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A Generative Method for Steganography by Cover Synthesis
with Auxiliary Semantics
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Abstract: Traditional steganography is the practice of embedding a secret message into an image by modifying the

information in the spatial or frequency domain of the cover image. Although this method has a large embedding

capacity, it inevitably leaves traces of rewriting that can eventually be discovered by the enemy. The method of

Steganography by Cover Synthesis (SCS) attempts to construct a natural stego image, so that the cover image is

not modified; thus, it can overcome detection by a steganographic analyzer. Due to the difficulty in constructing

natural stego images, the development of SCS is limited. In this paper, a novel generative SCS method based on

a Generative Adversarial Network (GAN) for image steganography is proposed. In our method, we design a GAN

model called Synthetic Semantics Stego Generative Adversarial Network (SSS-GAN) to generate stego images

from secret messages. By establishing a mapping relationship between secret messages and semantic category

information, category labels can generate pseudo-real images via the generative model. Then, the receiver can

recognize the labels via the classifier network to restore the concealed information in communications. We trained

the model on the MINIST, CIFAR-10, and CIFAR-100 image datasets. Experiments show the feasibility of this

method. The security, capacity, and robustness of the method are analyzed.

Key words: information hiding; steganography; steganography without modification; Steganography by Cover

Synthesis (SCS); generative adversarial networks

1 Introduction

Image steganography is a technique of hiding secret
messages in a cover image by advanced methods
to prevent the messages from being discovered
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by an adversary. Traditional image steganography
usually uses a cover-modified method to embed
messages in the image. Common spatial domain-based
advanced methods include the Highly Undetetable
steGO (HUGO) algorithm[1], Wavelet obtained Weights
(WoW) algorithm[2], and the Spatial UNIversal WAvelet
Relative Distortion (S-UNIWARD) algorithm[3]. The
JPEG domain UNIversal WAvelet Relative Distortion
(J-UNIWARD) algorithm[3] is a transform domain-
based method. The modification-based methods are
also naturally applied to video steganography[4, 5];
however, these approaches, based on modification,
inevitably introduce detectable anomalies to the
original cover. Traditional steganography needs to be
able to withstand current techniques based on deep
learning steganography analyzers[6–8]. Some scholars
have proposed the concept of Steganography Without
Modification (SWM)[9]. The SWM methods usually



Zhuo Zhang et al.: A Generative Method for Steganography by Cover Synthesis with Auxiliary Semantics 517

employ two methods for information hiding. First,
secret messages can be delivered by selecting a natural
image[10–12], however, this type of method requires
constructing a large natural image database and building
complex index structures to establish a mapping
relationship between images and information through
complex mathematical functions. Second, the sender
tries to embed secret messages in the image by building
a carrier. Due to the difficulty in constructing natural
images, some researchers have realized steganography
by synthesizing texture images[13, 14]. However, the
steganographic capacity of the synthesized texture
image is low. Moreover, since the synthesized image
is not a “natural image”, it easily causes suspicion of
the warder in the real world.

In 2014, Goodfellow et al.[15] proposed a deep-
generative network model, called the Generative
Adversarial Network (GAN). Recently, the GAN model
has been widely used for image generation[16, 17]. The
emergence of GAN also provides a new opportunity
for the development of information hiding technology.
Some scholars have applied GAN to the information
hiding field[18–23] and applied the game theory-based
generative model to the various elements of the
steganography model. Most of these methods[18–23]

attempt to use an adversarial strategy in GAN to
design a cover-modified steganography for improving
the resistance to steganalysis. Currently, the GAN-
based method is seldom used in the SWM field. Some
methods attempt to construct the stego image by a
direct generator[21–23]. The ability to generate natural
images based on GAN has gradually improved. It
provides a powerful tool for SCS. Inspired by these
methods[21–23], we propose a novel cover-synthesis
steganography technique based on a generative model,
and we call it Synthetic Semantics Stego Generative
Adversarial Network (SSS-GAN). In our method,
relationship maps between secret message segments
and image semantic information are first built, and then
semantic information is used to generate stego images
through the trained generative model. Simultaneously,
the extractor (a subnetwork of the model) can recognize
the semantic label of the generated stego image to
achieve message extraction. Compared with previous
works, the main contributions of this paper are as
follows:

(1) With SSS-GAN adversarial learning, our
generative model can quickly train to converge on
different image datasets. Then, the trained generator

can directly generate stego images from the secret
message, and the message extractor can extract the
secret information in these images.

