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Effect of Image Noise on the Classification of Skin Lesions Using Deep
Convolutional Neural Networks
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Abstract: Skin lesions are in a category of disease that is both common in humans and a major cause of death. The

classification accuracy of skin lesions is a crucial determinant of the success rate of curing lethal diseases. Deep

Convolutional Neural Networks (CNNs) are now the most prevalent computer algorithms for the purpose of disease

classification. As with all algorithms, CNNs are sensitive to noise from imaging devices, which often contaminates

the quality of the images that are fed into them. In this paper, a deep CNN (Inception-v3) is used to study the

effect of image noise on the classification of skin lesions. Gaussian noise, impulse noise, and noise made up of

a compound of the two are added to an image dataset, namely the Dermofit Image Library from the University

of Edinburgh. Evaluations, based on t-distributed Stochastic Neighbor Embedding (t-SNE) visualization, Receiver

Operating Characteristic (ROC) analysis, and saliency maps, demonstrate the reliability of the Inception-v3 deep

CNN in classifying noisy skin lesion images.
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1 Introduction

Skin, the largest organ in the human body and interface
for interacting with environment[1, 2], protects the body
from various extracorporeal intrusions but can also
develop lesions and malignant tumors that present a
threat to human life[3]. According to the American
Cancer Society[4], skin cancer was among the ten
leading cancer types in 2018 with an estimated 99 550
new cases. Diagnosis is the first step for recovering
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healthy skin, and early diagnosis is a major determinant
of the prognosis for patients suffering from malignant
lesions. Among the various types of lesions, melanoma
is one of the most dangerous cancers[5]. Nonetheless,
a timely diagnosis of melanoma can give a survival
rate of almost 90%[6]. The five- and ten-year survival
rates based on the Tumor Node Metastasis (TNM)
Staging Categories for Cutaneous Melanoma are 97%
and 93%, respectively, for patients with early stage
T1aN0M0 melanomas, and 53% and 39%, respectively,
for patients with final stage T4bN0M0 melanomas[7].
Thus, early diagnosis of skin lesions and cancers is
critical to the health outcomes of patients and their
chances of survival.

Smartphone-based skin lesion diagnosis is a
convenient means of early diagnosis for skin disease,
especially for tiny lesions that people tend to neglect.
Recent breakthroughs in machine learning have led to a
proliferation of smartphone-based skin lesion Computer
Aided Diagnosis (CAD) apps[8]. In 2017, there were 43
apps available for smartphones for the monitoring and
tracking of skin lesions[9]. For example, MoleScope
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connects with the DermEngine web platform to
track and monitor moles, providing information
and preventing neglect due to deterioration[10].
However, melanoma detection with these smartphone
applications has a low diagnostic accuracy[11]. A test
of four such applications gives disappointing results:
the lowest sensitivity is 6.8%, the lowest specificity is
30.4%, the lowest positive predictive value is 33.3%,
and the highest negative predictive value is 97.0%.
Applications that use automated algorithms to analyze
images have the lowest sensitivity[11]. Thus, even
the newest smartphone-based skin lesion diagnosis
methods are heavily prone to misdiagnosis.

Misdiagnosis can mean that the best moment for
diagnosis is lost, and can thereby endanger the life
of patients. There are several reasons for medical
misdiagnoses, among which is low quality images being
obtained from medical imaging devices. According
to recent results[3], the quality of images, which are
affected by light, angle, and noise, has a strong
impact on the classification accuracy of machine
learning. Photos taken by smartphones are often of
low quality, which contributes to diagnostic inaccuracy.
Smartphone-captured images are subject to various
types of distortion, such as illumination variations,
motion blur, and defocus aberrations[5]. Due to the
physical limitations of mobile devices, photos are
inevitably contaminated by noise, mainly a compound
of Gaussian and impulse noise. Thus, to achieve better
diagnosis results it is necessary to address the effects of
image noise on the deep Convolutional Neural Network
(CNN) classification of skin lesions.

