
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 04/10 pp479–486
DOI: 10 .26599 /TST.2019 .9010019
Volume 25, Number 4, August 2020

@ The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Hardware Implementation of Spiking Neural Networks on FPGA

Jianhui Han, Zhaolin Li�, Weimin Zheng, and Youhui Zhang�

Abstract: Inspired by real biological neural models, Spiking Neural Networks (SNNs) process information with discrete

spikes and show great potential for building low-power neural network systems. This paper proposes a hardware

implementation of SNN based on Field-Programmable Gate Arrays (FPGA). It features a hybrid updating algorithm,

which combines the advantages of existing algorithms to simplify hardware design and improve performance. The

proposed design supports up to 16 384 neurons and 16.8 million synapses but requires minimal hardware resources

and archieves a very low power consumption of 0.477 W. A test platform is built based on the proposed design using

a Xilinx FPGA evaluation board, upon which we deploy a classification task on the MNIST dataset. The evaluation

results show an accuracy of 97.06% and a frame rate of 161 frames per second.

Key words: Spiking Neural Network (SNN); Field-Programmable Gate Arrays (FPGA); digital circuit; low-power;

MNIST

1 Introduction

Over recent years, Neural Networks (NNs) have been
successfully deployed in a wide range of applications.
Compared to conventional Artificial Neural Networks
(ANNs) which use analog values to represent activations
inside the networks, Spiking Neural Networks (SNNs)
imitate real biological neurons and encode the activation
with the timing information of neuron spikes. As
opposed to ANNs, where the major operations are
the matrix multiplication of weights and activation of
network layers, the spiking nature of SNNs avoids
complex matrix multiplications and thus they require
lower computation resources and are more energy

� Jianhui Han is with the Institute of Microelectronics,
Tsinghua University, Beijing 100084, China. E-mail: hanjh16
@mails.tsinghua.edu.cn.

� Zhaolin Li is with the Research Institute of Information
Technology, Tsinghua University, Beijing 100084, China. E-
mail: lzl73@mail.tsinghua.edu.cn.

� Weimin Zheng and Youhui Zhang are with the Department
of Computer Science and Technology, Tsinghua University,
Beijing 100084, China. E-mail: zwm-dcs@mail.tsinghua.
edu.cn; zyh02@tsinghua.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2019-03-26; revised: 2019-04-25;
accepted: 2019-05-05

efficient.
SNNs are built with neurons, which are connected

with weighted synapses to form layers and networks.
As the basic building block of SNNs, each spiking
neuron maintains a value to represent its current state.
Inputs to these neurons are spikes transmitted through
synapses. The neurons collect these input spikes and
integrate the corresponding weights to update their
internal states. Whenever the state reaches a certain
threshold value, the neuron is activated and outputs a
spike to its successor neurons. After a pre-configured
propagation delay, the successors receive the spike and
update their states accordingly. Besides these common
operating principles, different neuron models feature
different neuron behaviors. One of the most commonly
used neuron models is the Leaky Integrate-and-Fire
(LIF) model. LIF neurons are inspired by the membrane
voltage leaking in biological neurons, with their states
decreasing over time if no input spikes present.

However, current computer architectures are not
ideally suited to executing SNNs. The massive
parallelism inherent to an SNN, in which a large
number of neurons work in a similar but simple manner,
requires a more parallel architecture than that provided
by current Central Processing Units (CPUs). Although
Graphics Processing Units (GPUs) can capitalize on

480 Tsinghua Science and Technology, August 2020, 25(4): 479–486

the parallelism of SNN, the kernel-launch programming
paradigm of current GPUs makes them ill-suited to
event-driven computation, which is an important class
of updating algorithms for SNNs (as described below
in Section 4.1). However, Field-Programmable Gate
Arrays (FPGA) can address this issue since they
provide parallel processing capability and are flexibly
reconfigurable to cater to different computing models.
Furthermore, FPGA are more energy efficient than
current CPUs and GPUs.

This paper therefore proposes an FPGA-based SNN
module implementation. By utilizing an enhanced hybrid
updating algorithm, the proposed module supports up to
16 384 neurons and 16.8 million synapses with minimal
on-chip resources and 0.477 W power consumption. We
build a test platform to evaluate the proposed accelerator,
on which we map an SNN model for the classification
of handwritten digits in the MNIST[1] dataset. The
evaluation results show that the classification accuracy
is 97.06% and the performance for processing neuron
firing events is 6.72�105 events per second, resulting in
161 frames per second for the MNIST dataset.