(2) Through the optimized training of the message
extractor, our method can achieve a 100% message
extraction accuracy in fixed-length image sequences,
which makes the method more practical.

(3) Since there is no modifying process in our
method, our method can resist detection by the state-
of-the-art steganalysis algorithm.

(4) Because messages actually exist in the semantic
information of images, the dense images using the
SSS-GAN model have the robustness to resist image
processing.

The rest of the paper is structured as follows. In
Section 2, we present the related work on SWM and
some proposed GAN-based methods of steganography.
In Section 3, we describe the proposed method in detail.
In Section 4, we present the experimental results and
analysis. In Section 5, we state our conclusions.

2 Related Work

2.1 Traditional steganography without
modification

Steganography without modification means to complete
communication without rewriting the carrier image
(cover image). In general, there are two kinds of
SWM methods widely used for images: cover selection
and cover synthesis[9]. Cover selection steganography
uses natural images to convey secret messages. The
main idea of this method is to establish a mapping
relationship between secret messages and natural
images and then pass secret information by these
natural images so that the statistical-based steganalysis
algorithm can be avoided. Zhou et al.[10] proposed a
robust hashing algorithm. They used this algorithm
to calculate the hash sequence of the images. Then,
these images were indexed into a dataset according
to their hash sequences. For the binary secret data
segment, the method selects the image from the
database with the hash value equal to the value of the
segment. Zhou et al.[11] also proposed another SWM
method using the bag-of-words model to establish a
mapping relationship between secret data segments and
images. However, this approach often requires building
a large image library, and numerous calculations are
required to establish a correspondence between the
secret information and the images. The idea of the
cover-synthesis approach is to artificially synthesize
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a secret message into a texture image. Xu et al.[13]

presented a texture image synthesis approach in which
Local Binary Pattern (LBP) encoding is first used
to draw dots on a white paper, representing secret
information, and then the texture sample is selected to
synthesize a texture map according to the LBP dot map.
Wu and Wang[14] presented a novel method for texture
synthesis. They transformed an input image or a text
message into an intricate texture by combining several
reversible functions provided in the system. The input
image or message could be recovered by reversing the
process of these functions. However, this kind of texture
synthesis steganography is based on the premise that the
cover may not represent the content in the real world,
which easily causes warden suspicion.

2.2 Steganography with GAN

Recently, with the development of artificial intelligence
technology, some new steganographic modes have
gradually attracted attention. Different from the
traditional modification-based steganography, many
scholars have begun to pay attention to image
steganography methods based on the generation model.

Cover-modified steganography with GAN.
Volkhonskiy et al.[18] proposed a Steganographic
Generative Adversarial Network (SGAN) model
based on Deep Convolutional Generative Adversarial
Network (DCGAN). The SGAN model consists of
a generator network for generating cover images, a
discriminator network for discriminating generated
images from real images, and a steganalyzer network
for steganalysis. The experiment proves that hiding
information in the SGAN-generated cover images
is more secure than hiding information in natural
images. Tang et al.[19] proposed the framework
of Automatic Steganographic Distortion Learning
(ASDL). They used adversarial networks to learn a
generator G, obtained the image pixel modification
probability matrix by sampling G, and then used the
STC method[24] to embed the information. This scheme
is called ASDL-GAN. However, the performance
of this method is still inferior to the conventional
steganography algorithm S-UNIWARD. Yang et al.[20]

proposed a GAN-based scheme UT-SCA-GAN. In
this study, a generator based on U-NET has been
proposed to translate a cover image into an embedding
change probability. Compared with the ASDL-GAN
method[19], this framework can dramatically increase
the security performance, and it performs better

than the hand-crafted steganographic algorithm S-
UNIWARD. These GAN-based methods described
above are embedding-based methods.

