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Complex Network Classification with Convolutional Neural Network

Ruyue Xin, Jiang Zhang�, and Yitong Shao

Abstract: Classifying large-scale networks into several categories and distinguishing them according to their fine

structures is of great importance to several real-life applications. However, most studies on complex networks focus

on the properties of a single network and seldom on classification, clustering, and comparison between different

networks, in which the network is treated as a whole. Conventional methods can hardly be applied on networks

directly due to the non-Euclidean properties of data. In this paper, we propose a novel framework of Complex

Network Classifier (CNC) by integrating network embedding and convolutional neural network to tackle the problem

of network classification. By training the classifier on synthetic complex network data, we show CNC can not only

classify networks with high accuracy and robustness but can also extract the features of the networks automatically.

We also compare our CNC with baseline methods on benchmark datasets, which shows that our method performs

well on large-scale networks.
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1 Introduction

A complex network is the highly simplified model
of a complex system, and it has been widely used
in many fields, such as sociology, economics, and
biology[1]. Given that complex networks can describe
the relationship between events, an increasing amount
of research is using complex networks to model
problems. For example, we can use a network to model
compounds in chemical research, in which nodes and
edges represent molecules and chemical bonds between
molecules. The compound network can be used to
identify substances with the same pattern structure as
the toxic compounds. Moreover, nowadays, more and
more social data constitute large-scale social networks,
in which nodes and links represent individuals and
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relationships. The analysis of social network can be
used to identify key people in society or reveal the
social circles of people. Therefore, studying complex
networks is crucial.

Most studies on complex networks focus on the
properties of a single complex network[2], such
as classification and clustering of nodes and link
prediction, while paying little attention to comparisons,
classifications, and clustering between different
complex networks. However, complex networks
classification is necessary and important in the study
of complex networks. For example, the social network
behind an online community impacts the development
of the community because social ties between users can
be treated as the backbone of the online community[3].
Thereafter, online community can be diagnosed by
comparing and distinguishing their connected modes,
and the development of online communities can be
predicted. As another example, we consider the product
flows on the international trade network. We know
that correct classification of products not only helps
us understand the characteristics of products but also
helps trade countries better count the trade volume
of products. However, classifying and labeling each
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exchanged product in international trade is tedious and
difficult. Conventional method classifies these products
according to the attributes of the product manually
(https://unstats.un.org/unsd/trade/sitcrev4.htm), which
is subjective. However, if a trade network classifier
is built, we can classify a new product exclusively
according to its network structure, because previous
studies point out that different products have completely
different structures of international trade networks.

In addition, complex network classification problems
can be applied in many practical areas, such as
predicting a country’s economic development based
on industrial networks or predicting a company’s
performance based on its interactive structure, which
all can be converted to a complex network classification
task.

The complex network classification task refers to
the use of an established network classification model
to continuously learn the training data, which is
a labeled network dataset, to find the connection
between the label and the structure of the network
and finally use the learned model to classify the
test data, which is a labeled unknown network
dataset. Thus, the complex network classification
problem is supervised learning similar to traditional
classification algorithms. However, because complex
networks mainly contain unstructured data, such as
network structure, traditional classification algorithms
cannot be directly applied. Therefore, new complex
network classification algorithms need to be found.

At present, deep learning technology has achieved
state-of-the-art results in the processing of Euclidean
data. For example, Convolutional Neural Network
(CNN)[4] can process image data, and Recurrent Neural
Network (RNN)[5] can be used in natural language
processing. However, deep learning technology is still
under development for graph structure data, such
as social networks, international trade networks, and
protein structure data.

As for complex network classification problem, some
related research mainly studied graph structure data in
the past. For example, kernel methods were proposed
to calculate the similarity between two graphs[6].
However, the methods can hardly be applied to large-
scale and complex networks due to the expensive
computational complexity of these graph classification
methods.

