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Balance Resource Allocation for Spark Jobs Based on
Prediction of the Optimal Resource
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Abstract: Apache Spark provides a well-known MapReduce computing framework, aiming to fast-process big data

analytics in data-parallel manners. With this platform, large input data are divided into data partitions. Each

data partition is processed by multiple computation tasks concurrently. Outputs of these computation tasks are

transferred among multiple computers via the network. However, such a distributed computing framework suffers

from system overheads, inevitably caused by communication and disk I/O operations. System overheads take up

a large proportion of the Job Completion Time (JCT). We observed that excessive computational resources incurs

considerable system overheads, prolonging the JCT. The over-allocation of individual jobs not only prolongs their

own JCTs, but also likely makes other jobs suffer from under-allocation. Thus, the average JCT is suboptimal,

too. To address this problem, we propose a prediction model to estimate the changing JCT of a single Spark job.

With the support of the prediction method, we designed a heuristic algorithm to balance the resource allocation

of multiple Spark jobs, aiming to minimize the average JCT in multiple-job cases. We implemented the prediction

model and resource allocation method in ReB, a Resource-Balancer based on Apache Spark. Experimental results

showed that ReB significantly outperformed the traditional max-min fairness and shortest-job-optimal methods. The

average JCT was decreased by around 10%–30% compared to the existing solutions.
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1 Introduction

Big data analytics is challenging for a single computer
because large input data may result in an out-
of-memory problem. The well-known MapReduce
framework aims to partition large input data, which
are processed by multiple computers concurrently.
Apache Spark is a well-known in-memory MapReduce
computing system, which is deployed on multiple

� Zhiyao Hu and Dongsheng Li are with the College of
Computer, National University of Defense Technology,
Changsha 410073, China. E-mail: huzhiyao14@nudt.edu.cn;
dsli@nudt.edu.cn.
�Deke Guo is with the College of System Engineering, National

University of Defense Technology, Changsha 410073, China.
E-mail: guodeke@gmail.com.
�To whom correspondence should be addressed.

Manuscript received: 2019-03-30; revised: 2019-07-24;
accepted: 2019-09-09

computers. These computers provide computational
resources and are interconnected via a computer
network. The entire system of computers and network
is called a “Spark cluster”. Users submit their big data
analytics as Spark jobs. The Spark cluster allocates
computational resources to execute Spark jobs.

For Spark jobs, the amount of allocated resource
is customized by the user, which significantly
impacts the Job Completion Time (JCT). When
computational resources are over-allocated,
considerable computational tasks are executed
concurrently. Hence, the network communication
and disk I/O operations are, more frequently, causing
larger system overheads. It has been reported that
such system overhead takes up over 50% of the JCT[1].
We measured the JCT of Logistic Regression (LR)
when the number of CPU cores increased from 30 to
100. Figure 1 shows the detailed JCT, including the
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Fig. 1 JCT of logistic regression when the number of cores
increases from 30 to 100.

system overhead and computation time. Its computation
time decreased, but system overheads increased. In
summary, the JCT decreased first and then increased.

Previous research has also observed that
communication overhead is very large for distributed
computation[2, 3]. For Spark jobs, data shuffle and
the storage of intermediate results incur considerable
communication and disk I/O overheads[4]. For a single
Spark job, the amount of allocated computational
resources determines the number of tasks that are
executed concurrently. However, determining the
optimal allocation, specifically the over-allocation of
a Spark job, remains an unsolved problem. Previous
prediction methods have adopted high-level job
settings, such as the size of input data and the number
of virtual machines[5, 6]. However, these methods
have not adequately considered system overheads
incurred by communication and disk I/O operations. To
address this issue, we designed a Deep Neural Network
(DNN)-based prediction mode.