Cover-synthesis steganography with GAN. There
are some novel methods that use GAN to learn how
to directly generate cover (stego) images. Hayes and
Danezis[21] defined a game confrontation between three
networks, Alice, Bob, and Eve, while training the
steganography and steganalysis methods. Finally, the
generator (Alice) learns how to generate images. Hu et
al.[22] recently proposed a GAN-based SWM method.
First, the mapping rules of noise and messages are
established, and the image is directly generated by
the trained DCGAN. Afterward, they redesigned and
retrained a new network to extract the messages in the
generated image. However, the image generated by this
method is of poor quality. In addition, a separately
trained message extractor is needed to extract the
noise, but the extraction accuracy is low. In particular,
as the number of embedded messages increases in
the stego image, the accuracy of message extraction
decreases significantly. Liu et al.[23] proposed a GAN-
based SWM framework for the construction of a Digital
Cardan Grille (DCG) for information hiding. The
message is written to the corrupted region of an
image that needs to be filled in advance according
to the DCG. Then, the corrupted image with the
secret message is fed into a DCGAN model for
semantic image inpainting. The GAN reconstructs the
corrupted image but also generates a stego image that
contains the logic rationality of the image content.
The DCG is the key for extracting messages in the
secret communication. Some scholars have also used
neural network models to realize the cover-synthesis
steganography with other media carriers (covers),
such as text and audio. Fang et al.[25] proposed a
steganographic model based on the existing long short-
term memory language model and demonstrated that
the model can produce realistic tweets and emails while
hiding information. Yang et al.[26] recently proposed an
automatic audio generation-based steganography model
based on lookback recurrent neural network; the model
can automatically generate audio covers based on secret
information.

In this paper, we propose a novel cover-synthesis
steganography framework via generative adversarial
networks (SSS-GAN). In our method, the model needs
to be trained only once on an image dataset. By
mapping the secret message segment into the semantic
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information of the image, the model can directly
generate the stego image via our model. Meanwhile, the
extractor network of the model can directly recognize
the semantic information of the stego image with high
accuracy. In addition, our model can quickly train to
converge on different datasets.

3 Our Method

As illustrated in Fig. 1, the proposed steganography
framework consists of three phases.

In the first phase, we train the proposed SSS-GAN
model with semantic labels (we use image category
labels as semantic information in this paper) on an
image dataset that is constructed by collecting a large
number of images with different semantic labels from
the Internet. When the model converges, we obtain the

Fig. 1 Proposed steganography framework using SSS-
GAN.

image generator (G network) and auxiliary classifier (C
network).

In the second phase, we use the trained G network
combined with random labels and noise to generate a
large number of images to form a stego image dataset
and further train the OC network (obtained by connecting
the D network to the C network) to improve the
extraction accuracy of the message extractor.

In the third phase, the sender segments the secret
information and maps the information segmentation to
the semantic label and then uses G to generate the
stego image. The receiver uses OC as an extractor to
extract the semantic information in the received stego
image and then reverse-maps the semantic information
into a secret information segment. Table 1 presents the
notations used in this paper.

3.1 Mapping rule for information to semantic
labels

Mapping the information to image semantic labels is
preparation before steganography. We can segment the
binary data of the m-bit from the binary data of secret
information S and then map it to the j-th image semantic
label according to the value of the m-bit information
(e.g., we map every 6-bit to one of 64 labels), n D 2m,
as shown in Fig. 2.

After obtaining the semantic labels, we use the SSS-
GAN model to generate the stego image. The model is
described in detail below.

3.2 SSS-GAN model design

The SSS-GAN model contains three networks: a

Fig. 2 Diagram for mapping secret data into semantic
labels.

Table 1 Notations used in this paper.
Symbol Description Symbol Description

G Generator network D Discriminator network
C Auxiliary classifier network OC Extractor
c Real semantic label ĉ Semantic label extracted by OC
z Random noise stego Images generated by G

Xreal Real image from the image dataset Xfake Generate image
S Secret information sj j-th segment of S
ĉj j-th semantic label zj j-th random noise
˛ Hyperparameter V 0 or 1
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generator network (G), a discriminator network (D),
and an auxiliary classifier network (C ). The model
structure is shown in Fig. 1. The generative network
G is used to combine the noise z and the semantic
label c of the image to generate a picture Xfake,
XfakeDG.c; z/; D is used to judge the true and false
probabilities of the input image, which can be expressed
as D.X/ D P.V jX/, X 2 fXreal; Xfakeg, V 2 f0; 1g;
the auxiliary classifier C is used to determine the
category label implied by the image, which can be
expressed as C.X/ D P.I jX/, X 2 fXreal; Xfakeg, I 2

fc1; c2; : : : ; cng.
The detailed configurations of the three networks are

as follows:
In Tables 2 – 4, Y dim represents the dimension

of the label, and Z dim represents the dimension
of the noise; FC represents a fully connected layer;
Conv2d represents a 2-D convolutional layer; BN
represents batch normalization; ReLU represents the
rectified linear unit; and leaky ReLU represents a leaky
rectified linear unit. The kernel configurations of the
convolutional layers are given in the following format:
filter/stride (kernel width�kernel height/stride); output