2 Background

A wide variety of neuron models have been used
in hardware implementations of SNNs, including the
Izhikevich model[2] and variations of the Integrate-and-
Fire (IF) model. Our approach adopts the LIF neuron
model, which simulates the membrane voltage leaking
of biological neurons with an exponential process:

V.t2/ D V.t1/ � e�.t2�t1/=� (1)

where V.t/ are the neuron states at time t (the membrane
voltage in biological neurons), and � is the leaky
constant. For the time-stepped updating algorithm, the
values of t are discrete and the term t2 � t1 will be a
constant �t . For the event-driven algorithm, t1 is the
timestamp of the previous event that updated this neuron,
and t2 is the timestamp of the current event.

The neuron state is also changed by input current from
other neurons. A weight Wi;j is assigned to the synapse
from neuron i to neuron j . When neuron i generates an
output spike, Wi;j is added to the state of neuron j after
a fixed delay. Therefore, for the time-stepped updating
algorithm, the updating equation of neuron j from time
step tn to tnC1 is

V.tnC1/ D V.tn/ � e��t=�
C

m�1X
iD0

si .tn/ � Wi;j (2)

where m is the fan-in of neuron j , and si .tn/ is the

spiking status of neuron i at time step tn. The spiking
status si is 1 if neuron i outputs a spike, otherwise it is
0. For the event-driven updating algorithm, an update is
triggered by the activation event of neuron i . For each
neuron j , where neuron j is a successor of neuron i , the
update is carried out by

V.t 0/ D V.t/ � e�.t 0�t/=�
C Wi;j (3)

where the parameters have the same meaning as in
Eq. (1).

After updating the neuron states, a threshold value
Vth is used to decide whether a neuron is activated and
outputs a spike. After a neuron activates, its state is reset
to Vreset.

3 Related Work

3.1 Hardware implementation

Significant effort has been invested into the hardware
implementation of SNNs and some designs have
been presented in the form of digital[3–7], analog[8, 9],
and mixed analog/digital circuits[10, 11]. For digital
implementations, both FPGA-based systems and
Application-Specific Integrated Circuit (ASIC) systems
have been widely studied.

The TrueNorth chip[3] is one of the most well-known
ASIC designs. A core in the TrueNorth system contains
a 256�256 crossbar that implements the function of
synapses and is configured to map incoming spikes to
neurons. By integrating 4096 such processing cores,
the TrueNorth chip carries 1 million neurons and 256
million synapses. The scale can be further extended
by connecting multiple chips together. SpiNNaker[4] is
another fully custom digital system and is composed
of many small ARM processors. It features a custom
interconnect communication scheme that is designed
to be suitable for a large number of small spike-like
messages and thus optimized for the communication
behavior of a spike-based network architecture. Like
TrueNorth, SpiNNaker supports the cascading of
multiple chips to form large-scale systems.

Previous works[5–7] have also proposed several FPGA-
based SNN accelerator designs. BlueHive[5] supports up
to 65 536 neurons and 67.1 million synapses with a multi-
FPGA architecture. However, it implements the neurons
with the complex Izhikevich model[2] and a low firing
rate assumption, which targets biological neural network
simulations and does not support real-world applications
effectively. Another representative design is Minituar[6],
which treats the activation of neurons as events and

Jianhui Han et al.: Hardware Implementation of Spiking Neural Networks on FPGA 481

utilizes an event-driven algorithm to update them. It
implements up to 65 536 LIF neurons and 16.8 million
synapses. Minituar faithfully models the exponential
leaky process of neurons and employs on-chip Digital
Signal Processors (DSPs) to carry out the fixed-point
computation. It also maintains a hardware event queue
that requires a sorting operation for each incoming event
to support spikes with delays; this increases design
complexity and run-time latency.

3.2 Network model

In recent years, Deep Belief Networks (DBNs)[12] have
been proven to be effective in a variety of domains,
such as machine vision[13] and machine audition[14].
DBN is a multilayered probabilistic generative model
that uses a stacked structure of multiple Restricted
Boltzmann Machines (RBMs). Previous work[15] has
proposed methods to convert DBNs to LIF-based spiking
DBNs and explored the processing of spiking DBNs with
the event-driven algorithm.