Network representation learning, which is developed
recently, is an important way to study graph structure

data. Earlier works, such as local linear embedding[7]

and IsoMAP[8], first constructed graphs based on
feature vectors. In the past decades, some shallow
models such as DeepWalk[9], node2Vec[10], and
LINE[11] were proposed, which can embed nodes into
high-dimensional space and empirically perform well.
However, these methods can only be applied on the
tasks (classification, community detection, and link
prediction) on nodes but not the whole networks.
Some models, such as GNNs[12], GGSNN[13], and
GCN[14], use deep learning techniques to deal with
network data and learn representations of networks.
Nevertheless, most methods also focus on the tasks
at the node level but not the graph level. Another
limitation of these techniques is the requirement for a
fixed network structure. In this paper, we proposed a
new method called Complex Network Classifier (CNC)
to address the complex network classification problem
by combining network embedding and CNN. We first
embed a network into high-dimensional space through
the DeepWalk algorithm, which preserves the local
structures of the network and converts it into a two-
dimensional image. Then, we input the image into a
CNN for classification. Our model framework has the
merits of small size, small computational complexity,
scalability to different network sizes, and automatic
feature extraction.

The rest of this paper is organized as follows. Section
2 introduces the related research. Section 3 presents
the model framework and experiments data. Section 4
shows the experiments and results. Section 5 gives the
discussion and conclusion.

2 Related Work

2.1 Complex network

Complex network focuses on the structure of
individuals’ interrelation in systems and is a way
to understand the nature and function of complex
systems. Studies of complex networks started from
regular networks, such as Euclidean grid or nearest-
neighbor network in the two-dimensional plane[15]. In
1959, Gilbert[16] proposed random network theory.
In 1998, Watts and Strogatz[17] and Barabási and
Albert[18] proposed small-world and scale-free network
models, respectively, which depict real-life networks
better. Researchers have summarized the classic
complex network model, which includes regular
networks, random networks, small-world networks, and
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scale-free networks, and proposed network properties,
such as average path length, aggregation coefficient,
and degree distribution. Recent studies mainly focus on
network reconstruction and network synchronization,
and few studies focus on the classification of complex
networks.

2.2 Network classification

Classification of network data has important
applications, such as protein-protein interaction,
predicting the functionality of chemical compounds,
diagnosing communities, and classifying product
trading networks. In the network classification problem,
we are given a set of networks with labels, and the
goal is to predict the label of a new set of unlabeled
networks. The kernel methods developed in previous
research are based on the comparison of two networks
and similarity calculation. The most common graph
kernels are random walk kernels[19], shortest-path
kernels[20], graphlet kernels[21], and Weisfeiler-Lehman
graph kernels[22]. However, the main problem of graph
kernels is that they can hardly be used on large-scale
and complex networks because of the expensive
calculation complexity.

2.3 Deep learning on graph structure data

CNN is the most successful model in the field
of image processing. It has achieved good results
in image classification[4], recognition[23], semantic
segmentation[24], and machine translation[25], and
can independently learn and extract features of
images. However, it can be applied only on regular
data, such as images with a fixed size. As for
graph structure data, researchers have recently been
searching for effective and efficient deep learning
methods with deep learning methods. For example,
to apply the convolutional operation on graphs, Ref.
[26] proposed to perform the convolution operation
on the Fourier domain by computing the graph
decomposition of the Laplacian matrix. Furthermore,
Ref. [27] introduced a parameterization of the spectral
filters. Reference [14] proposed an approximation of
the spectral filter by Chebyshev expansion of the
graph Laplacian. Reference [28] simplified the previous
method by restricting the filters to operate in a one-
step neighborhood around each node. However, among
all the aforementioned spectral approaches, the learned
filters based on the Laplacian eigenbasis are dependent
on the graph structure. Thus, a model trained on a

specific structure cannot be directly applied to a graph
with a different structure. We know that a complex
network classification problem often includes many
samples and each sample has one specific network
structure, so we cannot directly use GCN to classify
networks.