In this paper, to investigate the aforementioned
problem, the Dermofit Image Library dataset from
Edinburgh Innovations Ltd. at the University of
Edinburgh[12] is used to train a deep CNN (Inception-
v3) to study the effect of image noise on the deep CNN
classification of skin lesions.

2 Method

2.1 Dataset

The Dermofit Image Library[12] from Edinburgh
Innovations Ltd. at the University of Edinburgh is
the original dataset used for training. This library
includes 1300 high quality dermofit images and
contains the ten most common dermofit categories:
Malignant Melanoma, Seborrheic Keratosis, Basal
Cell Carcinoma, Actinic Keratosis, Dermatofibroma,

Haemangioma, Intraepithelial Carcinoma, Pyogenic
Granuloma, Melanocytic Nevus, and Seborrheic
Keratosis. Each image has been photographed under
a uniform standard and detected through professional
skin pathology.

According to the clinical characteristics of skin
diseases, a group of dermofit images is selected from
the Dermofit Image Library dataset based on whether
the skin lesion has a high incidence or high death
rate. The group includes three malignancies: Squamous
Cell Carcinoma, Malignant Melanoma, and Basal Cell
Carcinoma. Of these, Squamous Cell Carcinoma often
occurs with Tumor Infiltrating Lymphocytes (TILs)[13]

and Basal Cell Carcinoma is a very common cutaneous
carcinoma, making up 75% – 80% of all of the non-
melanoma forms of cutaneous carcinoma. This group
of images is used to analyze the effect of noise on skin
lesion classification.

2.2 Deep CNN network model

A deep CNN model, Inception-v3, developed and pre-
trained by the Google TensorFlow team, is employed
for the classification of skin lesions with noisy images.
Inception-v3 is a new version of Inception-v1 and
Inception-v2 that has been pre-trained on the ImageNet
database (containing 1 280 000 universal images). In
this paper, the transfer learning approach is employed
with Inception-v3[14]. Transfer learning is a new method
of machine learning which can transfer a well-trained
network to a new situation to solve new problems,
allowing it to acquire a relatively high accuracy with
a limited dataset and limited training time. Inception-
v3 is a deep convolutional network that is difficult to
train with a small-scale dataset and a low performance
computer. The transfer learning method relies on
training the final layer of Inception-v3 with the new
dataset[14].

The network architecture of Inception-v3 is shown
in Fig. 1, with the following training procedure. Due
to the limited size of the image set, we freeze the
model structure except for the last fully connected
layer. The fully connected layer is removed and a new
connected layer is built with the output equal to the
total target classification, then the Inception-v3 network
is retrained. The original images and contaminated
images, produced by adding various kinds and levels
of noise, are used to train the network. The training
results are then used to analyze the effect of different
noise-contaminated images on the performance of the
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Fig. 1 Network architecture of Inception-v3.

machine learning algorithm.

2.3 Image processing

Two types of noises are introduced into the images
in the original dataset. Photos taken with digital
devices are most often contaminated by compounds of
Gaussian and impulse noise[15]. Therefore, to simulate
photos with a realistic image quality, different levels
of Gaussian and impulse noise and a compound of
the two are added to the images, with the clean and
noisy datasets used separately to train the network. To
produce Gaussian noise, we add a random offset
obeying the Gaussian distribution to each pixel in each

of the Red Green Blue (RGB) channels. To produce
impulse noise we change some pixel values to the
maximum or minimum with a fixed proportion; this
simulates sudden interference in the signal transmission
process, such as from the failure or saturation of the
inductors.

In all, five types of noise are added to the
original dataset of skin lesion images, to create five
corresponding sub-datasets. The first two sub-datasets
have Gaussian noise added, with standard deviations of
25 and 35. The next two have impulse noise added,
with 0.02 and 0.04 proportions. Example images from
these four contaminated datasets are shown in Fig. 2.