Table 2 Detailed architecture of the G network.
Layer Fliter/Stride Output size Process

1 - Z dim+Y dim -
2 - 1024 FC-BN-Relu
3 - 128�7�7 (128�8�8) FC-BN-Relu
4 - 7�7�128 (8�8�128) Reshape
5 4�4 / 2 14�14�16 (16�16�64) Dconv2d-BN-Relu
6 4�4 / 2 28�28�1 (32�32�3) Dconv2d-Sigmoid

Table 3 Detailed architecture of the D network.

Layer Fliter/
Stride Output size Process

1 - 28�28�1 (32�32�3) -
2 4�4 / 2 14�14�16 (16�16�64) Conv2d-Leaky Relu

3 4�4 / 2 7�7�128 (8�8�128) Conv2d-BN-Leaky
Relu

4 - 6272 (8192) Reshape
5 (Input
for C)

- 1024 FC-BN-Leaky Relu

6 - 1 FC-Sigmoid

Table 4 Detailed architecture of the C network.
Layer Fliter/Stride Output size Process

1 - 1024 -
2 - 128 FC-BN-Leaky Relu
3 - Y dim FC
4 - 1 Softmax
5 - 1 Arg max

size (feature map width�feature map height�numbers
of output feature maps). The settings in the table are
for the MNIST training set[27] (the image is a 28�28
grayscale image), and the settings in parentheses are
for the CIFAR dataset[28] (the image is a 32�32 color
image).

3.3 Training strategy for the SSS-GAN

The aim of the generative model G is to generate an
image according to the semantic label c, which cannot
be distinguished by D, and the semantic label of the
generated image can be recognized by the auxiliary
classifier. To achieve this goal, we draw on the design
method of the loss function of the auxiliary classifier
GAN[29] to define the loss function of the model as
follows:

max
G�C

max
D�C

LSSS-GAN
D LSSS-GAN

G�C C LSSS-GAN
D�C (1)

where
LSSS-GAN

G�C D.1 � ˛/ �E Œlog P .V D 1jXfake/�C

˛ �E Œlog P .I D cjXfake/� (2)

LSSS-GAN
D�C D.1 � ˛/ fE Œlog P .V D 1jXreal/� C

E Œlog P .V D 0jXfake/�gC

˛ � fE Œlog P .I D cjXreal/� C

E Œlog P .I D cjXfake/�g (3)

LSSS-GAN
G�C and LSSS-GAN

D�C are linear combinations of the
G network and C network and D network and C network
loss, respectively. We use a hyperparameter ˛ 2 .0; 1/

to control the tradeoff between the importance of the
generated image quality and information extraction
accuracy.

Update rules. Model training uses a gradient descent
method to update network weights according to the
following rules:

Model training uses a gradient descent method to
update network weights according to the following
rules:
� Keeping the G fixed, update the D and C by

WD, C  WD, C C D, CrD, CLSSS-GAN
D�C (4)

� Keeping the D and C fixed, update the G by
WG  WG C GrGLSSS-GAN

G�C (5)

where WX represents the weights of neural network X,
and rXLSSS-GAN represents the gradient update value of
the X network.

3.4 Training strategy for the extractor

Generator G, discriminator D, and auxiliary classifier C
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are obtained in the first phase. There is no need to design
a new classifier to identify the stego image because
we obtain classifier C in the process of adversarial
training. This classifier can extract the semantic labels
of most real images and stego images. We attempt to
optimize the classifier on the stego image dataset to
further improve the extraction accuracy for the stego
image.

