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Optimization of Quantum Computing Models Inspired by
D-Wave Quantum Annealing

Baonan Wang, Feng Hu, and Chao Wang�

Abstract: With the slow progress of universal quantum computers, studies on the feasibility of optimization by a

dedicated and quantum-annealing-based annealer are important. The quantum principle is expected to utilize the

quantum tunneling effects to find the optimal solutions for the exponential-level problems while classical annealing

may be affected by the initializations. This study constructs a new Quantum-Inspired Annealing (QIA) framework to

explore the potentials of quantum annealing for solving Ising model with comparisons to the classical one. Through

various configurations of the 1D Ising model, the new framework can achieve ground state, corresponding to

the optimum of classical problems, with higher probability up to 28% versus classical counterpart (22% in case).

This condition not only reveals the potential of quantum annealing for solving the Ising-like Hamiltonian, but also

contributes to an improved understanding and use of the quantum annealer for various applications in the future.
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1 Introduction

Combinatorial optimization is one of the important
problems in computer science[1], and is widely used
in the traveling salesman, graph coloring, clustering, and
other problems[2–4]. However, some of these problems
cannot be effectively solved by classical computing
methods in polynomial time[5].

Quantum Annealing (QA), as a new computing
paradigm different from its classical counterpart,
provides a quantum-inspired way to solve the
aforementioned problems. This method first proposed
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by Finnila et al.[6] introduced a general method to
solve optimization problems[7], which are fundamentally
different from Simulated Annealing (SA)[8]. The latter
is based on thermal dynamics, whereas the former is
based on quantum mechanics, which has the potential to
show parallel computing capacity based on the quantum
tunneling effects. Derived from Adiabatic Quantum
Computing (AQC), QA can exhibit superiority over
thermal annealing in some special cases[9].

A special-purpose machine, called D-Wave quantum
annealer[10], which has been constructed based on
QA, has entered the commercialized point of quantum
computing era. D-Wave has been widely used in
sampling, optimization, machine learning, and other
fields[11–13].

In information science, Wang and Zhang[14] first
proposed the potential of D-Wave on cryptography
design and analysis in 2012. In 2018, Peng et
al.[15] proposed a factor 20-bit large number using a
quantum computing software environment superior to
the theoretical value of IBM Q System One. Hu et al.[16]

implemented real D-Wave quantum computers for the
cryptography design. D-Wave is expected to be applied
to more fields in the future.
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In addition, the implementation of QA can be made
in an exact numerical integration of the Schrödinger
equation (for small systems), quantum Monte Carlo
simulations[17], and Green’s function Monte Carlo[18].
The Green’s function Monte Carlo effectively simulates
the real-time adiabatic evolution of the wave function
from the quantum ground state toward the final ground
states represented by the classical state. How to find good
trial variational wave functions is the crucial theoretical
question. Sarjala et al.[19] experimented on turning the
spins in two ways: global flips and one spin at a time. It
turned out that the single-flip strategy is more effective
than flipping all replicas of a given spin.

Most studies on QA so far have emphasized the role
of annealing time and residual energy on the probability
of obtaining the final ground state. Evidence has been
accumulated to show QA apparently closer to the ground
state than SA[2, 20]. As argued by De Simone et al.[21],
methods typically use Monte Carlo simulation including
SA, evolutionary, and genetic algorithms have two
main drawbacks: (1) Reliably determining the accuracy
degree of the experimental results produced with these
heuristic methods is not possible. (2) Two different states
with almost the same energy may be completely different.
Therefore, the state derived by one of these algorithms
cannot yield any useful information on the structure of
the ground state.

This paper is devoted to solving the second question,
dealing with the implementation of Quantum-Inspired
Annealing (QIA) with the 1D Ising spin glass as a
benchmark example, and the metropolis algorithm as the
technique of choice. We propose to simulate Ising spins
using a matrix of 1�N columns, and as the field strength
and temperature slowly decrease, different states of Ising
spins are stored in the matrix, which effectively solves
the second problem. After annealing, the ground state
of Ising spins can be found. The annealing simulation
helps us understand not only the quantum many-body
problem[22] and path-integral Monte Carlo problems, but
also the working principle of the D-Wave system[23].

The rest of the paper is organized as follows. Section
2 describes the Ising model with transverse field and the
quantities of residual energy. In Section 3, we introduce
basic ideas of quantum mechanics and describe the QIA
framework. In Section 4, we present results of QIA
and compare them with SA. In the final section, we
summarize our work.

2 Ising Model

Ising model is an exactly solvable model of phase
transition and is broadly used to solve problems in social
science, neuroscience, and other fields[22, 24].