(a) Gaussian noise

(b) Impulse-noise

(a2) Sigma = 35(a1) Sigma = 25

(b2) Proportion = 0.04(b1) Proportion = 0.02

Original

Fig. 2 Contaminated images with four single noises.
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Due to the fact that, in practice, images taken by
smartphones are contaminated with a hybrid of different
types of noise, a further sub-dataset of compound
noise is created by adding both Gaussian noise, with
a standard deviation of 25, and impulse noise, with a
0.02 proportion. Example images with this compound
noise added are shown in Fig. 3. Finally, the Inception-
v3 network is trained with the above five datasets, with
the results discussed in the next section.

3 Results

3.1 Training results

A comparison of the classification accuracy of the
trained Inception-v3 deep CNN between the original
images and the corresponding images contaminated
by the different noise is shown in Table 1, which
shows a variance in impact for different types and
degrees of noise using the trained Inception-v3 neural
network with a fixed network structure, amount of
training, and number of images. For the original image

Table 1 Training result.
Type of images Test accuracy (%)

Original 96.50
Gaussian noise (Sigma=25) 94.30
Gaussian noise (Sigma=35) 93.70
Impulse noise (Proportion = 0.02) 90.10
Impulse noise (Proportion = 0.04) 85.40
Compound noise 88.80

dataset, the skin lesion classification accuracy varies
between 95% and 98%. The effect of Gaussian noise
contaminated images on lesion classification is minor,
with a barely distinguishable reduction in accuracy.
However, when impulse noise is added to the original
images, the deterioration in classification accuracy is
evident. Therefore, with the existence of noise in
images taken by smartphone, training CNNs using
images contaminated by noise with practical parameters
will increase the accuracy of smartphone skin lesion
diagnostic apps. The analysis results for accuracy and
loss of the CNN are plotted in Fig. 4. With respect to
step increment, classification accuracy increases to a
high value and then oscillates around it, and training
loss converges to zero near the 2000th step. The
accuracy of skin lesion classification decreases under
the effect of noise being added to the original image
dataset, and decreases further as the sigma of Gaussian
noise or the proportion value of impulse noise increases.

3.2 Evaluations of the network

To further evaluate the suitability of Inception-v3
for the skin lesion images, three evaluation methods
are employed: t-distributed Stochastic Neighbor
Embedding (t-SNE) visualization, Receiver Operating
Characteristic (ROC) analysis, and saliency maps.

3.2.1 Index I: t-SNE visualization
To visualize the datasets we use the t-SNE method,
which converts high-dimensional datasets into pairwise

(a) Squamous Cell Carinoma

(a1)

(a2)

(c) Basal Cell Carcinoma

(c1)

(c2)

(b) Malignant Melanoma

(b1)

(b2)

Original

Compound 
noise

Fig. 3 Contaminated images with compound noise.
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Fig. 4 Accuracy and loss of the original dataset and the datasets contaminated by five type noises.
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similarity matrices. This method is a variant of the
random neighbor embedding approach[16], but it is
easier to optimize and can produce better visualizations
by reducing the tendency to gather points together at the
center of the output map. t-SNE is good at capturing
most local structures in a group of high-dimensional
data, and can also reveal global structures, such as
clustering on several scales. Drawing on these benefits,
t-SNE is used in this study to show the classification
results, giving the output shown in Fig. 5.

In Fig. 5, the red, orange, and blue points indicate
Basal Cell Carcinoma, Malignant Melanoma, and
Squamous Cell Carcinoma images, respectively. In
addition, each point represents the position of a picture
mapped from 2048-dimensional space to 2-dimensional
space. Clustering is quite clear in the 2-dimensional
plane, especially the distinction between the red points
and the other two. The clarity of this distinction
indicates that the computer-recognized features of Basal
Cell Carcinoma are obviously different from Malignant
Melanoma and Squamous Cell Carcinoma, whereas
Squamous Cell Carcinoma and Malignant Melanoma
are hard to distinguish in this model.