Another study[16] tried to solve the loss of accuracy
arising in the conversion from Fully-Connected
Networks (FCNs) and Convolutional Neural Networks
(CNNs) to SNNs. The proposed optimization techniques
include using Rectified Linear Units (ReLUs) with zero
bias during training to suit spiking encoding, a weight
normalization method to help regulate firing rates, and
a threshold balancing scheme to enable low-latency
processing.

In this paper, we use the techniques proposed in Ref.
[16] to train our SNN model and explore the efficient
hardware implementation of such SNN models.

4 System Design

4.1 Hybrid updating algorithm

We use an updating algorithm that is a hybrid of the
conventional time-stepped updating algorithm and the
event-driven updating algorithm. In this subsection, we
first briefly describe these two existing algorithms and
then present our hybrid.

The time-stepped algorithm processes all of the
neurons based on discrete time steps. Within each time
step, the state of each neuron is updated and checked to
decide whether it outputs a spike. Information about
these spikes is stored for use in future time steps
according to their transmission delay. This algorithm
can waste computing resources since it schedules
unnecessary operations for neurons that do not receive
any input spikes. The event-driven algorithm, on the

other hand, processes only the activation events of
neurons. An event queue is used as storage for the
events, and is sorted by the event timestamps. After each
event dequeues from the event queue, only the states
of successive neurons are updated, thereby generating
new events. In this way, unnecessary operations are
avoided. Although the event-driven algorithm can be
efficient, the hardware implementation of the event
queue is complicated since it requires sorting the events
whenever a new event enqueues.

Therefore, we combine the time-stepped and event-
driven algorithm, as described in Algorithm 1. We use
multiple event queues, each of which is tagged with
timestamp Qn (where n ranges from 0 to D � 1 where
D is the maximum delay allowed), to store the events to
be processed after n time steps from the current time. In
this way, events with the same timestamp can be stored
in the same queue with no sorting operation required. To
manage these event queues, time steps are maintained
globally. At each time step, the event queue with tag Q0

is set to be the active queue and its events are processed.
Once an event queue is empty, the current time step
finishes. Before the next time step, the tags of all event
queues decrease by one, such that Q1–QD�1 becomes
Q0–QD�2 and Q0 is reused in a circular manner as
QD�1. Sorting operations are avoided in this hybrid
updating algorithm, which reduces the system’s run-time
latency.

4.2 System architecture

The architecture of the proposed module is shown in

Algorithm 1 Hybrid updating algorithm

Input: Event queues Q0, Q1, ..., QD�1

1: for t (0 : �t : T do
2: while not Q0.is empty() do
3: event (Q0.dequeue()
4: for neuron in event.successors() do
5: neuron.update state()
6: neuron.check activation()
7: if neuron.is activated() then
8: new event (neuron.form new event()
9: delay (new event.get delay()

10: Qdelay.enqueue(new event)
11: end if
12: end for
13: end while
14: for i (1 : D � 1 do
15: Qi�1 (Qi

16: end for
17: QD�1 (Q0

18: end for

482 Tsinghua Science and Technology, August 2020, 25(4): 479–486

Fig. 1. There are four main memory components, each
of which has its own controller to manage its reading and
writing operations. The event queues submodule is the
hardware implementation of the multiple event queues
described above in Section 4.1. The event controller
submodule is in charge of managing these event queues
by enqueuing generated events and dequeuing events
for processing. The weight memory and state memory
submodules are used to store weight and state data,
respectively. The weight memory submodule is read-
only, while the state controller also controls the writing
back of updated states from the state updater. Another
memory submodule is the delay memory, which is
read-only and stores the delay values of different
events. Details about the implementation of the memory
components are discussed below in Section 4.3.

The state updater carries out the main body of
computation. It first decays the neuron states and then
sums the incoming weights to update the neuron states.
Checks for neuron activation are then carried out to
decide whether a new event is generated. If any neuron
is activated, its neuron state is reset to a predetermined
constant. The state updater can exploit the parallelism of
SNN by updating multiple neuron states at the same time.
The layered structure of SNN ensures that the successors
of a neuron are independent of each other, which makes
simultaneous updating possible.

The execution flow is as follows. The event controller
receives controlling signals and values of the current
time step from the system controller (which is omitted
from Fig. 1 for clarity). It then sets the current event
queue to be active and sequentially reads events from
it. The event data is sent to the weight controller and
the state controller. They access the weight and state
memory with the event data and then send them to the

Fig. 1 Architecture of the proposed system.

state updater. If there are activation events after the state
update, these events go through the delay controller to
look up their delays. The event controller calculates the
corresponding destination event queues according to the
delay, and writes the events to them.