We first use the trained G to combine the random
noises and the random labels to generate the stego
image dataset and connect D and C as a network
OC (connect the trained D and C structures and keep

the both networks’ parameters). Then, we perform
further training on the stego image dataset, as shown
in Fig. 1. In this process, we optimize the extractor OC
by as much training as possible to improve its accuracy.
The optimization goal for training OC is to minimize
the deviation between the input label c and recovery
label ĉ resolved by extractor OC . The loss function of
the extractor model is defined as the cross-entropy loss,
which is shown in Eq. (6), where H.�/ represents the
cross-entropy loss function,

L. OC/ D H.c; ĉ/ D H.c; OC.G.z; c/// (6)

When the training loss is sufficiently small, we stop
training for OC and use OC to recover secret data from
the stego images generated by G.

3.5 Secret communication algorithms

After the SSS-GAN model is trained, the sender
and receiver follow the algorithms below for secret
communication.

Information hiding algorithm. The sender uses the
semantic label and the random noise as the driver,
generates the image through the G of the trained SSS-
GAN model, and then transmits the image. The detailed
algorithm is shown in Algorithm 1.

Information extraction algorithm. After the
receiver acquires the image, the image semantic label
is identified by OC , and then, the secret message is
extracted through reverse mapping. The detailed
algorithm is shown in Algorithm 2.

4 Experiments

In this section, we introduce our experimental details
and results. The experiments consist of two parts. First,
the SSS-GAN model is trained on three different
datasets to verify the feasibility of our method. Then,

Algorithm 1 Stego image generation
Input: secret information S; random noise zj

Output: stego

1: train the model; obtain G and OC networks;
2: n D ceil.length.S/=m/; # divide secret information S into n

segments with length of m-bit;
3: Map each information segment to one kind of semantic

labels cj ;
4: for j = 1 to n do
5: xj D Contact

�
zj ; cj

�
; # connect zj and cj as a local

variable xj ;
6: stegoj D G

�
xj

�
; # put xj into G network;

7: insert stegoj into stego;
8: end for
9: return stego

Algorithm 2 Secret information extraction
Input: stego
Output: S

1: Obtain OC network;
2: n D length.stego/;
3: for j = 1 to n do # loop will iterate for all stego images
4: Ocj D

OC
�
stegoj

�
; # put stegoj into OC network

5: recover secret data ŝj from ĉj according to the reverse
mapping rules;

6: insert ŝj into S;
7: end for
8: return S

we evaluate our model on three axes: security, capacity,
and robustness.

4.1 Training of the SSS-GAN

We train the SSS-GAN model on three datasets: the
MNIST dataset[27] contains 60 000 handwritten digits
of grayscale images, the image size is 28�28, and
it is divided into 10 categories according to different
numbers; the CIFAR-10 dataset[28] contains 50 000
color images, the image size is 32�32, and it is divided
into 10 categories; the CIFAR-100 dataset[28] contains
50 000 color pictures, the picture size is also 32�32,
and it is divided into 100 categories. All experiments
are performed with TensorFlow on a workstation with a
GTX 1080ti GPU card and 32 GB memory.

4.1.1 Experiments on MNIST
In this experiment, the feasibility of our method was
tested through experimental results, and its reliability
was analyzed on MNIST. In our experiment, we trained
the model with 11 000 training steps for approximately
2 h. To illustrate the impact of ˛ on model training,
we trained the model under three different ˛ values to
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determine the effects on model training. The batch size
(the minibatch size of the training sample) was set to
64; the dimension of the random noise z was set to 100
(z is sampled from a uniform distribution .�1; 1/). For
training, we used the Adam optimizer. The learning
rate was 2�10�4 for G and 16�10�4 for D and
C (based on previous experimental experience). The
weights of each layer were initialized with the Xavier
method[30]. For each training step of the model, the two
loss function values LD�C and LG�C are counted as
shown in Fig. 3. Every 100 steps, 64 labels are inputted
into G, and the quality of the images generated by G

is viewed, as shown in Fig. 4. The accuracy of the
auxiliary classifier C was also counted, as shown in
Fig. 5. The experimental results are as follows.

As shown in Fig. 3a, when the value of ˛ was set
to 0.9, the model training tended to converge, but the
model ignored the quality of the generated image, such

(a)

(b)

(c)

Fig. 3 SSS-GAN model training under different ˛̨̨ values:
(a) diagram ˛ D 0:9˛ D 0:9˛ D 0:9, (b) diagram ˛ D 0:5˛ D 0:5˛ D 0:5, and (c) diagram
˛ D 0:1˛ D 0:1˛ D 0:1.