In addition to the optimal allocation of a single
Spark job, we present the resource allocation problem
of multiple Spark jobs. In multiple-job cases, cluster
resource with a finite capacity may not meet the
optimal allocation of all jobs. Intuitively, allocation
of the shortest job should be allotted adequate
resources. However, their JCTs would not be optimized
remarkably. Moreover, the shortest job may consume
considerable computational resources, causing other
jobs to suffer from under-allocation, and, finally a
prolonged average JCT. Motivated by this fact, we
designed a Heuristic Allocation Initialization (HAI)
algorithm to transfer computational resources between
an under-allocated jobs and the shortest job.

We implemented a prototype, ReB, which aims to
balance multiple-job resource allocations and minimize

the average JCT. Extensive experiments were conducted
in a Spark cluster, which consisted of 30 servers in six
racks. Each server was equipped with an Intel Xeon
E5-2650 2.2 GHz 12-core processor. Compared with
the max-min fairness and shortest-job-optimal methods,
ReB achieved a JCT reduction of 10%–30%. The main
contributions of this paper are as follows.
� We observed that the underlying system overhead

caused by the over-allocation of computational
resources lengthens the JCT.
� We proposed a prediction model via machine

learning, and found the optimal allocation without
incurring an over-allocation problem.
� We designed an HAI algorithm to initialize

resource allocation of multiple Spark jobs at startup.
The rest of this paper is organized as follows. Section

2 introduces related work about resource allocation and
performance prediction. In Section 3, we rethink the
over-allocation problem and present a prediction model
with feature pairs. In Section 4, we propose a multiple-
job allocation problem and design a heuristic algorithm
for resource allocation. Section 5 shows the architecture
and implementation details of ReB. Section 6 shows the
evaluation results of extensive experiments. Sections 7
and 8 discuss and conclude this paper, respectively.

2 Related Work

2.1 Resource allocation for Spark jobs

Resource allocation is fundamental in distributed
systems. For a Spark job, JCT is associated with
the amount of allocated resource. Resource managers,
such as Mesos and YARN, allocate computational
resources to Spark jobs, and the amount of resource
is customized by the users[7, 8]. Classical resource
allocation algorithms, such as the first-in-first-out
method and shortest-job-first method, assume that
resource demands and length of jobs are known
in advance[9]. Nevertheless, these schedulers do
not consider fairness and cause suboptimal JCT of
individual jobs. To address this problem, the max-min
fairness method and dominant resource fairness method
were proposed[10, 11].

Recent resource allocation methods have considered
more details about Spark jobs. To enhance data locality,
machine assignment is also one important problem
involving resource allocation. Delay scheduling
methods meet the requirements of data locality
by optimizing task placement[12]. Tetris effectively
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addresses multiple resource packing problems by
decreasing resource fragments and deadlocks[13].
Graphene aims to enhance resource utilization by filling
in the virtual resource space with troublesome tasks
first, then placing other tasks. The dependency and
heterogeneous resource demands make it challenging
to schedule tasks with high resource utilization.

2.2 Prediction for optimal configuration

Ernest ran the entire job on small datasets and tried
to capture how the JCT of a job changed with the
increasing size of the input dataset[14]. However, the
model of Ernest was tightly bound to the application
type, which limited the cross-application use of Ernest
models. Bei et al.[15] proposed to construct two
ensembles of performance models using a Random-
Forest (RF) approach for the map and reduce stage,
respectively. However, it is difficult to model the
duration of each operation. Yu et al.[16] proposed a
Hierarchical Modeling (HM), aiming to combine a
number of individual sub-models in a hierarchical
manner. However, the HM method was agnostic to
the execution of various operations. The HM and the
RF methods could not overcome the over-allocation
problem in Spark jobs.

3 Prediction of a Single Spark Job

In this section, we designed a prediction model to
determine the optimal allocation of a single Spark job
before the job starts to execute. In practice, we did
not directly predict the optimal allocation. Instead, the
prediction model took two given allocations as the input
and predicted the difference in their own JCTs. The JCT
under the better allocation was smaller. According to
the JCT difference, the better allocation was picked.