The system works in an asynchronous manner to
improve throughput. For example, after the event
controller sends event data to the weight and state
controllers, it begins to read the event queue immediately.
When it collects the data request signal from the
weight and state controllers, event data are sent again.
Communication between other submodules is similar,
through requests and responses. Another example is the
source controller (also omitted from Fig. 1 for clarity)
for the state updater. It contains two First-In-First-Outs
(FIFOs) to hold the operands of the state updater from
the weight controller and the state controller. In this
way, although the latter two controllers have different
memory access times, waiting between them is avoided,
provided that the FIFOs still have space for incoming
data.

4.3 Implementation

We use signed 16-bit fixed-point numbers to represent
the weights and neuron states. The maximum number
of neurons is set to 16 384, which results in a 14-bit
index for each neuron. The maximum number of neurons
in one layer is 1024, with fully-connected synapses
supported. This means that the maximum number of
synapses is 16.8 million. The maximum delay is set to
16, which is adequate according to previous research[6].

The proposed module needs to store up to 32 MB of
weight data. Since the amount of on-chip Block RAM
(BRAM) of FPGA is often limited, it is impractical
to store all of the weights on-chip. Therefore, we use
external Double Data Rate (DDR) memory to store all
of the weights, while implementing all of the other
memory modules with BRAM. Considering that for each
event the corresponding weights are always of the same
group, we store these weights in consecutive spaces in
the external memory. With this mapping, the burst read
feature of the DDR memory can be exploited to optimize
the latency of memory access.

For the event queues, we implement 16 FIFOs with
BRAM that can be accessed separately with a 4-bit
address. To implement the hybrid updating algorithm,
the event controller always reads the FIFO with the lower
four bits of the current time register. After a new event is
generated by the state updater and the delay is obtained

Jianhui Han et al.: Hardware Implementation of Spiking Neural Networks on FPGA 483

from the delay controller, the delay value is added to the
current time and the lower four bits of the result are used
to select the correct FIFO to which to write the data.

The operations of the weight updater are mainly the
addition of weights and neuron states and the comparison
of updated states with the threshold parameter. The
decay of neurons is also carried out by the weight
updater. For simplicity, the exponential computation
is implemented with the subtraction of a constant. To
fully utilize the memory access bandwidth, 32 adders
and 32 comparators are instantiated in the weight updater.
Further analysis in Section 5.4 below shows that neither
the throughput of the weight updater nor its consumption
of hardware resources is limiting factors of the proposed
module.

5 Evaluation

5.1 Experimental setup

Benchmark. We apply a feed-forward SNN with two
hidden layers to a classification task on the MNIST
handwritten digit dataset[1] to evaluate the proposed
module. The topology of the network is shown in Fig. 2.
The input layer includes 784 neurons to process the
input spikes converted from the 28�28 pixel digit figure.
The two hidden layers both have 1024 neurons, while
the output layer has 10 neurons corresponding to the
classification results of digits 0–9. The layers are fully
connected, which means the connections are all-to-all
between two adjacent layers.

This paper focuses on the hardware implementation of
SNN, and the benchmark is used for system performance
measurement. Although the model has a limited depth
(i.e., number of layers), it takes up the fan-in/fan-out of
each layer as much as possible. The proposed module
updates neuron states based on events and the updating
operations and memory accesses of each event are

Fig. 2 Topology of the benchmark SNN model.

dependent on the fan-in/fan-out. Therefore, as analyzed
in Section 5.4 below, the system performance measured
with this benchmark is close to the theoretical upper
limit. The functional correctness of the proposed module
is also testified by the classification accuracy reporeted
in Section 5.3 below.

Test platform. We use a Xilinx ZC706 evaluation
board[17] with a XC7Z045 SoC to build the test platform.
The evaluation board provides 1 GB DDR3 memory
and two ARM Cortex-A9 MPCores. The structure of
the test platform is illustrated in Fig. 3. We implement
the proposed module in the programmable logic on the
evaluation board. The module runs at 200 MHz. One
of the ARM processors is employed to configure the
internal registers of the proposed module and manage
the data movement. The weight data are stored in the
DDR3 memory as described above. These three parts
are connected through an on-chip Advanced eXtensible
Interface (AXI) bus, as shown in Fig. 3.