(a)

(b)

(c)

Fig. 4 Generated images during the first 500 training steps
of the model under different ˛̨̨ values: (a) ˛ D 0:9˛ D 0:9˛ D 0:9; (b)
˛ D 0:5˛ D 0:5˛ D 0:5; and (c) ˛ D 0:1˛ D 0:1˛ D 0:1.

(a)

(b)

(c)

Fig. 5 Prediction accuracy curve of auxiliary classifier
during the training of the model under different ˛̨̨ values:
(a) ˛ D 0:9˛ D 0:9˛ D 0:9; (b) ˛ D 0:5˛ D 0:5˛ D 0:5; and (c) ˛ D 0:1˛ D 0:1˛ D 0:1.
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as Fig. 4a.
In Fig. 4, we can see that our model can generate

images with high visual quality. During the training
process, the message extractor quickly reaches a high
recovery accuracy and remains stable, as shown in
Fig. 5.

From the experimental results, SSS-GAN converged
quickly on the MNIST dataset and could generate
perfect images. In the experiment, G generated a
batch of stego images (64 sheets) in less than
0.02 s. The message extractor could quickly reach high
accuracy and remain stable, as shown in Fig. 5. The
hyperparameter ˛ can affect and balance the model
training.

4.1.2 Experiments on CIFAR
In this experiment, we retrained SSS-GAN on the
CIFAR-10 and CIFAR-100 training sets. Compared
with the MNIST dataset, the CIFAR-10 dataset is a
complex color natural image dataset, which is more
complex for model training. The experiment mainly
verifies the quality of the generated image and the
accuracy of message extraction after training the SSS-
GAN model on the complex image dataset. The model
structure was unchanged, and some settings were
adjusted as shown in Tables 2 – 4. According to the
previous experiments, we used the Adam optimizer
with a learning rate of 2�10�4 for G and 8�10�4

for D and C . Other settings were the same as the
experiment on MNIST. We trained the SSS-GAN model
on the CIFAR-10 and CIFAR-100 datasets for 15 625
training steps over approximately 6.5 hours, observing
the quality of the G-generated images and the accuracy
of the C , as shown in Fig. 6.

According to experimental results, the model
maintained good characteristics on complex datasets. It

(a) (b)

Fig. 6 Generated images from SSS-GAN after training 9000
steps on the CIFAR dataset: (a) samples generated by G
(trained on CIFAR-10); and (b) samples generated by G
(trained on CIFAR-100).

can be seen from the curve in Fig. 7 that when the model
was trained on the CIFAR-10 (CIFAR-100) dataset with
9000 steps, G could output natural images, and the
accuracy of the C network was also relatively stable
above 98.5%. In the experiment, G generated a batch
of stego images (64 sheets) in less than 0.029 s.

4.1.3 Further training of the extractor
We performed further training for the extractor OC on the
three image datasets. First, we generated a stego image
dataset with G combined with 50 000 random labels
(generated using random.randint in NumPy). Then, we
trained OC for 10 epochs (50 000 training steps per
epoch) with Eq. (6) on this generated image dataset. For
training, we used the Adam optimizer with a learning
rate of 2�10�4.

When the training was completed, we used a seed to
generate 1000 random noises, inputted these noises and
individual semantic labels into G to generate images of
each semantic category, and then we used our trained OC
to perform message extraction on each group of images.
We repeat the above experiment five times on various
image datasets, and the results are presented in Table 5.

As shown in Table 5, the accuracy of the extractor OC
was stable at 100% for most of the groups, and very few

(a)

(b)

Fig. 7 Prediction accuracy curve of the auxiliary classifier
during the training: (a) prediction accuracy curve of C
on CIFAR-10; and (b) prediction accuracy curve of C on
CIFAR-100.
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Table 5 Extractor accuracy on different image datasets.
(%)

Dataset
Experiment

1 2 3 4 5
MNIST 100 100 100 99.9 100

CIFAR-10 100 100 99.9 100 100
CIFAR-100 100 100 100 99.9 100

groups had an error rate of only 0.1%. Figure 8 shows
an example of an error detection graph. It can be seen
from the figure that the quality of individual samples is
not good, even though people cannot distinguish them.