3.1 Design of DNN

Recently, deep learning techniques have been proven
to outperform conventional machine learning models
in many applications[17–19]. We chose a DNN as our
predictor due to its capability of modeling complicated
functions. The DNN consisted of multiple hidden
layers, where each layer consisted of multiple neurons
that were fully connected to those in the next layer.
Although each neuron calculated the output through a
simple activation function, all neurons were connected
into a complex adaptive system, which obtained a
powerful expressivity to model any function with
unknown mathematical forms. Moreover, the DNN

exhibited a better generalization ability, and achieved
robust performance under noise data[20]. Deep learning
is promising in overcoming the weakness of Ernest, RF,
and HM methods.

The Bayesian regularization backpropagation
algorithm was used as the training algorithm. It aimed
to calculate the values of network parameters via
the Levenberg-Marquardt optimization[21]. We set
the learning rate to 0.05. The training process early-
terminated when the number of training epochs reached
1000, or training loss decreased to 0.001.

3.2 Input features

To train the DNN, we collected completed Spark
jobs as training data, called samples. We selected
job configurations as input features of training data.
The predicted value, i.e., the label of training data,
was the JCT. The fundamental four input features
included the size of the input data, the number of
partitions, the number of cores, and the amount of
memory. Additionally, the other three features involved
the Directed Acyclic Graph (DAG) structure, which
was acquired from the Spark job. DAGs indicated the
workflow, along which the input was processed by
various operations. Data were processed in parallel
by each operation. The complexity of one job was
associated with its DAG. As reported, production
jobs at the 50th-percentile in Microsoft and BigBench
exhibited the length from two to seven, the width from
two to four, and the number of paths from two to six[22].

The last features were Spark operations. Input data
of Spark jobs were processed by these operations
one-by-one. For a Spark job, the type and the
number of operations determined computation time,
communication, and disk I/O overheads. For example,
communication-intensive applications were inclined to
frequently use network operations like Reduce. Since
the number and the type of operations significantly
impacted JCTs, we exploited operations to train a
prediction model, which was aware of the underlying
overhead.

3.3 Generating new samples with feature pairs

To train the prediction model, the value of features and
the JCT of the completed Spark jobs were collected.
However, a collected Spark job, called an “original
sample”, was not directly used as a training sample.
We combined two Spark jobs to generate a new training
sample as follows: Given two Spark jobs, we took a
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pair of features as the input of the prediction model to
predict the difference in JCTs of the two jobs.

Concretely, we combined two original samples,
denoted by d1 and d2, to generate a new sample d 0. Let
C.d1/ and J.d1/ denote the job configuration and JCT
of the sample d1, respectively. We set the input features
of the new sample d 0 to the combination of C.d1/ and
C.d2/. The label of d 0 was set to J.d1/ � J.d2/. That
is, we input two different job configurations, C.d1/

and C.d2/, to predict the JCT difference. According
to the JCT difference, we selected out the feature that
achieved shorter JCT.

When we used the prediction model, we also
generated test samples with feature pairs. Given a Spark
job, we generated a group of test samples by changing
only the number of allocated CPU cores (i.e., the values
of other features were identical). We predicted the JCT
difference to select the optimal number of CPU cores.

The advantages of feature pairs were as follows:
First, the number of new training samples with feature
pairs rapidly increased because of the combination
of original samples. The number of new training
samples was

�
n
2

�
, where n was the number of original

samples. More samples were beneficial to achieve
higher prediction accuracy. Second, we determined the
optimal feature without directly predicting the JCTs.
The prediction model with feature pairs combined
the prediction and ranking together. This avoided the
inaccuracy of ranking predicted JCTs and enhanced
the accuracy in determining the optimal allocation.
Moreover, the predicted JCT difference was used as
the input of our heuristic algorithm, aiming to allocate
resources of multiple Spark jobs.

4 Multi-Job Optimal Resource Allocation

In this section, we observe a multiple-job-optimal
resource allocation problem from an illustrative
example, propose a “naı̈ve” method, called the shortest-
job-optimal method, and further design a heuristic

resource allocation method with a convergence proof.