5.2 Hardware utilization

The hardware utilization results are obtained based on
the synthesis results of the proposed accelerator, as listed
in Table 1. According to the results reported in Table 1,
the most intensive on-chip resource is BRAM, with
which the neuron states and activation event queues are
implemented. This implies that managing BRAM is an
important design consideration for FPGA-based SNN

Fig. 3 Structure of the test platform.

Table 1 Hardware utilization for ZC706 board.
Component Cells used Utilization (%)

LUT 5381 2.46
FF 7309 1.67

BRAM 40.5 7.43
BUFG 1 3.13

484 Tsinghua Science and Technology, August 2020, 25(4): 479–486

acceleration systems. Potential optimization techniques,
such as compressing the presentation of events or
reducing the bit-width of states and/or events, could
be beneficial.

The total power consumption is 0.477 W, with the
detailed breakdown shown in Fig. 4. Static power
is 0.246 W, which is nearly 52% of the total power
consumption. BRAM accounts for 19%, and is thus
also a major component of system power use.

5.3 Accuracy

The classification accuracy is tested on the MNIST test
dataset, which consists of 10 000 frames of figures. The
model is trained with the weight and threshold balancing
scheme[16] with MATLAB, using 32-bit floating-point
numbers. The training results in an accuracy of 98.48%.
The trained weights are turned into 16-bit fixed-point
numbers and deployed on the proposed module. The
accuracy of the on-board test is 97.06%. There is
therefore an accuracy loss of 1.42%, which is mainly
caused by the conversion from floating-point to 16-bit
fixed-point numbers.

5.4 System performance

We evaluate the performance of the proposed module
with the overall throughput on the benchmark dataset
(in frames per second) and the number of activation
events processed per second. To measure the processing
time, we insert a hardware counter into the test platform.
It begins counting when the ARM processor finishes
the initial configuration of the DDR3 memory and the
proposed module, and stops counting when the final
frame obtains its classification result. The processing
time for the 10 000 frames is 62.1 s, which supplies a
frame rate of 161 frames per second.

Device static 51.6%

BRAM
 19.1%

Signals 10.9%

Logic 8.8%

Clock 9.4%

IO 0.2%

Fig. 4 Power consumption breakdown.

For the number of activation events, we use MATLAB
to simulate the fixed-point computation of the proposed
module. With this simulator, the number of activation
events is 4:2 � 107. With the processing time acquired
as mentioned above, the performance in processing
activation events is 6.72�105 events per second.

For the proposed module to process each activation
event of a neuron, the states of all its successive neurons
need to be updated; this requires fetching 1024 weight
values from DDR3 memory.

Given that the proposed module runs at 200 MHz and
the width of the data bus is 64 bits, the bandwidth can
be up to 1600 MB/s (the weights are read-only during
the classification and only one direction is considered).
To process each neuron activation event, the weights for
all its successive neurons are required. Since we use 16
bits for each weight and the maximum fan-out of each
neuron is 1024, the amount should be 2 KB. Combining
these two constraints, the maximum performance of the
system is 8�105 events per second.

Comparing the practical performance with this
theoretical value, the bandwidth has been well exploited
in the proposed design. These system performance
results further identify that external memory bandwidth
is the bottleneck of FPGA-based SNN implementations.
Techniques like reducing the bit-width of weights and
network pruning can alleviate this issue; in particular,
network pruning has been demonstrated to be effective
in ANNs[18].

5.5 Comparison with GPU

For comparison, the same SNN model is implemented
with the PyTorch[18] framework to run on an NVIDIA
Tesla P100 GPU[19]. Note that GPUs are not suitable
for event-driven updating, so we implement the time-
stepped updating algorithm instead. Again, we measure
the execution time of the 10 000 frames of the MNIST
test dataset. The runtime power during GPU execution
is measured with the NVIDIA System Management
Interface[20].

The processing time on a GPU is 7.96 s and the
average power consumption is 29.6 W. Therefore,
although the proposed module demands more execution
time, it consumes much less power than a GPU. This
equates to much greater power efficiency: 337.6 frames
per second per watt compared to 42.2 frames per second
per watt on a GPU. These results imply that the proposed
design is suitable for application scenarios that have
strict constraints on power consumption and a tolerance

Jianhui Han et al.: Hardware Implementation of Spiking Neural Networks on FPGA 485

for execution latency.