The errors can be attributed to the insufficient image
generation capability of the G network. The weak
network structure hinders the G network generation
capability, resulting in image distortion generated
by some individual noise. This improves with the
optimization of the G network structure. In practical
applications, if the sender can test the random seed that
generates 100% recovery accuracy at a fixed length of
the image sequence in advance and use these seeds to
generate stego images, then the reliable transmission of
messages in secret communication can be guaranteed.

The above experimental results show that the SSS-
GAN generated images with good visual effects on
all three datasets. Due to the introduction of category
constraint information, our model training efficiency
was higher and the information extractor performed
perfectly, better than the method of Hu et al.[22]

4.2 Security analysis

Goodfellow et al.[15] proved the convergence of the
GAN model in theory. Theoretically, when the GAN
model converges, the generator’s distribution Pg is
equal to the distribution of real data Pdata. Then,

DJSD
�
Pdata; Pg

�
D 0 (7)

Furthermore, DJSD.�/ is the Jensen-Shannon divergence
between two distributions and is always nonnegative
and zero only when they are equal. When we use the
generator to directly obtain the stego image, ideally, the

(a) (b) (c)

Fig. 8 Three error detection samples on three datasets: (a)
MNIST; (b) CIFAR-10; and (c) CIFAR-100.

distribution of stego images is indistinguishable from
the real data distribution. In theory, absolute security
is achieved. However, in practice, the distribution of
generated stego images cannot be equal to the real data
distribution. In this case, we define "-security in the
case of JS divergence between the stego distribution and
the real data distribution as follows:

DJSD
�
Pstego; Pdata

�
< " (8)

where " > 0. In reality, the data distribution of stego
images Pstego is infinitely close to that of the training
data Pdata because of the limited training samples and
the ability of the generator and discriminator.

Since we cannot obtain the real data distribution, the
above security has only theoretical guiding significance.
We still use the traditional steganalysis method to
evaluate the security of steganalysis. Our method
can effectively resist the detection of steganalysis
algorithms based on machine learning. To prove that,
experiments were conducted on the detection of stego
images generated by our method via two state-of-the-art
image steganalysis algorithms[8, 31]. To the best of our
knowledge, there are no open-source implementations
of recent methods for GAN-based cover synthesis
methods. As a baseline, we conducted the experiment
using the same setting as the work of Hu et al.[22]

We generated 5000 stego images via the G network
(trained on the CIFAR-100 image dataset) of the SSS-
GAN model as samples and detected them with two
different steganalysis algorithms: the Color Rich Model
(CRM) steganalytic features set[31] and the model in
Ref. [8]. The CRM is an extension of the spatial rich
model for steganalysis of color images, while the model
in Ref. [8] is a CNN-based steganalysis algorithm in the
spatial domain.

In this experiment, we considered two different
scenarios for steganalysis algorithm training. In the
first scenario, the training dataset of the steganalysis
methods[8, 31] consists of the cover images (5000 images
from the CIFAR-100 image dataset) and the stego
images (5000 images generated using embedding-based
algorithms). In the second scenario, the training sets
consist of the cover images (5000 images from the
CIFAR-100 image dataset) and stego images (5000
images generated by the G network of our model).
Compared with the experimental result in Ref. [22], the
probability of being identified as a stego image is shown
in Table 6.

As seen in Table 6, in the first scenario, the two
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Table 6 Probability of identifying the stego image under
detection by different algorithms.

Method
Experimental

scenario
Detection probability

CRM Model in Ref. [8]
Method in
Ref. [22]

First scenario 0.008 0.470
Second scenario 0.560 0.980

Ours
First scenario 0.003 0.380

Second scenario 0.440 0.900

steganalysis algorithms had a low rate of probability of
identification for both our method and the method in
Ref. [22]. In the second scenario, when the generated
images from our model were directly used as a training
set to train the classifiers in Refs. [8, 31], good
detection ability was achieved. However, it is very
difficult for an adversary to acquire our image training
set and G network at the same time to generate a
training set for the steganalysis algorithms. The training
convergence of GAN often requires human judgment.
Therefore, a great deal of uncertainty exists in the model
training steps. Furthermore, we can keep the training
set of our method secret, thus ensuring security in
terms of resisting detection by steganalysis algorithms.
Therefore, we have confirmed that our approach is
secure.