The standard Hamiltonian formulation for an Ising
system consists of nearest-neighbor interactions and
spins, each corresponding to two states s D f�1; 1g,
where s represents the spin, and the spin interactions
are dependent on the coupling parameter J . The
Hamiltonian formulation can be given as

H D �

X
i

hi�
x
i �

X
hij i

J�z
i �

z
j (1)

where J is denoted as a coupling constant, which is
the interaction between the spins i and j . ���x

i , ���y
i , and

���z
i are Pauli matrices corresponding to a spin on lattice

site i .
D-Wave[25] is designed based on superconducting

flux qubits, programmable fields fhig, and couplings
fJ g. The case J > 0 corresponds to ferromagnetic
substances and J < 0 corresponds to antiferromagnetic.
Quantum fluctuations are initially large (J is small)
and then decrease in magnitude (as J increases) as the
annealing schedule, which allows for calculating the
residual energy as the difference between the true ground
states and initial configurations.

Any optimization problem that can be written as Eq.
(1), that can be handled by a D-Wave quantum annealing
processor.

Residual Energies: The residual energy is defined
by the energy difference between the true ground state
and the solution obtained by an algorithm. The residual
energy is appropriate to the error estimation.

The residual energy of the thermal annealing decreases
with annealing time as follows[26],

ETA
res �

A

.ln �/�
; 1 6 � 6 2 (2)

where ETA
res and � stand for the residual energy and

annealing time, respectively, and A is a constant.
Reference [27] investigated the annealing-time

dependence of the residual energy,

EQA
res �

A

�2
(3)

This result is in contrast to the logarithmic behavior
after a long thermal annealing time. Therefore the
convergence of the QA is qualitatively faster than that
by thermal annealing[28].
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3 New QIA framework

3.1 Quantum annealing

D-Wave, which is based on quantum annealing, is widely
used in most fields, and derived from quantum adiabatic
theorem. Studying the feasibility of QA is expected to
help advance the commercialization of QA.

The basic idea of QA[29] is to use quantum fluctuations
to build optimization algorithms. The classical SA
algorithm uses thermal fluctuation to search the optimal
solution of the problem. QA algorithm uses the quantum
tunneling effect to get rid of the local optimum and
achieve the global optimum. Figure 1 shows the working
principle between the QA and SA algorithms.

As shown in Fig.1, for SA, the system must rely on
thermal fluctuations (temperature T > 0) to jump from
P (spin configuration or travel route) to global minima
P

0

. In QA, the system can use the quantum tunneling
effect[30, 31] through the barrier directly from P to P

0

.
Here, the quantum fluctuation mechanism was

originally used to find the ground state of a classical
physical system, corresponding to the lowest energy
state. A tunneling field[32] searching for system potential
minima is introduced into a classical physics system: We
first set the strength of quantum fluctuations to a very
large value to search for the global structure of the phase
space. By decreasing the strength slowly from a high
value to zero[33], one hopes to drive the system to the
state with the lowest-energy state. The penetrating field
is a kinetic energy term to show the quantum tunneling,
which does not affect each other with the potential field
of the classical physical system. The final state of the
system is the lowest energy state. QA optimizes the
target system by simulating the aforementioned process.

The model of the QA algorithm, the Ising model
with transverse field, is generally composed of two
parts: one is called potential energy, where the quantum
optimization problem is mapped into a quantum system

Fig. 1 Comparison of working principles of QA algorithm
and simulated annealing algorithm[30].

while the optimized objective function is mapped to
a potential field applied to the quantum system. The
second part is called quantum kinetic energy. A kinetic
(tunneling) term is given to the interaction part of the
classical glass Hamiltonian. Introducing a controllable
kinetic energy term as a controlled field of quantum
fluctuations is a common practice. Under the influence
of these two fields, the quantum system evolution can be
described by a Schrödinger equation as follows,

i„
d
dt

j .t/i D H.t/ j .t/i (4)

However, the method of directly solving the
Schrödinger equation is extremely expensive.

In the QA process, one considers a time-dependent
Hamiltonian,

H.t/ D Hpot.t/CHkin.t/ (5)

The quantum Hamiltonian function is Hq D Hpot C

Hkin, where Hpot is denoted as potential energy, and
Hkin as kinetic energy. QA can activate the quantum
tunneling effects[34–36] to perform natural evolution
toward the global optimum. It is the core advantage
of QA compared with the classical methods that may
easily get trapped in the local optimum in large-scale
cases.

3.2 Quantum-inspired annealing

The Ising model with transverse field is widely used as a
test model for the quantum annealing algorithm. Many
combinatorial optimization problems can be mapped to
this model, and then solved by the quantum annealing
algorithm. The ground states of the Ising model encodes
the answers of the optimization problem.

This study proposes a QIA framework for processing
the problem of finding the ground state of the Ising
model, aiming at exploring the potential of QA in
processing the Ising model compared with SA. The
general process of the QIA algorithm can be expressed
in Algorithm 1.
T0 is denoted as initial annealing temperature, h is

the transverse field, h0 is the initial field strength, and
MaxSteps is the maximum number of iterations.