4.1 Rethinking the multiple-job resource
allocation problem

The profiles of two iterative jobs are given in Fig. 2a,
which shows the number of iteration rounds, the
number of CPU cores, and the job submission time.
Job 1 and Job 2 differed only in the number of iteration
rounds and submission times. For the two jobs, we
illustrate three different schedules of the shortest-
job-first, max-min fairness, and shortest-job-optimal
methods in Figs. 2c–2e, respectively.

Note that the shortest-job-first and max-min fairness
methods did not know the optimal allocation a priori.
Thus, the two methods allocated CPU cores according
to the requested cores of Job 1 and Job 2. The
shortest-job-optimal method was under the support of
our prediction method and determined the optimal
allocation through information in Fig. 2b. The two jobs
requested 80 cores, but the optimal setting of CPU cores
was 60. Figures 2c and 2d show that the shortest-
job-first and max-min fairness methods allocated 80
cores to Job 1 before the 8th second. After Job 2
emerged, the shortest-job-first method preferred to meet
the request of Job 2 and allocated the remaining 20
cores to Job 1. In this case, Job 2 was over-allocated
but Job 1 was under-allocated. The average JCT was
30 s. In Fig. 2d, the max-min fairness method allocated
the same number of cores to two jobs after Job 2 was
submitted. The average JCT was 24 s. In summary, both
the shortest-job-first and max-min fairness methods
were suboptimal because of the under-/over-allocation.

4.2 “Naı̈ve” shortest-job-optimal method

As a variant of the shortest-job-first method, the
shortest-job-optimal method aims to optimize the
allocation of the shortest job under the support of our
prediction model. Algorithm 1 showed the shortest-
job-optimal method. Nevertheless, we observed the
shortest-job-optimal method to be suboptimal in

(a) Profiles of Job 1 and Job 2.
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(b) Duration per iteration varies
with CPU cores.

(c) Shortest-job-first method. The
average JCT is 30 s.

(d) Max-min fairness method.
The average JCT is 24 s.

(e) Shortest-job-optimal method.
The average JCT is 16 s.

Fig. 2 Illustrated examples of scheduling Job 1 and Job 2 by the shortest-job-first, max-min fairness, and shortest-job-optimal
methods, respectively.
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Algorithm 1 Naı̈ve shortest-job-optimal method
Input: The available resource capacity C , a batch of jobs

J D fJ1; J2; : : : ; Jng, their optimal allocations AOPT D

fAOPT
1
; AOPT

2
; : : : ; AOPT

n g, and the corresponding JCTs
fD1;D2; : : : ;Dng.

1: Sort all jobs J in increasing order of their JCTs
2: for the i -th job in J do
3: if remaining resource C is sufficient then
4: Allocate AOPT

i
to Ji

5: C  C � AOPT
i

6: else
7: Allocate C to Ji

multiple-job cases.
We executed four PageRank jobs concurrently in a

small-scale benchmark, where 120 cores were available
in total. The four jobs were completely identical to
the PageRank job in Fig. 3a and were submitted at
the same time. Figure 3a shows the changing JCT
of a PageRank job when the number of CPU cores
increased. The optimal number of cores was 40. We
leveraged the shortest-job-optimal method. Figure 3
shows the number of cores that were allocated to
four PageRank jobs. Figure 3b shows details of the
shortest-job-optimal method. Note that not all jobs
were optimal-allocated because CPU cores were not
sufficient. Job 1, Job 2, and Job 3 were all allocated
at the beginning. However, Job 4 was delayed owing
to insufficient resource and did not start until Job 1
completed and released the resource.

We compared the shortest-job-optimal method with
a heuristic method. Figure 3c shows that the heuristic
method achieved fewer JCTs. The heuristic method
preferred to under-allocate 30 cores to three PageRank
jobs. The above evaluation revealed that the average
JCT of the shortest-job-optimal method may have been
prolonged, although the allocation of partial jobs was

optimal.

4.3 Heuristic method

A drawback of the shortest-job-optimal method is that
only a few jobs are optimally allocated, but the majority
of jobs suffer from serious under-allocation. The
fundamental problem was to calculate a schedule of
balancing resource allocations among multiple jobs,
aiming to minimize the average JCT. The schedule
was formulated as a mixed discrete and non-convex
problem, which was NP-hard[23]. Fortunately, a near-
optimal schedule was computable under the support of
the prediction model.