6 Discussion

As mentioned above in Section 5, there are further
optimization opportunities for the proposed SNN
implementation. Since external memory bandwidth is
crucial for the system’s performance, we briefly discuss
the impact of lowering the weight bit-widths and pruning
network connections in this section. We apply these two
techniques to the MNIST model evaluated in Section 5
and re-evaluate the classification accuracy with our
software simulator.

Figure 5 shows the classification accuracy with lower
bit-widths. The results shown in Fig. 5 demonstrate that
the influence of bit-width on accuracy is negligible even
with the weight bit-width lowered to 6. This gives a
62.5% reduction in the total size of external data requests.
Although the ability to operate with such a low bit-width
partially stems from the simplicity of the MNIST dataset,
reducing bit-width is a promising method of improving
system performance. Therefore, for the implementation
and benchmarking of other systems, the choice of bit-
width should be carefully considered.

Similarly, the impact of network pruning is illustrated
in Fig. 6. Weights with small values are set to 0, with a
sparsity parameter used for the threshold. With sparsity
at 50%, half of the weights can be pruned with minimal

16 14 12 10 8 6 4
Weight bit-width

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Fig. 5 Classification accuracy vs. bit-widths on MNIST.

0 10 20 30 40 50 60
Sparsity

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Fig. 6 Classification accuracy vs. sparsity on MNIST.

loss of classification accuracy. By weight pruning, the
weights that are needed to process an event are reduced,
which benefits performance. We use a naive pruning
that simply masks out small weights; with further
optimization such as fine-tuning[21], the loss of accuracy
can be reduced further.

Furthermore, these two optimization techniques
are orthogonal to each other and can be applied
simultaneously. This requires further exploration of the
design space and is left to a future study.

7 Conclusion

In this paper, an FPGA-based SNN hardware
implementation is proposed. The proposed module is
designed based on a hybrid of the time-stepped and
event-driven updating algorithms. An evaluation of
the proposed module is carried out using the MNIST
dataset with the results showing a classification accuracy
of 97.06%. With 0.477 W power consumption, the
performance for processing neuron activation events
is 6.72�105 events per second, which results in a
frame rate of 161 frames per second on MNIST dataset.
The proposed module further identifies that memory
bandwidth is the bottleneck of the system. To address
this issue, two potential optimization techniques are
discussed for FPGA-based SNN implementations.

Acknowledgment

This work was supported in part by the Beijing Innovation
Center for Future Chip, Tsinghua University, in part by the
Science and Technology Innovation Special Zone project,
China, and in part by the Tsinghua University Initiative
Scientific Research Program (No. 2018Z05JDX005).

References

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-
based learning applied to document recognition, Proc.
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] E. M. Izhikevich, Simple model of spiking neurons, IEEE
Trans. Neural Netw., vol. 14, no. 6, pp. 1569–1572, 2003.

[3] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S.
Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam,
C. Guo, Y. Nakamura, et al., A million spiking-neuron
integrated circuit with a scalable communication network
and interface, Science, vol. 345, no. 6197, pp. 668–673,
2014.

[4] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E.
Painkras, and S. B. Furber, SpiNNaker: Mapping neural
networks onto a massively-parallel chip multiprocessor,
in 2008 IEEE Int. Joint Conf. on Neural Networks (IEEE
World Congress on Computational Intelligence), Hong
Kong, China, 2008, pp. 2849–2856.

[5] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos, and

486 Tsinghua Science and Technology, August 2020, 25(4): 479–486

A. Mujumdar, Bluehive—A field-programable custom
computing machine for extreme-scale real-time neural
network simulation, in 2012 IEEE 20th Int. Symp. on Field-
Programmable Custom Computing Machines, Toronto,
Canada, 2012, pp. 133–140.

[6] D. Neil and S. C. Liu, Minitaur, an event-driven FPGA-
based spiking network accelerator, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 22, no. 12, pp. 2621–2628,
2014.

[7] K. Cheung, S. R. Schultz, and W. Luk, A large-scale spiking
neural network accelerator for FPGA systems, in Artificial
Neural Networks and Machine Learning – ICANN 2012, A.
E. P. Villa, W. Duch, P. Érdi, F. Masulli, and G. Palm, eds.
Springer, 2012, pp. 113–120.

[8] E. Farquhar, C. Gordon, and P. Hasler, A field
programmable neural array, in 2006 IEEE Int. Symp. on
Circuits and Systems, Island of Kos, Greece, 2006, pp.
4114–4117.