4.3 Capacity analysis

Our method is equivalent to directly mapping the m-bit
information (we set m D 6 in this paper) into a small
picture. Therefore, the relative hidden capacity of each
picture, which is related to the number of bits contained
in each stego image, can be expressed as

Relative capacity D
Absolute capacity

Size of stego image
(9)

We simply compare the steganographic capacity with
some main SWM methods. The comparison results
are presented in Table 7, where the second column is
the absolute steganographic capacity (steganographic
capacity per image), the third column is the size of

Table 7 Steganography capacities of SWM methods.

Method
Absolute
capacity

(bytes/image)
Image size

Relative
capacity

(bytes/pixel)
Method in Ref. [10] 1.125 512�512 4.77�10�6

Method in Ref. [11] 3.720 >512�512 1.42�10�5

Method in Ref. [12] 2.250 512�512 8.58�10�6

Method in Ref. [32] 25�100 480�640 8.14�10�5�

3.26�10�4

Method in Ref. [22] 37.500 64�64 9.16�10�3

Ours >0.750 32�32 >7.3�10�4

the stego image, and the last column is the relative
steganography capacity (bytes per pixel).

Currently, the relative capacity of our method is
over 7.3�10�4 bytes/pixel, which is lower than that of
the method in Ref. [22], but better than that of other
methods. This is because the capacity of our method
depends on the number of semantic tags included in one
stego image. In the future, with the number of semantic
tags used in our method increasing in the stego image,
the capacity of our method will significantly increase.

4.4 Robustness analysis

Since messages actually exist in the semantic
information of images, the dense images using the
SSS-GAN model have the robustness to resist image
attacks. We tested the robustness of our method to
common image attacks. We considered applying four
typical image attacks. These attack conditions are listed
as follows.

C1: Brightness changes by changing the intensity of
image pixels by 1.1 and 1.5 times.

C2: Gaussian noise addition (variance 0.01).
C3: Salt noise addition (density 0.05).
C4: JPEG compression with varying quality facts

(q.f. 50, q.f. 70 and q.f. 90).
We used the G network to generate three groups of

stego images on the CIFA-100 dataset (5000 per group)
and applied the four typical methods to attack each
group of images. Then, we used OC to test the accuracy
of the message extraction after the attack. A group of
results is presented in Table 8.

From the experimental results, our method is robust
to all four attacks, especially JPEG compression and
brightness changes. The model has no errors at a
JPEG compression factor of 90, and brightness changes
at an intensity of 1.1 times because our method
relies on the recognition of image semantic labels
by neural networks. The neural networks have good
fault tolerance. When inputting fuzzy or incomplete

Table 8 Extraction accuracy of extractor OC for the attacked
stego images.

Test
group

Accuracy (%)
C1

C2 C3

C4

1.1 times 1.5 times q.f. 50 q.f. 70 q.f. 90
Group 1 100 98.00 98.99 99.96 98.52 99.89 100
Group 2 100 98.99 99.67 99.61 99.59 100.00 100
Group 3 100 98.00 99.67 98.52 99.85 99.89 100
Average 100 98.33 99.51 99.30 99.42 99.82 100
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information, a suboptimal approximate solution can be
given to achieve correct identification of incomplete
input information.

5 Conclusion

This paper proposes a novel SCS method using a
deep-generative model. The SSS-GAN model can
directly generate stego images through the auxiliary
semantic information. Due to the introduction of
category constraint information, the model can be
quickly trained to converge on different image datasets
and obtain an extractor that can accurately extract
messages. In other words, our method constructs
the map relationship between secret information and
image semantic information. Moreover, since messages
actually exist in the semantic information of images,
the dense images using the SSS-GAN model have the
robustness to resist image attack. However, due to
the limitation of the image dataset and the generative
model performance, some generated images are not
sufficiently natural. At present, we have to admit that
the method seems to require complex calculations
by neural networks when generating stego images.
Furthermore, our model uses only the category of image
semantic information for image generation, and the
steganographic capacity is not high, which decreases
the meaning of these types of steganography. In future
work, we will attempt to design a new generative model
to enhance the quality of the generated image and use
the multiple semantic features of the image to improve
the steganographic capacity of the method.
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