We designed an HAI method, which fine-tuned
the amount of allocated resource by continuously
transferring a few CPU cores from a job, called a
donator, to another job, called an acceptor. The transfer
changed the value of the average JCT. We stopped
transferring CPU cores until the average JCT did not
decrease. This involved two challenges, including (1)
which jobs were transferred from/to, and (2) how many
cores, in total, should have been transferred.

Algorithm 2 showed the main steps of the HAI
algorithm. The input was a parameter � , a batch of
jobs J�and the predicted change in the values of
JCTs, denoted by f�JCT1; �JCT2; : : : ; �JCTng. The
output of Algorithm 2 was the allocation of each job,
denoted by A D fA1; A2; : : : ; Ang. In the beginning,
we leveraged the shortest-job-optimal method to
calculate the allocation of all jobs and classify all
jobs into two groups, J1 and J2. For each optimally-
allocated job u in J1, we subtracted � cores from
its current allocation Au and predicted the increment
of its JCT, denoted by �JCTu.Au; Au � �/. The job,
which exhibited the minimum increment of its JCT,
was selected as the donator. That is, �JCTdonator D
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(c) Heuristic method does not delay any job for the
optimal allocation of individual jobs. Job 1, Job 2, and
Job 3 are allocated 30 cores. Job 4 are allocated 22 cores.

Fig. 3 Micro benchmark shows that the shortest-job-optimal method was suboptimal. The same 4 jobs (Job 1, Job 2, Job 3,
and Job 4) were a PageRank job in (a) and submitted at the same time. The optimal allocation was 40 cores.
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mini2J1
�JCTi .Ai ; Ai � �/. For each non-optimally-

allocated job v in J2, we added � cores to its
current allocation Av and predicted the decrease in
its JCT, denoted by �JCTv.Av; Av C �/. The job,
which exhibited the maximum decrement of its JCT,
was selected as the acceptor. That is, �JCTacceptor D

maxi2J2
�JCTi .Ai ; Ai C �/. If the decrement of the

acceptor’s JCT was larger than the increment of the
donator’s JCT, i.e., �JCTacceptor > �JCTdonator, it could
be guaranteed that the sum of all JCTs decreased after
transferring � cores from the donator to the acceptor.
The transfer was executed continuously until the
transfer between any donators and any acceptors could
not decrease the sum of all JCTs. Then, Algorithm 2
terminated.

4.4 Analysis of the time complexity

Considering the process of transferring cores,
Algorithm 2 was an iterative algorithm. Next, we
proved that Algorithm 2 was convergent when J1 and
J2 contained only one job. We calculated the maximum
number of transfers in the worst case, indicating the
time complexity. Then, we expanded the proof for the
multiple-job case.

Theorem 1 Given any two jobs, Job 1 and Job
2, the resource allocation of Job 1 is the optimal,
denoted by A1. Job 2 is under-allocated, denoted by

Algorithm 2 Heuristic allocation initialization
Input: A parameter � , a batch of jobs J , and their predicted

JCT differences f�JCT1; �JCT2; : : : ; �JCTng.
Output: Allocations A D fA1; A2; : : : ; Ang.

1: toBeContinued D ture, J1 D ∅, J2 D ∅
2: Initialize A by the shortest-job-optimal method
3: for Each job, i D 1 to n do
4: if Job i is optimal-allocated then
5: Classify Job i into J1

6: else
7: Classify Job i into J2

8: while toBeContinued D true do
9: for Each job u in J1 do

10: Du D �JCTu.Au; Au � �/

11: The donator is the job with minfD1; : : : ;Du; : : : g

12: for Each job v in J2 do after adding � cores
13: Dv D �JCTv.Av; Av C �/

14: The acceptor is the job with maxfD1; : : : ;Dv; : : : g

15: if minu2J1
Du < maxv2J2

Dv then
16: Adonator D Adonator � �

17: Aacceptor D Aacceptor C �

18: else
19: toBeContinued D false

A2. By repeatedly transferring � cores from Job 1 to
Job 2, Algorithm 2 is convergent. In the worst case, the
maximum round of iterations is bA1=�c .