QIA Using Metropolis Criteria: One needs to
flip a finite fraction of N spins to go from one
minimum algorithm and accepts that with the probability
min.1; e��E=kB T / as the Metropolis criteria (kB is the
Boltzmann constant). The experimental steps of QIA are
shown in Algorithm 2.

In QA, the transverse field in the Ising model can
excite the actual quantum tunneling effects. Inspired
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Algorithm 1 QIA algorithm
1: Quantum evaluation function is denoted as Hq D Hpot C

Hkin.
2: Initialization: T0, h, h0, and MaxSteps, generating a random

solution x.
3: Producing a new solution x0 with perturbation methods
4: Compute �Hpot D Hpot.x

0/ �Hpot.x/ and �Hq D

Hq.x
0/ �Hq.x/

if �Hpot < 0 or �Hq < 0 then
x D x0

else
if exp.�Hq=T / < rangdom.0; 1/ then
x D x0

else
turn to Step 3

5: h D h � .h0=MaxSteps/
6: Until termination condition

Algorithm 2 Experimental steps of QIA
1: Input: 1 �N random matrix, number of spins N , T0, h0

2: Output: Ground state configuration
3: Initialize: T D T0, h D h0, and a set of N random Ising

configurations
4: Calculate Eold (the initial energy)
5: For all Ising spins do
6: Turn all spins in order
7: Calculate Enew ( the spin energy of the new Ising after

flipping the spin)
8: Calculation of energy change: �E D Enew �Eold

9: If �E < 0 then
10: Eold D Enew

11: Else
12: With probability exp.��E=kBT /, set Eold D Enew

13: Repeat Steps 6–12
14: End

by the QA and annealing schedules, the potential of
quantum tunneling effects is simulated by introducing a
kinetic term.

To further simulate the evolution process of QA, we
introduce the Metropolis criterion to judge whether to
accept current solutions with a certain probability in
the annealing process. This approach can realize the
“tunneling-like effect” as the basic principle of the QIA
framework.

Our interest lies in the comparison of QIA and SA by
studying the role of the initial value of the Ising spins,
transverse field, and coupling constant in QIA and SA.

4 Results and Discussions

We have applied QIA and SA to the random-field Ising
model with the system size 1 � N in 1D. An optimal
value of N spins was chosen to model this system

without periodic boundary conditions. The lattice was
represented by a random matrix, with each element being
randomly assigned with the value �1 or 1. We use the
method in Ref. [19] to flip the Ising spins.

The coupling strength is taken as J D 1. The
entire procedure proceeds with different temperatures
deceasing from 100ıC to 0ıC and different transverse
fields h ranging from 1 to 0.

4.1 QIA with different configurations

In this section, we investigate the role of annealing
schedules, coupling constant, and parameter selection
of annealing process in QIA. The numerical results are
shown in the following.

4.1.1 Role of annealing schedules in QIA
Annealing schedules are given as h D h � 0:99, h D

3=
p
t , h D 3= ln.t C 1/, and h D 3=t . As the time

t ! 1, the transverse field vanishes. The result is
shown in Fig. 2.

Here, we discuss the ferromagnetic Ising model with
constant J for all pairs of spins. Figure 2 shows the
running time for the case of h D h � 0:99, h D 3=

p
t ,

h D 3= ln.t C 1/, and h D 3=t . The experimental run
time obtained by reducing the field strength linearly is
far less than that in the method[33]. The experimental
execution time obtained by the annealing schedule as
h D h�0:99 is half the time of the other three non-linear
annealing schedules. In the previous experiments[28, 32],
no comparison is made between linear and non-linear
modes of field strength. We propose a simultaneous
comparison of linear and non-linear modes of field
strength in the QA experiments. No significant change

Fig. 2 Spin number dependence of running time of the
ferromagnetic model with h = h���0.99, h = 3 /

p
t, h = 3 / ln(t+1),

and h = 3 / t. The lattice was represented by a 1 ��� N random
matrix in 1D with the same coupling constant J = 1 and same
initial temperature T0 = 100ıııC.
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occurs in the probability of Ising falling into the ground
state for different field strength forms in the experiment.

4.1.2 Role of coupling constant in QIA
J is expressed as J D 0:001, J D 0:25, J D 1, J D 2,
and J D 4.

The Ising model is represented by a 1 � N random
matrix in 1D with the same configurations ( h D h�0:99

and T0 D 100ıC).
Figure 3 shows that the experimental execution

time of the small coupling constants is less than the
execution time of large coupling constants with the same
probability of the system following the ground state
through annealing and reaching the final ground state.
Thus, we can select a smaller coupling constant in the
experiment to reduce the experimental running time.