2.4 Network representation learning

Representation learning has been an important topic
in machine learning for a long time, and many works
aim at learning representations for samples. Recent
advances in deep neural networks have indicated their
powerful representation abilities and that they can
generate useful representations for many types of
data. Network representation learning is an important
way to preserve structure and extract features of a
network through network embedding, which maps
nodes into a high-dimensional vector space based on
graph structure. The vector representations of network
nodes can be used for classification and clustering
tasks. Some shallow models were previously proposed
for network representation learning. DeepWalk[9]

combined random walk and skip-gram to learn
network representations. LINE[11] designed two loss
functions attempting to capture the local and global
network structure. Node2Vec[10] improved DeepWalk
and proposed a two-order random walk to balance the
Depth First Search (DFS) and Breath First Search (BFS)
search. Reference [29] proposed an approach based on
the open-flow network model to reveal the underlying
flow structure and its hidden metric space of different
random walk strategies on networks.

The most important contribution of network
representation learning is that it can extract network
features that provide a way to process network data.
Thus, we consider using the features extracted by the
embedding methods to solve the network classification
problem. We recognize DeepWalk as a classic and
simple model that can represent the network structure
and has high efficiency when dealing with large-scale
networks. Moreover, the random walk process in
DeepWalk, which obtains the sequences of networks,
is adaptable to different networks. For example, we
can easily change the random walk mechanism for
the international trade network, which is directed
and weighted. Therefore, we combine the network
representation learning and deep learning method to
develop our model, which can perform well in the
complex network classification task.
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3 Methods of Network Classification

3.1 Model

Our strategy to classify complex networks is to
convert networks into images and use the standard
CNN model to perform the network classification
task. Given the development of network representation
techniques, many algorithms can be used to embed
the network into a high-dimensional Euclidean space.
We select DeepWalk algorithm[9], which was proposed
by Bryan Perozzi et al. to obtain the network
representation. The algorithm generates numeric node
sequences by performing large-scale random walks
on the network. Afterwards, the sequences are fed
into the skip-gram and negative sampling algorithms
to obtain the Euclidean coordinate representation
of each node. To increase the number of training
samples, we can perform data augmentation by
performing the DeepWalk algorithm on a single
network several times to obtain more sets of node
representations. Obviously, high-dimensional space
representation is hard to process. Thus, we use the
Principal Components Analysis (PCA) algorithm to
reduce the dimension of node representations into
two-dimensional space. PCA can simplify information,
remove redundant information and noise, and retain
the principle components of data[30]. For the high-
dimensional space representation of network, PCA
can not only reduce the dimension but also retain

the main information of the network structure. For
example, the karate network is shown in Fig. 1a, and
its two-dimensional representation after the DeepWalk
embedding and PCA reducing dimension is presented
in Fig. 1b. Figure 1b shows that nodes of the same
color are clustered, thereby indicating that the network
structure information is actually well preserved after
embedding and reducing the dimension, thus being
suitable for the network classification task. However,
the set of nodes is a point cloud that is still irregular
and cannot be processed by CNN. Thus, we rasterize
the two-dimensional representation into an image. We
divide all the areas covered by the 2-dimensional scatter
plot into a square area with 48�48 grids, and then count
the number of nodes in each grid as the pixel grayscale.
Afterwards, a standard gray scale image is obtained. We
actually change the size of the grid based on the network
size during our experiments, reducing the size for small
networks. This method can also be applied on directed
and weighted networks, such as international trade
networks. By adjusting the probabilities according to
the weight and direction of each edge for a random walk
on a network, we can obtain an embedding image.

The final step is to feed the networks’ images
into a CNN classifier to complete the classification
task. Our CNN architecture includes two convolutional
layers (one convolutional operation and one max-
pooling operation) and one fully connected layer and
one output layer. The whole architecture of our model

Fig. 1 Pipeline of the CNC algorithm.
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is shown in Fig. 1. Figure 1a is the original input
network. Figure 1b is the embedding of the network
with DeepWalk algorithm. In DeepWalk algorithm, to
obtain enough corpus, we set the number of walks to
10 000 times and the sequence length to 10. We then
embed the network into a 20-dimensional space and
project it on two-dimensional space by using the PCA
algorithm. Figure 1c is the rasterized image from the
2D-embedding representation of the network. Figure 1d
is the CNN architecture of the CNC algorithm, which
includes one input image, two convolutional pooling
layers, one fully connected layer, and one output layer.
The sizes of the convolutional filters and of the pooling
operation are 5 � 5 and 2 � 2, respectively. The first
layer has three convolutional filters, the second layer
has five convolutional filters, and the fully connected
layer has 50 units. In all complex network classification
experiments, we set the learning rate to 0.01 and the
size of a mini-batch is 100. The CNN architecture is
selected to minimize the computational complexity and
retain the classification accuracy.