3.2.2 Index II: ROC analysis
The results of the ROC analysis are as follows:
Precision D 98.182%, Sensitivity D 98.182%,
Specificity D 94.118%, False Positive Rate
(FPR)D 5.882%, and False Negative Rate (FNR)D
1.818%. With a precision of identifying Malignant
Melanoma and Benign Melanocytes of over 98% and

sensitivity and specificity both over 90%, the trained
neural network is highly creditable for skin lesion
classification based on the Dermofit Image Library[12]

dataset and the datasets of noise contaminated images
based upon it.

3.2.3 Index III: Saliency map
A saliency map is a simple method for computer visual
saliency detection. By analyzing the log spectrum of
the input image, the spectral residuals of the image
are extracted in the spectral domain to construct
a corresponding spatial domain saliency map. The
type and characteristics of images and the knowledge
domain they belong to are not relevant to this analysis,
which is only related to the analytical features. We
analyze the original skin lesion images in the Inception-
v3 network to check the parts of the images that have the
greatest influence on computer recognition, and inspect
and compare the changes in their saliency maps after
the various types of noise are introduced. Comparisons
between a selection of the generated image saliency
maps and the original images are presented in Fig. 6.

From Fig. 6 it can be seen that when the
computer analyzes the images, along with the
effectively identified disease texture, some of the
messy information having negative effects on texture
extraction can also be erroneously extracted. These
negative effects are listed as follows.

(1) Skin texture. When a skin lesion classification
CNN processes images, the skin texture affects the
classification result. Some obvious textures produce a

(c) Malignant Melanoma

(b) Squamous Cell Carinoma

(a) Basal Cell Carinoma

Fig. 5 t-SNE visualization of the results. Red, orange, and blue points indicate Basal Cell Carcinoma, Malignant Melanoma,
and Squamous Cell Carcinoma images, respectively. In addition, each point represents the position of a picture mapped from
2048-dimensional space to 2-dimensional space.
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clear gray in the resultant saliency map, such as the area
enclosed by a red rectangle in Fig. 6a.

(2) Light. Under some illumination conditions, some
areas of an image will be brighter than others. These
bright regions, such as the area enclosed by a red
rectangle in Fig. 6b, do not indicate skin disease, but
will affect the classification of skin lesions. Comparing
the three image classes in Fig. 6, the effect of light on
machine visualization is the most significant.

(3) Hair blockage. When a skin lesion is
photographed, the image often includes some hair,
as shown by the area enclosed with a red rectangle in
Fig. 6c. These hairs will cause disturbances with the
CNN training.

Next, a significance analysis is presented for the noise
contaminated pictures. Here, relatively high-resolution
pictures and relatively low-resolution pictures are
selected for analysis, as shown in Fig. 7. With the
naked human eye the original image dataset and the four

sub-datasets with noise added are almost the same, but
the differences among the original dataset and the noise
contaminated datasets are recognized by the CNN.

4 Discussion
The choice of dataset has a great impact on the training
of a deep CNN. The Dermofit Image Library chosen for
this study is a collection of 1300 focal high-quality skin
lesion images collected under standardized conditions
with internal color standards. The lesions span across
ten different classes, including melanomas, Seborrhoeic
Keratosis, and Basal Cell Carcinomas. Each image is a
snapshot of the lesion surrounded by some normal skin,
with a binary segmentation mask that denotes the lesion
area. One advantage of the Dermofit Image Library is
that each image comes with a gold standard diagnosis
based on expert opinion (including dermatologists and
dermatopathologists). Another advantage is the high
image quality. The disadvantages of the Dermofit Image

(b) Malignant Melanoma (c) Basel Cell Carcinoma(a) Squamous Cell Carcinoma

Fig. 6 Different kinds of noises with significant influence illustrated by corresponding salience map.