4.1.3 Role of parameter selection on QIA
The Ising model with N D 4 is used to explore the
role of parameter selection in the probability of spins
reaching the ground state after QIA.

In Table 1, the initial temperature (T0) is reduced
to 1ıC in the manner of T0 D T0 � 0:94, and then
the annealing step (Ecop) is followed. Dmax denotes a
Markov chain, Num denotes the number of experiments,
and the Probability denotes the number of reaching
ground states.

Fig. 3 Spin number dependence of time of the
ferromagnetic model with J = 0.001, J = 0.25, J = 1, J = 2,
and J= 4.

Table 1 Role of parameter selection on QIA results.
T0 (ıC) Ecop Dmax Num Probability

100 0.0010 30 20 0.15
100 0.0010 60 20 0.20
100 0.0010 80 20 0.25
100 0.0001 30 50 0.26
100 0.0010 30 50 0.14

As Table 1 shows, with the same number of
experiments, the probability of Ising spins reaching the
ground state after annealing increased when Dmax was
larger. Dmax is the same as the number of experiments.
With small Ecop, the Probability of Ising spin reaching
the ground state after annealing increased.

Parameter selection has a strong influence on the final
annealing precision of QIA. Good parameter selection
is beneficial to maximize quantum tunneling effects, so
that the algorithm can eliminate the local optimum to
achieve the global optimal solution.

4.2 Comparison of QIA and SA with different
initialized strategies

Here, we define two strategies representing the condition
for selecting the initial value. Strategy 1 is denoted
as the initial value of the experiment, which is given
by the values obtained by previous experiments. The
initial value of the first experiment is generated randomly.
Strategy 2 denotes that all initial values are generated
randomly.

(1) Comparison between Strategies 1 and 2 of QIA
algorithm

Comparing Strategy 1 with Strategy 2 in QIA, the
result is shown in Fig. 4.

In the annealing experiment, Strategy 1 is proposed.
In Fig. 4, it can be seen that Strategy 1 is more likely to
obtain the ground state than Strategy 2.

(2) Comparison between Strategies 1 and 2 of SA
algorithm

Strategy 1 is compared with Strategy 2 in SA, as
shown in Fig. 5.

Figure 5 shows that in the SA experiment, the Ising
spins achieve the ground state with higher probability

Fig. 4 Probability that Ising spins achieve the ground state.
Ising spins are represented by a 1 ��� N random matrix in 1D
with the same configurations ( h = h ��� 0.99 and T0 = 100ıC).
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Fig. 5 Probability that Ising spins achieve the ground
state. The Ising spins are represented by a 1 ��� N random
matrix in one dimension with the same configurations (h = h���

0.99 and T0 = 100ıııC).

in Strategy 1 than Strategy 2. In the cases of QIA and
SA, the Ising spins achieve the ground state with higher
probability in Strategy 1 than Strategy 2. Therefore,
we can improve the efficiency of the experiment and
increase the probability to achieve the ground state with
Strategy 1.

(3) Comparison between QIA and SA
To learn how effectively quantum tunneling processes

possibly lead to the global minimum, this part presents a
comparison between QIA and SA.

As shown in Fig. 6, QIA shows convergence to the
ground state with a larger probability than SA in all cases
if the same annealing schedule is used. Thus, QIA is a
better option to achieve the global minima with respect
to SA in most cases.

We simulate the quantum annealing mechanism by 1D
Ising spins reaching ground state, and compare it with

Fig. 6 Probability that Ising spins achieve the ground state
in QIA and SA. The Ising spins are represented by a 1 ��� N
random matrix in 1D with the same coupling constant J = 1
and same initial temperature T0 = 100ıııC.

SA to show the potential of QIA to achieve the ground
state with higher probability.

5 Conclusion

We propose a simultaneous comparison of linear and non-
linear modes of field strength in QIA experiments. We
find that the execution time obtained by the annealing
schedule as h D h � 0:99 is half the time of the other
three non-linear annealing schedules. The execution time
of small coupling constant is less than that of large
coupling constants with the same probability of the
system reaching the final ground state.

The results of the numerical study of QIA in the
random field Ising model are compared with those
of SA. If the system annealing schedule decreases as
h D h � 0:99, then QIA can obtain the ground states
with higher probability than SA, which is consistent with
that in Refs. [37, 38]. In some cases, the new framework
can achieve the ground state with higher probability up
to 28% versus the classical counterpart (22% in case).

In addition, in the annealing experiment, the
probability to achieve the optimal states derived from
Strategy 1 is higher than that from Strategy 2. QIA shows
a better option to achieve the global minima with respect
to SA in most cases.

Finally, we examine the role of different parameter
selections on the final annealing precision of QIA. This
approach suggests that a good value for the parameter
can effectively improve the quantum tunneling effects.
Annealing schedules with a combination of linear and
non-linear characteristics may show better quantum
effects.
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