0. We let d1 be the upper bound of d , if
d D d1, then � � �0. Therefore, we need to verify
the correctness of the relationship kc�

mult;1FKk1 >
kcmult;1FKk1. So, we have

kc�
mult;1FKk1 > kcmult;1FKk1

)d12.n � 1/Er�N�
0 > .2d1C1

� 2/Er

)
3

2
ErC2 C 3N.n � 1/lErC1 >

.2d1C1 � 2/Er

d1

)6.n�1/2.2BC1/.N lC2BC1/>
.2d1C1�2/

d1

(13)

Since 6.n � 1/2.2B C 1/.N l C 2B C 1/ > 3.n �

1/.2B C 1/ is obviously satisfied, Eq. (13) holds. Thus,
for any value of N , we can select d that satisfies d D
fmax.d/j.2d � 1//d 6 3.n� 1/.2B C 1/=2; d > 0g to
ensure kc�

mult;1FKk1 > kcmult;1FKk1. �
According to Theorems 1 and 2, the LBD&DEC

can be used to improve the decryption structure, while
decreasing the error magnitude. Consequently, Method
2 can be used to modify the NTRU-type multi-key
homomorphic encryption schemes.

5 Modified NTRU-Type Multi-Key
Somewhat Homomorphic Encryption

According to the analysis provided in Section 4, Method
2 has two advantages.

(1) The DEC technique improves the decryption
structure of the NTRU-type scheme and eliminates the
key-switching operations, which significantly decreases
the dependence of the error on N (the dependence is
exponentially decreasing).

(2) The LBD technique reduces the ciphertext
dimension and further decreases the error magnitude.

Based on Method 2, we propose an NTRU-type
MKSHE by using the LBD&DEC technique.

5.1 Modified NTRU-type MKSHE

Let � be a security parameter; qDq.�/ 2 Z is a
prime integer; and ˚n.x/ D x

n�1 C xn�2 C � � � C 1 (n
is a prime) is the sub-cyclotomic polynomial. For the
polynomial ring given by R D ZŒx�=˚n.x/ and Rq D

R=qR, and a B-bound error distribution � = �.�/ over
R, set �l as a B-bound error distribution space, where
l D dlog qe. The modified NTRU-type MKSHE (denote
as M-MKSHE) can be described as follows.
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(1) M-MKSHE:KeyGen.1�/: Sample f 0; g  �,
and set f = 2f 0 C 1, so that f � 1.mod 2/. If f is not
invertible in Rq , resample f 0  �. Set h D 2g=f 2

Rq , so pk WD h 2 Rq , sk WD f 2 R. Set l D dlog qe,
and let discard constant d satisfy the following
relationship:

dDfmax.d/j.2d
�1//d63.n�1/.2BC1/=2; d >0g:

Output: .pk; sk; int/ D .h; f; d/.
(2) M-MKSHE:Enc.pk; m/: Compute Om D

LBD2!dC1.Pof 2.m//, and sample s; e  �l�d .
Output: c WD OmC hsC 2e 2 Rl�d

q .
(3) M-MKSHE. Dec.sk1; sk2; : : : ; skN ; c/: Select the

first element c1 from the ciphertext vector c, let u WD
.sk1sk2 � � � skN /c1 2 Rq .

Output: m0 WD u.mod 2/.
(4) M-MKSHE. Eval:Add.c1; c2/: Compute the

addition of c1 and c2 as cadd D Œc1 C c2�q .
(5) M-MKSHE. Eval:Mult.c1; c2/: Compute the

matrix C D LBD2!dC1.BitD.cT
1// 2 R

.l�d/�.l�d/
q :

Output: cmult D C � cT
2 2 R

l�d
q .

5.2 Analysis results

(1) Correctness of M-MKSHE scheme
Homomorphic addition: Since Om˛ D .m˛;

2dC1m˛; : : : ; 2
l�1m˛/, by using FK = f1f2 � � � fr

to decrypt the ciphertext vector, we can get
FKc˛ D .FKm˛; 2

dC1FKm˛; : : : ; 2
l�1FKm˛/ C v˛;

where v˛ denotes the error vector. For cadd D Œc1 C c2�q ,
we get

cadd �FKDFK �.c1Cc2/DFK �..m1Cm2/; 2dC1.m1Cm2/;

: : : ; 2l�1.m1Cm2//C FK�K1
v0

1CFK�K2
v0

2;

where v0
1 and v0

2 are the error vectors with the magnitude
of �. So, by selecting the first column of caddFK , we
have

Œcadd;1FK �q.mod 2/ D .m1 Cm2/:

Homomorphic multiplication: Considering the
decryption of homomorphic multiplication, we can get
cmult � FKD.LBD2!dC1.BitD.cT

1//�c
T
2/ � FK 2R

l�d
q :

By selecting the first column of cmult � FK , we get

cmult;1FK D m1m2FK C

 
m2FK�K1

v0
1;1C

lX
&D1

.c1;1/&FK�K2
v0

2;1 �

dC1X
&D2

.c1;1/&FK�K2
v0

2;1�

m2

dC1X
&D2

.2&�1c1;1/&FK

!
:

Note that Œcmult;1FK �q.mod 2/ D m1m2.
Remark: It is not necessary to consider whetherK1\

K2 is empty.
(2) Circuit depth of M-MKSHE scheme

Theorem 3 For the parameter values provided
above, the M-MKSHE can evaluate any circuit depth,

L =
log q

.N � j C 1/ log.n � 1/C log log q CO.1/
:

Proof As already mentioned, in this work we
consider only the error of multiplication. Without loss
of generation, we set K1 \ K2 D fpki1

; : : : ; pkij
g, so

r D 2N � j . For any level of multiplication operations,
the multiplication of ciphertexts can be decrypted by
FK . According to Theorem 1, after the first level
homomorphic multiplication evaluation, the error of
c

.1/
mult;1FK (here c.1/

mult;1 denotes the first element of vector
cmult in the first level) is bounded,

kv
(1)
mult;1k1 6 .2.n � 1/.l � d/C 1/

�
3

2
ErC2C

3N.n � 1/.l � d/ErC1

�
C .2dC2

� 4/.n � 1/ErC

N.2.n�1/.l�d/C1/..2dC2
�4/.n�1//2Er :

At the second level, we set

c.2/
1 D

2666666666664

lP
&DdC2

.c1;1/& .2
&�1m2 C e

0
2;& /C .c1;1/1.2

0m2 C e
0
2;1/

lP
&DdC2

.c1;dC2/& .2
&�1m2 C e

0
2;& /C .c1;dC2/1.2

0m2 C e
0
2;1/

:::
lP

&DdC2

.c1;l/& .2
&�1m2 C e

0
2;& /C .c1;l/1.2

0m2 C e
0
2;1/

3777777777775
2 Rl�d

q :

In the same way, we can get c.2/
2 2 Rl�d

q . Let c.2/
1

and c.2/
2 correspond to the public-key sets K1 and K2,

respectively. It should be noted,

c.2/
mult �F

.2/
K D.LBD2! dC1.BitD.c.2/

1 //�c.2/
2 /�F

.2/
K 2R

l� d
q :

Further, the first column of c.2/
mult � F

.2/
K is selected for

homomorphic decryption,
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c
.2/
mult;1F

.2/
K D m

.2/
1 m

.2/
2 F

.2/
K C0@m.2/

2 FK�N v
.1/
mult;1 C

lX
&D1

.c1;1/&FK�N v
.1/
mult;1�

dC1X
&D2

.c1;1/&FK�N v
.1/
mult;1Cm

.2/
2

dC1X
&D2

.2&�1c1;1/&FK

1A D
m

.2/
1 m

.2/
2 F

.2/
K C v

.2/
mult;1:

So, we obtain the bound of kv.2/
mult;1k1,

kv
.2/
mult;1k162.n�1/.1C2.n�1/.l�d//Er�Nkv

.1/
mult;1k1C

.n � 1/.2dC2
� 4/Er :

For convenience, let P = .1C 2.n � 1/.l � d//,
Q D .2dC2 � 4/.n � 1/. So, we have
kv

.2/
mult,1k162.n � 1/P �Er�N kv

.1/
mult,1k1CQ�Er 6

3

2
P 2
�E2r�N C2C3N�P.n�1/.l�d/E2r�N C1C

.1CN �Q � P / .P �Q/E2r�N CQ �Er :

After L levels of homomorphic operations, the error
magnitude can grow up,
kv

.L/
mult;1k1<2.n�1/.1C2.n�1/.l�d//Er�N kv

.L�1/
mult;1 k1C

Q �Er<
3

2
PL
�ELr�.L�1/NC2C

3N � PL�1.n�1/.l�d/ELr�.L�1/NC1C

.1CN �Q � P / .PL
�Q/ELr�.L�1/NC

Q �

LX
@D2

P @�1
�E.@�1/r�.@�2/N (14)

where @ is a constant variable. The magnitude of
km

.L/
1 m

.L/
2 FKk1 is ignored because it is much smaller

than kv.L/
mult;1k1, and let kv.L/

mult;1k1 < q=2.
According to Theorem 2, if the LBD technique is not

used in our scheme, the value of d is 0, which yields to
the following error bound of kv.L/

mult;1k1:

k Qv
.L/
mult;1k1 <

3

2
.1C 2.n � 1/l/LELr�.L�1/N C2C

3N.1C 2.n � 1/l/L�1.n � 1/lELr�.L�1/N C1:

Thus, by selecting d D fmax.d/j.2dC1 � 2/=d 6
3.n� 1/.2B C 1/; d > 0g, the magnitude of kv.L/

mult;1k1

becomes infinitely close to k Qv.L/
mult;1k1. The limit state is

selected at each level, and the final error after the circuit
depth of L satisfies the following relationship:

k Qv
.L/
mult;1k1 <

q

2

) L log .1C 2.n � 1/l/C .Lr � .L � 1/N C 2/�

log.2.n�1/.2BC1/2/Clog
�
1C

N

4.n�1/.2BC1/2

�
<

log q C log 3

) L�
log q

.N�jC1/ log.n�1/Cloglog qCO.1/
(15)

�
According to Eqs. (14) and (15), with the increase of

parameter N , the error magnitude increases, and the
circuit depth decreases. However, j can reduce the
impact of N , which is contrary to the BC-MKSHE
scheme.

5.3 Parameters comparison

In the BC-MKSHE scheme, after one homomorphic
multiplication operation, the error satisfies the following:

ErrorBC-MKSHE<6l.n � 1/E2N C 2
2NE4N :

However, in our M-MKSHE scheme, the upper bound
of the error is given by:

ErrorM-MKSHE 6 .2.n � 1/l C 1/��
3

2
ErC2C3N.n � 1/lErC1

�
CEr :

The ratio of the two previous error bounds is given,

Ratio D
ErrorBC-MKSHE

ErrorM-MKSHE
�

6l.n � 1/E2N C 2
2NE4N

.2.n�1/lC1/

�
3

2
ErC2C3N.n�1/lErC1

�
CEr

�

22NE2N

N.n � 1/ log q CO.1/
(16)

According to Eq. (16), the error magnitude of our M-
MKSHE scheme is decreased exponentially compared
to the BC-MKSHE scheme.

In the following, the comparison of these two schemes
regarding the other parameters is provided, such as the
ciphertext size, secret key size, public key size, and
evaluation key size.

Take one homomorphic multiplication operation as an
example. In the BC-MKSHE scheme, the ciphertexts
are two polynomials in Rq , whose degree is smaller than
.n� 1/, so the size of ciphertexts is 2.n� 1/ log q. Also,
the public keys are 2N polynomials in Rq , so the size of
public keys is 2N.n � 1/ log q. Further, the joint secret
keys for decrypting are r polynomials in R, and their
coefficients are smaller than .2B C 1/, so the size of
joint secret keys is r.n � 1/ log.2B C 1/. Furthermore,
the evaluation keys are dlog qe-dimensional polynomials
whose degree is smaller than .n�1/. Then, after j -times
evaluations, the size of the evaluation keys is j.n �
1/ dlog qe log q.

In our modified scheme, the key-switching technique
is not used and none of the evaluation keys is
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required. The ciphertexts are .dlog qe � d/-dimensional
polynomial vectors, so their size is 2.n�1/.dlog qe �
d/ log q. The same as for the BC-MKSHE, the size of
public keys is 2N.n�1/ log q, and the size of joint secret
keys is r.n � 1/ log.2B C 1/. See Table 1 for details,
the comparison of the parameters of the M-MKSHE and
BC-MKSHE schemes is provided.

As shown in Table 1, our scheme does not require
the evaluation key, and the error magnitude is reduced
exponentially, but the ciphertext size is increased by
.dlog qe � d/ times.

6 Leveled NTRU-Type Fully Homomorphic
Encryption

According to Theorem 3, the circuit depth is reduced
with the decrease of N , so the modulus-reduction
technique has to be used to decrease the error magnitude
after every homomorphic evaluation.

Modulus-reduction[28, 29]: Modulus-reduction
technique can change the inner modulus q of a
ciphertext c to the smaller modulus p (p D q mod 2)
while roughly scaling down the error by the ratio of p=q
and preserving the correctness of the decryption under
the same secret key.

ModulusSwitch.c; q; p/: For input c 2 Rp, and a
smaller modulus p, output is c0 2 Rp, which is the
closest element to .p=q/ � c and c0 D c mod 2.