Proof: Algorithm 2 stopped transferring as long
as minfDuju 2 J1g < maxfDvjv 2 J2g was satisfied.
Here, u and v were referred to as Job 1 and Job 2,
respectively. Thus, we needed to prove D1 < D2. Let
Ji denote the sum of all JCTs at the i -th transfer. For
the first transfer, the sum of JCT was J1 D JCT1.A1 �

�/C JCT2.A2C �/. Similarly, for the k-th transfer, the
sum of JCTs was Jk D JCT1.A1�k��/CJCT2.A2C

k � �/. Note that, the allocation of Job 1 was always
positive and A1 � k � � > 0. Thus, the maximum
number of transferring cores was bA1=�c. When
Algorithm 2 stopped at the k-th transfer, we inferred
Jk < JkC1. Considering JkC1 D JCT1.A1 � .k C

1/ � �/C JCT2.A2 C .k C 1/ � �/, we had
JCT1.A1 � k � �/C JCT2.A2 C k � �/ <

JCT1.A1 � .k C 1/ � �/C JCT2.A2 C .k C 1/ � �/:

We transformed the above inequality as follows,
JCT1.A1 � k � �/ � JCT1.A1 � .k C 1/ � �/ <

JCT2.A2 C .k C 1/ � �/ � JCT2.A2 C k � �/:

We knew that D1 D �JCT1.A1 � k � �; A1 � .k C

1/��/ D JCT1.A1�k��/�JCT1.A1�.kC1/��/ and
similarly,D2 D �JCT2.A2C.kC1/��; A2Ck��/ D

JCT2.A2 C .k C 1/ � �/ � JCT2.A2 C k � �/. Thus,
D1 < D2.

As mentioned, the maximum number of transferring
cores was bA1=�c when almost all cores of Job 1 were
transferred to Job 2. Theorem 1 is proved. �

The Proof assumed that sets J1 and J2 contained one
job, respectively. When the number of jobs in J1 or
J2 was over 2, the convergence proof was similar. We
iteratively transferred cores from jobs in J1 to those in
J2 until the sum of JCTs did not decrease. The transfers
stopped until the sum of JCTs did not decrease. Let
A

optimal
i denote the optimal allocation of the i -th job in

J1. When all jobs in J1 were transferred, the number of
transfers was at a maximum, i.e.,

P
i2J1
bA

optimal
i =�c.

Moreover, the sum of the CPU cores, which were
allocated to jobs in J1, was the capacity of CPU
cores, denoted by C . In multiple-job cases, we had
that the maximum number of transferring times wasP

i2J1
bA

optimal
i =�c � bC=�c. The value was also the

times of executing the “while” loop in the worst
case. On the other hand, the time complexity of each
execution of the “while” loop was O.n/, where n was
the number of jobs. Therefore, the time complexity
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of the “while” loop was O.n � bC=�c/. The time
complexity of the shortest-job-optimal method was
O.n/. The complexity of Algorithm 2 was the sum of
O.n � bC=�c/ and O.n/.

5 ReB Architecture
We implemented a prototype of ReB by extending a
few modules of Apache Spark. ReB included two main
modules, a prediction and and an allocation module.
The prediction module involved a data source and a
learning algorithm. The allocation module aimed to
balance the resource allocation of different jobs under
the support of the prediction module.

Figure 4 shows the workflow of ReB. Before
jobs were submitted, we collected training data
from Spark jobs. The input features and output label
of training data were job configurations and JCTs,
respectively. Then, a DNN-based model was trained
with the collected data. The training process was done
offline. The prediction model was used when Spark jobs
were submitted

ReB analyzes Spark jobs and collects job
configurations, such as the size of input data, DAG
structures, etc. The configuration information was
input into the prediction model. The prediction model
predicted the varying JCT of each submitted job when
the number of CPU cores changed. Then, the JCT was
used as the input of Algorithm 2. The initial allocation
of submitted jobs was calculated. These jobs were then
submitted to the Spark master and started to execute.