3.2 Experimental data

A large amount of experimental data is needed to train
and test the classifier. Thus, we use both synthetic
networks generated by network models and empirical
networks to test our model.

3.2.1 Synthetic data
The synthetic networks are generated by well-known
Barabási-Albert model (BA) and Watts-Strogatz model
(WS). According to the evolutionary mechanism of the
BA model, which iteratively adds m D 4 nodes and
edges at each time, the added nodes will preferentially
link to the existing nodes with higher degrees until
n D 1000 nodes are generated, and the average degree
hEi of the generated network is about 8, which is
close to the degree of real networks[31]. We then use
the WS model (n D 1000, the number of neighbors of
each node k D 8, and the probability of reconnecting
edges p D 0:1) to generate a large number of small-
world networks with the same average degrees as in
the BA model. We then mix the generated 5600 BA
networks and WS networks. Then, we separate the set
of networks into a training set (with 8000 networks), a
validation set (with 2000 networks), and a test set (with
1200 networks).

3.2.2 Empirical data
Product-specific international trade networks are

adopted as the empirical data to test our classifier. The
dataset is provided by the National Bureau of Economic
Research (http://cid.econ.ucdavis.edu/nberus.html) and
covers the trade volume between countries of more than
800 different kinds of products that are all encoded by
SITC4 digits, a hierarchical classification system for
different products from 1962 to 2000. The international
trade network is a weighted directed network, in which
the weighted directed edges represent the volumes of
trading flows between two countries. Thus, the random
walk in the DeepWalk algorithm should be based on the
weights and directions of edges. We train the CNC to
distinguish food products and chemical products. Each
product class contains about 10 000 networks obtained
by the products and the product combinations within the
category.

In addition, to test the efficiency of our model, we
applied our framework to benchmark datasets from
bioinformatics to social networks (see Table 1 for
summary statistics of these datasets).

The bioinformatics dataset NCI1[32], made publicly
available by the National Cancer Institute, is a subset
dataset of chemical compounds screened for their
ability to suppress or inhibit the growth of a panel of
human tumor cell lines.

Social network datasets include scientific
collaboration dataset and Reddit datasets (Reddit
is a popular content-aggregation, website: http://reddit.
com). The scientific collaboration dataset COLLAB
is derived from three public collaboration datasets[33],
which represents the three different research fields.
The networks of different researchers were generated
from each field, and each network was labeled as the
field of the researcher. The task is to determine to
which field the collaboration network of a researcher
belongs. REDDIT-BINARY (RE B) is a dataset where
each network corresponds to an online discussion
thread where nodes correspond to users, and an edge
exists between two nodes if at least one of them
responded to another’s comment. Top submissions

Table 1 Properties of the empirical data.

Size Enriched
size

Number of
average
nodes

Number of
average
edges

Number
of

classes
NCI1 4110 12 330 29.80 32.30 2

COLLAB 5000 15 000 74.49 2457.78 3
RE B 2000 6000 429.61 497.75 2

RE 5K 4999 14997 508.50 594.87 5
RE 12K 11 929 35 787 391.40 456.89 12
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from four popular subreddits were chosen and
divided into question/answer-based subreddits and
discussion-based subreddits. The task is to identify
whether a given network belongs to a question/answer-
based community or a discussion-based community.
REDDIT-MULTI-5K (RE 5K) is a dataset from the five
different subreddits, and we simply label each graph
with their correspondent subreddit. REDDIT-MULTI-
12K (RE 12K) is a larger variant of RE 5K, consisting
of 12 different subreddits. The task in the two datasets
is to predict to which subreddit a given discussion
network belongs.