Lemma 3 [28] Let p and q be two odd modulus, let
c 2 Rq , and define c0 2 Rq , whose value is the closest
to .p=q/c, then c0 � c.mod 2/. So for any f , if
kŒfc�qk1 < q=2 � .q=p/kf k1, there is

Œfc0�p D Œfc�q.mod 2/; kŒfc0�pk1 <

.p=q/kŒfc�qk1 C kf k1:

Then, by using the modulus-reduction technique, a
leveled MKFHE scheme is designed.

6.1 Leveled NTRU-type MKFHE

The M-MKSHE is changed so that it uses modulus

reduction during the homomorphic evaluations.
KeyGen.1�/ will sample a ladder of decreasing moduli
q0 > q1 > � � � > qL. The error distribution � is chosen
in order to guarantee that any sample is B-bounded,
where B � qL. In contrast to the M-MKSHE, the
M-MKFHE adopts the LBD technique twice to keep
the right dimension of ciphertexts. Therefore, in the
following, two kinds of LBD functions are introduced.

Let LBD!
d1!d2

.V/ denote the .d1 ! d2/ columns of
the matrix V are discarded.

Let LBD#

d1!d2
.V/ denote the .d1 ! d2/ rows of the

matrix V are discarded.
The modified leveled scheme is as presented below.
(1) M-MKFHE:KeyGen.1�/: For every i 2 f0; 1;

: : : ; Lg, sample g.i/; f 0.i/  �, and set f .i/ D 2f 0.i/C

1, so that f .i/ � 1.mod 2/. If f .i/ is not invertible in
Rqi

, resample f 0.i/  �. Let h.i/ D 2g.i/=f .i/ 2

Rqi�1
, and set pk WD h.0/ 2 Rq0

, sk WD f .L/ 2 RqL
.

Set the low bit discarded constant d on each ladder,
where dDfmax.d/j.2dC1�2/=d63.n�1/.2BC1/; d >
0g.

Output: fpk; sk; intg D fh.0/; f .L/; dg.
(2) M-MKFHE:Enc.pk; m/: Sample s.0/; e.0/  

�l0�d , let li D dlog qie and Om D .Pof 2.m//T 2 Rl0
q0

.
Output the ciphertext vector,

c.0/
WD h.0/s.0/

C 2e.0/
C LBD#

2!dC1
. Om/ 2 Rl0�d

q0
:

(3) M-MKFHE.Dec.sk1; sk2; : : : ; skN ; c.L//: Select
the first element c.L/

1 2 RqL
from ciphertext vector

c.L/ 2 R
lL
qL

, set u WD .sk1sk2 � � � skN /c
.L/
1 2 RqL

.
Output: m0 WD u.mod 2/.
(4) M-MKFHE :Eval:Add.c.i/

1 ; c
.i/
2 /: For the two

ciphertexts c.i/
1 ; c

.i/
2 2 R

li �d
qi

in the i-th level, compute
the addition of c.i/

1 and c.i/
2 as c.i/

add D Œc.i/
1 C

c.i/
2 �qi

2 R
li �d
qi

. Then, reduce the modulus, so we have

c.i + 1/
add = .qiC1=qi / � c

.i/
add.mod 2/.

Output: Qc.iC1/
add D LBD#

liC1�d + 1!li �d
.c.iC1/

add /.

(5) M-MKFHE :Eval:Mult.c.i/
1 ; c

.i/
2 /: For the two

Table 1 Comparison of parameters between BC-MKSHE and M-MKSHE.
Parameter BC-MKSHE scheme M-MKSHE scheme

Maximum size
of error 6l.n�1/E2NC2

2NE4N

ErC .2.n � 1/.l � d/C 1/

�
3

2
ErC2C3N.n � 1/.l � d/ErC1

�
C

.2dC2
� 4/.n � 1/Er C .2.n � 1/.l � d/C 1/ .N.2

dC2
� 4/.n � 1//2Er

Ciphertext size 2.n � 1/ log q 2.n � 1/.dlog qe � d/ log q
Evaluation key size j.n � 1/ dlog qe log q 0

Public key size 2N.n � 1/ log q 2N.n � 1/ log q
Secret key size r.n � 1/ log.2B C 1/ r.n � 1/ log.2B C 1/

Note: d D fmax.d/j.2d + 1 � 2/=d 6 3.n � 1/.2B C 1/; d > 0g:
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ciphertexts c.i/
1 ; c

.i/
2 2 R

dlog qi e�d
qi

in the i-th level,
compute the multiplication of c.i/

1 and c.i/
2 as c.i/

mult D

LBD!
2!dC1.BitD.c.i/

1 // � c.i/
2 2 R

li �d
qi

. Then, by
reducing the modulus, we get c.iC1/

mult D .qiC1=qi / �

c.i/
mult.mod 2/.