6 Performance Evaluation

In this section, we evaluate the prediction accuracy of
our prediction model, the performance improvement
in terms of the JCT, and the algorithm overhead of
Algorithm 2.

6.1 Experiment evaluation of multiple-job
scenarios

We conducted extensive experiments to evaluate the
performance of ReB, including the average JCT,

cumulative number of jobs, and the varying scale
of computational resources. Cluster experiments were
conducted in a Spark cluster, which consisted of 30
servers in six racks. Each server was equipped with an
Intel Xeon E5-2650 2.2 GHz 12-core processor.

6.1.1 Settings and metrics
For multiple-job cases, we compared ReB with the
shortest-job-optimal and max-min fairness methods.
Both the shortest-job-optimal method and ReB worked
under the support of the prediction model. For ReB,
we set � to 2 cores. The shortest-job-optimal method
optimized the allocation of the shortest job. The max-
min fairness method allocated resource in a fair manner
so that each job could not starve. We used PageRank as
the basic job and submitted multiple PageRank jobs at
the same time. We employed the factor of improvement
to evaluate the average JCT, as well as the makespan
when the number of jobs increased from 10 to 50. As
the legend indicates, the factor of ReB over Max-min
fairness denoted the improvement percentage of ReB to
the max-min fairness method.

6.1.2 Evaluation of the average JCT
Figure 5 shows the average JCT improvement factor
and absolute JCTs using the bars and dotted lines,
respectively. The max-min fairness method performed

Fig. 5 Average JCT of ReB versus the shortest-job-optimal
and max-min fairness methods.
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the worst as each job suffered severe under-allocation
owing to fairness. ReB and the shortest-job-optimal
methods exhibited shorter average JCTs. When the
number of jobs was 10, the shortest-job-optimal
method performed close to ReB. Nevertheless, the
improvement factor of ReB over Shortest-job-optimal
method increased with the number of jobs. Results
showed that ReB outperformed the shortest-job-optimal
method when more jobs contended for computational
resources. We inferred that the number of delayed jobs
also increased when more jobs emerged as the optimal
allocation of individual jobs occupied considerable
resource. That is, the disadvantage of the shortest-job-
optimal method became more evident. In summary,
ReB achieved around 10%–25% improvement.

6.1.3 Evaluation of the JCT distribution
We utilized a boxplot to show details of JCTs when 50
jobs were submitted in a batch. In Fig. 6, each boxplot
reflects the smallest, largest, average, and median JCT.
As the boxes show, most of the JCTs were in the range
of first quartile to third quartile. It was interesting to
note that the boxes of the shortest-job-optimal and max-
min fairness methods were the longest and shortest,
respectively. We noted that the large boxes indicated a
sparse JCT distribution, which potentially increased the
makespan. To the contrary, the dense JCT distribution
was a short box, and the average JCT was also large. For
ReB, most jobs completed from 400 s to 1000 s, which
was earlier than for the other methods. ReB achieved
the least average JCT.

In summary, the max-min fairness method achieved
the shortest makespan but the longest average JCT.
ReB achieved the best average JCT and its makespan
was close to that of the max-min fairness method. We
attributed the benefits of ReB to three reasons. First,

Fig. 6 Completion times of 50 jobs scheduled by ReB, the
shortest-job-optimal, and max-min fairness methods.

ReB avoided over-/under-allocation for optimization
of the single-job allocation. Second, ReB preferred
the globally-optimal allocation rather than that of the
individual jobs. Third, ReB decreased the number of
jobs that were delayed by the resource contention.
When the number of jobs increased, the performance
improvement of ReB was more evident.