[9] M. Liu, H. Yu, and W. Wang, FPAA based on integration
of CMOS and nanojunction devices for neuromorphic
applications, in Int. Conf. on Nano-Networks, M. Cheng,
ed. Springer, 2009, pp. 44–48.

[10] B. V. Benjamin, P. R. Gao, E. McQuinn, S. Choudhary,
A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza,
J. V. Arthur, P. A. Merolla, and K. Boahen, Neurogrid:
A mixed-analog-digital multichip system for large-scale
neural simulations, Proc. IEEE, vol. 102, no. 5, pp. 699–
716, 2014.

[11] T. Pfeil, J. Jordan, T. Tetzlaff, A. Grübl, J. Schemmel,
M. Diesmann, and K. Meier, Effect of heterogeneity on
decorrelation mechanisms in spiking neural networks: A
neuromorphic-hardware study, Phys. Rev. X, vol. 6, no. 2, p.
021023, 2016.

[12] G. E. Hinton and R. R. Salakhutdinov, Reducing the
dimensionality of data with neural networks, Science, vol.

313, no. 5786, pp. 504–507, 2006.
[13] D. C. Cireşan, U. Meier, L. M. Gambardella, and J.

Schmidhuber, Deep, big, simple neural nets for handwritten
digit recognition, Neural Comput., vol. 22, no. 12, pp. 3207–
3220, 2010.

[14] A. R. Mohamed, G. E. Dahl, and G. Hinton, Acoustic
modeling using deep belief networks, IEEE Trans. Audio
Speech Lang. Process., vol. 20, no. 1, pp. 14–22, 2012.

[15] P. O’Connor, D. Neil, S. C. Liu, T. Delbruck, and M.
Pfeiffer, Real-time classification and sensor fusion with
a spiking deep belief network, Front. Neurosci., vol. 7, p.
178, 2013.

[16] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and
M. Pfeiffer, Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing, in 2015
Int. Joint Conf. on Neural Networks (IJCNN), Killarney,
Ireland, 2015, pp. 1–8.

[17] Xilinx Inc., Xilinx Zynq-7000 SoC ZC706 evaluation
kit, https://www.xilinx.com/products/boards-and-kits/ek-
z7-zc706-g.html, 2019.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z.
DeVito, Z. M. Lin, A. Desmaison, L. Antiga, and A. Lerer,
Automatic differentiation in PyTorch, in Proc. 31st Conf.
on Neural Information Processing Systems, Long Beach,
CA, USA, 2017, pp. 1–4.

[19] NVIDIA Corporation, NVIDIA Tesla P100: The world’s
first AI supercomputing data center GPU, https://
www.nvidia.com/en-us/data-center/tesla-p100/, 2019.

[20] NVIDIA Corporation, NVIDIA system management
interface, https://developer.nvidia.com/nvidia-system-
management-interface, 2019.

[21] S. Han, H. Z. Mao, and W. J. Dally, Deep compression:
Compressing deep neural networks with pruning,
trained quantization and huffman coding, arXiv preprint:
1510.00149, 2015.

Jianhui Han received the BS degree
from Tsinghua University, Beijing,
China, in 2016. He is currently working
toward the PhD degree at the Institute of
Microelectronics, Tsinghua University,
Beijing, China. His main research interests
include digital circuit/system design and
emerging technology-based machine

learning acceleration.

Zhaolin Li received the BS and PhD
degrees from Harbin Institute of
Technology, Harbin, China, in 1994
and 2000, respectively. He is currently
a professor with the Research Institute
of Information Technology, Tsinghua
University, Beijing, China. His current
research interests include embedded

systems, parallel computing, multicore design, and system-on-a-
chip.

Weimin Zheng received the MS degree
from Tsinghua University, Beijing, China.
Currently he is an Academician of Chinese
Academy of Engineering and a professor at
the Department of Computer Science and
Technology, Tsinghua University, Beijing,
China. His research interests include high
performance computing, network storage,

and parallel compiler.

Youhui Zhang received the BS and
PhD degrees from Tsinghua University,
Beijing, China, in 1998 and 2002,
respectively. He is currently a professor in
the Department of Computer Science and
Technology, Tsinghua University, Beijing,
China. His research interests include
computer architecture and neuromorphic

computing. He is a member of CCF, ACM, and IEEE.