Output: Qc.iC1/
mult D LBD#

liC1�d + 1!li �d
.c.iC1/

mult /.

6.2 Analysis

(1) Scheme framework
The process of homomorphic operation in the M-

MKFHE scheme is shown in Fig. 1. The flowchart
presented in Fig. 1 can be used as a model framework
for algorithm design. In Fig. 1, the ciphertext is
expanded to the vector starting from the plaintext
vector, i.e., c WD LBD#

2!dC1
(Pof2T.m//C hsC 2e 2

Rl�d
q . Only the first element of the ciphertext vector is

decrypted. Therefore, the correctness of the first term of
LBD!

2!dC1.BitD.c.i/
1 //�c

.i/
2 should be ensured. In order

to complete the homomorphic operation, the ciphertext
has to be maintained in the vector form. Although the
complexity of the ciphertext calculation is increased
when the ciphertext vectors are multiplied, the key-
switching technique is not used in our scheme.
(2) Correctness

For B � qL, the selected LBD constant d is suitable
for all levels of homomorphic operations. Thus, to
reduce the modulus every time, we need to perform
the LBD#

i!j ./ to discard some rows of the ciphertext
vector. For instance, at the i-th level, when the
homomorphic operations are completed, we get the .li �
d/-dimensional ciphertexts c.i/

add; c
.i/
mult 2 R

li �d
qi

. After

dimensiondimension

H

T

H

sk1 sk2

li li

Fig. 1 Process of homomorphic operation in the M-MKFHE
scheme.

the ciphertext is decomposed by BitDecomp():RqiC1
!

R
dlog qiC1e

qiC1
at the .i C 1/-th level, c.i/

add and c.i/
mult are

decomposed to .li �d/� .liC1�d/-dimension matrices.
Therefore, the following algorithm has to be performed,
and the last .li � liC1/-th rows of the matrixes have
to be discarded to keep the correctness of the next
homomorphic operation. The conversion progress is
provided in Algorithm 1.

The conversion algorithm is important to achieve
a fully homomorphic operation in our M-MKFHE
scheme. It can be seen that the ciphertext dimension
is reduced with the increase in the circuit depth L

by using the LBD&DEC technique. So, the modulus-
reduction of our M-MKFHE scheme has two main
advantages: (1) Reducing the modulus can decrease the
error magnitude. (2) Reducing the modulus can also
decrease the ciphertext dimension at different levels.
Both of these advantages can improve the efficiency
of the MKFHE scheme.
(3) Security

Our leveled M-MKFHE denotes a modified MKFHE
in the LTV12 scheme. The techniques of LBD& DEC
are used. The security of dimension expansion depends
on the RLWE and DSPR assumptions over prime
cyclotomic rings. The LBD is based on functions
BitDecomp./ and Powersof 2./. As known in Ref. [6],
functions BitDecomp./ and Powersof 2./ have no effect
on security. Thus, the LBD technique does not affect
the security of our scheme. According to Refs. [6, 26],
our M-MKFHE scheme is IND-CPA secured under the
RLWE and DSPR assumptions over prime cyclotomic
rings.

7 Conclusion

By using the LBD&DEC technique, our modified
multi-key FHE improves the inherent homomorphic

Algorithm 1 Conversion at different levels
At the i -th level, the output is expressed as
c.i/

add D Œc
.i/

1
C c.i/

2
�qi
2 R

li �d
qi

and
c.i/

mult D LBD!
2!dC1.BitD.c.i/

1
// � c.i/

2
2 R

li �d
qi

.
At the .i C 1/-th level, compute
c.iC1/

add D .qiC1=qi /Œc.i/

1
C c.i/

2
�.mod 2/ and

c.iC1/
mult D .qiC1=qi / � c.i/

mult.mod 2/:
then input
Qc.iC1/

add D LBD#

liC1�d + 1!li �d
.c.iC1/

add / 2 R
liC1�d
qiC1

and

Qc.iC1/
mult D LBD#

liC1�d + 1!li �d
.c.iC1/

mult / 2 R
liC1�d
qiC1

.

Note: Qc.iC1/
add or Qc.iC1/

mult is the input ciphertext at the .iC1/-th
level.
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multiplication decryption structure of the NTRU in the
LTV12 scheme, and successfully eliminates the key-
switching operations and decreases the magnitude of
error exponentially. Moreover, our scheme can more
effectively process the quadratic part of a ciphertext
product. The LBD technique used in our M-MKFHE
can minimize the ciphertext dimension and improve the
efficiency of the homomorphic operation.
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