4 Experiments and Results

We conduct a large number of network classification
experiments, and the results are presented in this
section. On the synthetic networks, we not only show
the classification results but also present how the CNC
can extract the features of networks and the robustness
of the classifier on network sizes. On the empirical
networks, we show the results that our CNC apply on
the trade flow networks, which are directed weighted
networks. To compare our method and other existing
methods on graph classification, we adopt the empirical
networks listed in Table 1.

4.1 Classification on synthetic networks

4.1.1 BA and WS network classification
The first task is to apply CNC to distinguish BA network
and WS network. Although we know that the BA
network is a scale-free network and WS network is a
small-world network with a high clustering coefficient,
the machine does not know this. Thus, this series
of experiments shows the possibility that the CNC
network can extract the key features to distinguish the
two networks. We generate 5600 BA networks with
n D 1000, m D 4 and 5600 WS networks with the same
size (n D 1000, k D 8) and p D 0:1, respectively. We
combine these networks to form the dataset, which
is further randomly separated into training set (with
8000 networks), validation set (with 2000 networks),
and test set (with 1200 networks). Figure 2 shows
the decay of the loss on the training set and the
error rate of the validation set. Finally, we obtain
0.1% of the average error rate on the test set.
Thus, we can say the model can distinguish the BA
network and the WS network accurately. To understand
what has been learned by our CNC model, we can
visualize the feature maps extracted from the network
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Fig. 2 Loss and validation error rate of the classification
task on (a) BA vs. WS models and (b) food vs. chemical
products.

representations by the filters of the CNN, which are
visualized in Fig. 3. Figure 3a shows 2D representations
and rasterized images of a BA network (upper) and
a WS network (bottom), Fig. 3b is the visualization
of the three filters of the first convolutional layer, and
Fig. 3c is the visualization of the five filters (size of
5 � 5 � 3) of the second convolutional layer. However,
reading meaningful information is difficult because the
network structure cannot correspond to the images. To
understand what the filters do, we need to combine the
network structure and the feature map. Therefore, we
try to map the highlighted areas in the feature maps of
each filter on the node set of the network. That is, we
wonder which parts of the networks and what kind of
local structures are activated by the first convolutional
layer filters. We compare the activation modes for the
two model networks as input, and the results are shown
in Fig. 4. By observing and comparing these figures,
we find that the convolutional filters of the first layer
have learned to extract the features of the network in
different parts. As shown in Fig. 4, Filter 0 extracts
the local clusters with a medium density of nodes and
connections, Filter 1 tries to extract the local clusters
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(a)
conv1_filter_0 conv1_filter_1 conv1_filter_2

(b)
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conv2_filter3_1

conv2_filter4_2

(c)
Fig. 3 Feature maps visualization.

with sparse connections, and Filter 2 tries to extract
the local clusters with dense nodes and connections.
By comparing the BA and WS model networks, we
can observe that the locations and the patterns of the
highlighted areas are different. The local areas with

Active nodes: Filter 0 and links with neighbors

Active nodes: Filter 0 and links with neighbors

Active nodes: Filter 1 and links with neighbors

Active nodes: Filter 1 and links with neighbors

Active nodes: Filter 2 and links with neighbors

Active nodes: Filter 2 and links with neighbors

(f)(e)

(d)(c)

(b)(a)

Fig. 4 Active nodes by the three kernels in the first layer,
(a)–(c) BA network and (d)–(f) WS network.

dense nodes and connections (Filter 0) locate at the
central area of the network representation for both BA
network and WS network. The local structures with
sparse nodes and connections locate at the peripheral
area, which is close to the edges of the image for
the WS network but is in the central area for the BA
network. This combination of the activation modes on
feature maps can help the higher-level filters and fully
connected layer distinguish the two kinds of networks.

4.1.2 Small-world network classification
One may think that distinguishing the BA and WS
networks is trivial because they are two different
models. Our second experiment will consider whether
the classifier can distinguish networks generated by
different parameters of the same model, which is harder
than the previous task.