6.1.4 Evaluation of the scale of computation
resource

The above experiments were conducted using 200
cores and 500 GB RAM. In order to evaluate the
sensitivity of ReB against the change in the cluster
scale, we increased the number of total cores from
200 to 400. Figure 7 shows that the number of cores
imposed a significant impact on the improvement
factor. It was clear that the improvement factor of
ReB over the shortest-job-optimal method decreased
with increasing number of cores. Although the
average JCT under the two methods decreased, the
shortest-job-optimal method performed better when
computational resources increased. We inferred that
the increase in computational resources weakened the
resource contention among the multiple jobs, and thus
reduced the performance improvement of ReB. The
improvement factor of ReB over the max-min fairness
method also exhibited a similar trend. The scalability
showed that ReB performed better when computational
resources were insufficient, i.e., the resource contention
between multiple jobs was very strong.

6.1.5 Evaluation of the sensitivity of input size on
jobs

In addition to the cluster scale, we also changed the
input size of each job from 10 GB to 50 GB. Figure 8
shows that the improvement factor of average JCT. We
can see that the shortest-job-optimal method achieved
a shorter JCT than the max-min fairness method.

Fig. 7 Comparison of the improvement in average JCT
when the number of CPU cores increased from 200 to 400.
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Fig. 8 Comparison of the improvement of average JCT
when the input size increased from 10 GB to 50 GB.

The improvement factor of the shortest-job-optimal
method vs. the max-min fairness method decreased
by around 25% to 10%. This indicated that the
shortest-job-optimal method was more disadvantageous
in scheduling large jobs. We inferred that the larger
amount of input data caused longer starvation as
more jobs suffered from serious under-allocation.
Nevertheless, ReB achieved the greatest improvement
versus the other two methods. We conclude that ReB is
robust for changing input size.

6.2 Evaluation of the algorithm overhead

We further measured the time complexity of Algorithm
2 under 200 cores and different values of � when the
number of jobs ranged from 10 to 50. Figure 9 shows
the time complexity when the value of � is set to 1,
5, and 10, respectively. The algorithm overhead was
approximately one second when the number of jobs
was 10. Nevertheless, the overhead rapidly increased
when the number of jobs increased. We conclude that a
larger � incurs less algorithm overhead. The difference
in algorithm overheads using different � under 50 jobs
became huge. Although the algorithm overhead with a
small � is high, its performance was close to that of the
optimal solution. In future work, we will consider the

Fig. 9 Overhead of Algorithm 2 when jobs increased from
10 to 50.
setting of adaptive � across iterations in order to
accelerate the execution of Algorithm 2.

7 Discussion

As mentioned, we had four fundamental features, i.e.,
the number of CPU cores, the size of input data,
the number of partitions, and the amount of memory
per executor. We leveraged the prediction model to
predict changing JCT when two of the features changed.
Furthermore, we plotted the changing trend in predicted
JCTs.

Figure 10a shows that the JCT changed with the
number of cores and input size. Different colors denote
the length of JCTs. The deep blue region indicates that
40 cores were optimal for the workload of 10 GB. When
the input size increased, the JCT also increased. When
the input size was 60 GB, the optimal allocation was
around approximately 50 cores.

Figure 10b shows that the JCT changed with the
number of cores and the partition. When the number
of partitions increased from 100 to 500, the optimal
allocation remained the same. This indicated that
the number of partitions did not directly impact the
optimal allocation. Figure 10c shows the impact of the
memory and CPU cores. Larger memory was more
advantageous.

(a) Number of cores increases from 10 to 100, the
input size increases from 10 GB to 60 GB.

(b) Number of cores increases from 10 to 100, the
number of partitions increase from 100 to 500.

(c) Number of cores increases from 10 to 100, the amount
of memory per executor increases from 1 to 2 GB.

Fig. 10 Impact of partitions, cores, input size, and memory on the JCT prediction.
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8 Conclusion

ReB is a smart scheduler for balancing resource
allocation for Spark jobs. It trains the prediction
model for the optimal allocation by using operation
features and reforming samples pairwise. ReB balances
the global resource allocation involving multiple
Spark jobs. Our experiments demonstrated that ReB
outperforms the shortest-job-optimal and max-min
fairness methods. ReB decreases the average JCT by
15%–30%.
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