(a) Images with lower-resolution (b) Images with higher-resolution
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Fig. 7 Comparison of salience maps with different kinds and different level noises contaminated.
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Library include a relatively low number of lesion types
and a low number of images for each type. There
is also a relatively low range of ethnicities and skin
colors represented. Lesions can be particular to a given
human skin type and the classification is not always
applicable to others. Although all existing studies on
skin lesion classification have their own advantages
and disadvantages regarding the training and testing
datasets, classification could be further optimized for
this study by collecting additional images.

Cutaneous components, such as hair and skin texture,
and factors affecting image quality, such as light, both
generate characteristics that algorithms detect as similar
to that of lesions, and thus contribute to classification
inaccuracies. These characteristics often result in a low
accuracy of skin lesion classification and can lead to
misdiagnosis. If hair, light, and cutaneous texture could
be removed physically or by the use of algorithms
similar to that found in Ref. [17], the classification
accuracy will greatly increase. Therefore, the effects
of the removal of hair, light, and skin texture on
classification results is worthy of further study.

No comparison of skin lesion classification between
the results in this paper and that by doctors is
performed; this is different to other lesion classification
studies that depend only on an image dataset and the
adjustment of parameters. The reason for this lies in
the specific objective of this study, to look at the
influence of noise on lesion images. Referring to the
top row of Fig. 7, the classification results by doctors
for each of the images are the same, despite the
noise contamination. While a computer algorithm can
distinguish between the contaminated images and the
originals, they are barely distinguishable to the naked
eye; the noise has a great effect on computer-aided
lesion classification but almost no effect on human
classification. A detailed comparison of skin lesion
classification between the algorithm used in this paper
and doctors may nonetheless be usefully pursued at a
later date.

Gaussian and impulse noises are selected to simulate
the images obtained from digital cameras embedded in
smartphones owned by average consumers. These two
types of noise are the most widely studied targets in
the computer vision field for their universality across
various photos. Despite the generality of Gaussian and
impulse noises, there do exist various other types of
image noise in images taken on smartphones: banding

noise, fixed pattern noise, Rayleigh noise, etc. The
effects of different compounds of these additional types
of noise on skin lesion classification need further
study. Furthermore, a comparison between computer
simulated noise and the noise actually produced by
typical digital cameras is needed to judge the confidence
level of the simulated noise.

The deep CNN adopted for this study is the
Inception-v3 model. The advantages of this model
include its fast training speed and highly efficient
transfer learning, having being well trained via a
large training dataset with several million images.
The model has been verified by its use for several
other types of lesions, such as lung cancer[18],
diabetic retinopathy screening[19], and breast cancer
histology[20]. Alternative CNN architectures that have
proven to be effective, such as AlexNet, ResNet,
and VGG16, could be used to investigate skin lesion
classification. Dataset screening on the training and
testing datasets can weaken the applicability of the
trained Inception-v3 deep CNN. In Ref. [3], the
extent of the training and test dataset of Inception-
v3 outperforms that of other studies for lesion
classification. However, both the training and test
datasets exclude vague images and low-quality images
taken from a long distance. Thus, the skin lesion
classification is obtained based on dataset screening,
and difficulties are likely to emerge from this when
translating to medical practice.

5 Conclusion

The Inception-v3 deep convolutional neural network
architecture is used to demonstrate the effect of
image noises on the classification of skin lesions,
based on the Dermofit Image Library dataset from
the University of Edinburgh. Gaussian noise, impulse
noise, and a compound of the two are added to the
original images. Three methods of evaluation, namely
t-SNE visualization, ROC analysis, and saliency
maps, demonstrate the reliability of the approach. The
accuracy of skin lesion classification decreases under
the effect of noise when compared with the original
image dataset. In the future, besides Gaussian and
impulse noises, other types of noise existing in medical
images will be added into images to study the effect
of a greater range of noise on the classification of skin
lesions.
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