To verify the discriminant ability of the model in this
task, we use the WS model to generate a large number
of experimental networks by changing the value of edge
reconnection probability p from 0 to 1 at a 0:1 step,
and then we mix the networks with two discriminant p

values, e.g., p D 0:1 and p D 0:6. Then, we train the
CNC for networks and test their discriminant ability on
the test sets.

We systematically conduct this experiment for
any combination of the networks with each two
probabilities, and the results are shown in Fig. 5. The
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Fig. 5 Classification results of each two small-world
networks with different p values.

networks generated by p values are less than 0:3 and p

values that are greater than or equal to 0:4 are easier
to distinguish. Interestingly, the error rate changed
suddenly at p D 0:4. The classifier cannot distinguish
the two networks with p > 0:4. This phenomenon may
be due to the phase transition from the small-world
network to random network because the WS networks
with p > 0:5 may be treated as random networks.

4.2 Robustness on network sizes

Our model has good classification performances on
both synthetic and empirical data. Next, we want to test
the robustness of the classification on different sizes
(numbers of nodes and edges). All the experiments
performed in classification experiments contain the
model networks with identical numbers of nodes and
edges. Nonetheless, a good classifier should extract
the features that are independent in size. Therefore,
we examine the robustness of the classifier on various
network sizes that are different from those of the
training sets. In these experiments, we first apply the
trained classifier for BA and WS networks with n D

1000 nodes and average degree hEi D 8, on new
networks with different numbers of nodes and edges.
We generate 600 mixed networks with parameters m

Œ1; 2; 3; : : : ; 16� for the BA model and k Œ2; 4; 6; : : : ; 32�

for the WS model as the test set, such that their
average degrees are similar. We systematically compare
how the numbers of nodes and edges on the test
sets influence the error rates, as shown in Fig. 6, in
Fig. 6a, on the test set, we set n (number of nodes) =
Œ500; 600; 700; : : : ; 1500�, and we also retrain networks
for n D 800 and n D 1200, and test them on networks
with different n. In Fig. 6b, on the test set, we set m

(average number of edges) D Œ1; 2; 3; : : : ; 16�, and we
also retrain networks for m D 6 and m D 8 and test
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Fig. 6 Dependence of the error rates on (a) the number
of nodes and (b) the number of edges in the robustness
experiments.

them on different networks with the different m. At first,
we observe that the error rates are almost independent
on small fluctuations of the number of nodes. However,
the error rates increase as size differences increase in
the test data. This finding indicates that our classifiers
are robust on the size of the networks.

Nevertheless, sudden changes occur in the variants
on the number of edges, which indicates that the
number of edges has larger impacts on the network
structure. We observe that a sudden drop in error rates
occurs with an increase of m for the test set when
m D 8 for the training set. We observed the increased
network embedding and determined that this sudden
change is due to the emergence of multi-centers on the
representation space for the BA model. Therefore, the
number of links can change the overall structure in the
scale-free network, thereby causing our classifier to fail.
Another interesting phenomenon is that the error rates
can remain small when the number of edges increases
when m in the training set is set to 8. Therefore, the
classifier training on the dense networks is more robust
on the variance on edge densities.



Ruyue Xin et al.: Complex Network Classification with Convolutional Neural Network 455

4.3 Classification on trade flow networks

We want to verify the effectiveness of the model on
empirical networks. We conduct a classification task on
international trade networks with the dataset obtained
from the National Bureau of Economic Research
(http://cid.econ.ucdavis.edu/nberus.html). These data
cover the trade volume and direction information
between countries of more than 800 different kinds of
products that are all encoded by SITC4 digits from
1962 to 2000. We select food and chemical products
as two labels for this experiment, and their SITC4
codes start with 0 and 5, respectively. For example,
0371 is for prepared or preserved fish and 5146 is for
oxygen-function amino-compounds. Figure 7 shows
the two-dimensional representations of the 10 products
for the two categories. After preprocessing, the total
number of the food trade networks is 10 705 (including
products and product combinations with SITC4 digits
starting with 0) and the number for the chemical trade
networks is 10 016 (including products and product
combinations with SITC4 digits starting with 5). Then,
we divide them into training set, validation set, and test
set according to the ratio of 9:1:1. During the training,
we adjust the network parameters to 15 convolutional
filters in the first layer, 30 convolutional filters in the
second layer, and 300 units in the fully connected layer.
Figure 2b shows that the classification error rate can be
cut down to 5%.

4.4 Comparison with other methods

We compare our model CNC with baseline methods,
such as graph kernel methods and deep learning
methods. Kernel methods mainly compute the
similarity between two graphs. We chose Graphlet
Kernel[21] (GK) and Weisfeiler-Lehman kernel[22]

(WL), which are two state-of-the-art graph kernels.
As for deep learning methods, we chose deep graph
kernels[6], which achieve significant improvements
in classification accuracy over state-of-the-art graph
kernels in some datasets. We also chose PATCHY-
SAN (PSCN, k D 10)[34], which is the best performing
graph CNN model. We applied our model to benchmark
datasets and compared the classification accuracy of our
model against the baseline methods (see Table 2). From
the table, we can see that our framework performs
well on Reddit datasets, which are all large-scale
networks that have hundreds of nodes and edges. This
result implies that our model can learn large-scale
networks well because it can extract more meaningful
information for these networks through DeepWalk.
However, our model cannot perform well on the NCI1
and COLLAB datasets mainly because those networks
are too small to produce density information on
rasterized images. We also tried using t-SNE methods
to reduce the dimension of node representations. But
the effect is worse than that of our original PCA
method because the nodes become more clustered

Whey Fish Flour,meal,flakes Molasses Cocoa powder

Derivatives of hydrocarbons Amino-compounds Carbon Synthetic organic tanning substances Glycosides

Fig. 7 Network representations of 10 selected products in food (upper) and chemicals (bottom).

Table 2 Comparison of classification accuracy (˙ standard deviation).
(%)

Method
Dataset

NCI1 COLLAB RE B RE 5K RE 12K
GK 62.28˙0.29 72.84 ˙ 0.28 77.34˙0.18 41.01˙0.17 31.82˙0.08
WL 80.22˙0.51 77.82˙1.45 78.52˙2.01 50.77˙2.02 34.57˙1.32

Deep GK 62.48˙0.25 73.09˙0.25 78.04˙0.39 41.27˙0.18 32.22˙0.10
PSCK, k D 10 70.00˙1.98 72.60˙2.15 86.30˙1.58 49.10˙0.70 41.32˙0.42

CNC tSNE 63.18˙3.35 63.46˙1.59 80.17˙2.66 46.15˙1.55 36.53˙0.97
CNC 63.11˙0.56 67.79˙2.34 86.72˙1.55 51.35˙3.02 41.44˙1.64



456 Tsinghua Science and Technology, August 2020, 25(4): 447–457

after the t-SNE algorithm is applied, thereby leaving
less local information when we map them into image
representation. Thus, CNN tSNE has difficulty to learn
the effective features.

5 Conclusion and Discussion

In this paper, we propose a model that mainly
incorporates DeepWalk and CNN to solve the
network classification problem. With DeepWalk, we
obtain an image for each network, and then we
use CNN to complete the classification task. Our
method is independent on the number of network
samples, which is a major limitation for the spectral
methods on graph classification. We validate our
model through experiments with synthetic data and
empirical data, which show that our model performs
well in classification tasks. To further understand
the network features extracted by our model, we
visualize the filters in CNN and observe that CNN can
capture the differences between WS and BA networks.
Furthermore, we test the robustness of our model
by setting different sizes for training and testing. We
also compare our model with baseline methods, and
the result shows that our model performs well on
large-scale networks. The biggest advantage of our
model is that it can deal with networks with different
structures and sizes. In addition, our model has a small
architecture and low computational complexity. Several
potential improvements and extensions to our model
could be addressed in future work. For example, we
can develop more methods to deal with the network
features in high-dimensional space. We also think that
our model can be applied to more classification and
forecasting tasks in various fields. Finally, we believe
that extending our model to more graph structure data
would allow us to address a larger variety of problems.
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