
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 06/11 pp368–383
DOI: 10 .26599 /TST.2019 .9010010
V o l u m e 2 5, N u m b e r 3, J u n e 2 0 2 0

@ The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

An Inception Module CNN Classifiers Fusion Method on Pulmonary
Nodule Diagnosis by Signs

Guangyuan Zheng�, Guanghui Han, and Nouman Qadeer Soomro

Abstract: A “sign” on a lung CT image refers to a radiologic finding that suggests a pathological progression of some

specific disease. Analysis of CT signs is helpful to understand the pathological origin of the lesion. In-depth study of

lung nodules classification with different CT signs will help to distinguish benign and malignant nodules more clearly

and accurately. To this end, we propose an Inception module-based ensemble classification method for pulmonary

nodule diagnosis with different nodule signs. We first construct a Convolutional Neural Network (CNN) classifier

adopting Inception modules and pre-train it on ImageNet. We then fine-tune this pre-trained classifier on 10 different

lung nodule sign sample sets, and fuse these 10 classifiers with an artificial immune ensemble algorithm. The

overall sensitivity, specificity, and accuracy of our proposed Artificial Immune Algorithm-based Inception Networks

Fusion (AIA-INF) algorithm are 82.22%, 93.17%, and 88.67%, respectively, which are significantly higher than

those of the alternative Bagging and Boosting methods. The experimental results show that our Inception-based

ensemble classifier offers promising performance, and compared with other CADx systems, this scheme can offer

a more detailed reference for diagnosis, and can be valuable for junior radiologist training.

Key words: sign; lung cancer; pulmonary nodule; Convolutional Neural Network (CNN); Artificial Immune Algorithm

(AIA)

1 Introduction

Lung cancer is among the most fatal of diseases.
Early diagnosis is considered to be crucial for better
treatment and curability[1]. Significant progress has
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been made in screening breast, cervical, and prostate
cancer[2], however, much progress still needs be made
in lung cancer screening[3]. When symptoms of lung
cancer appear, due to the peculiarities of the pulmonary
anatomy, it has been growing for a considerable
period and has potentially spreaded outside the lung.
Therefore, at the initial presentation, most patients are
already at an advanced stage of the disease. Out of every
100 newly diagnosed patients with lung cancer, 80
patients will be inoperable due to the progression of the
cancer to an advanced stage, and only 20 patients can
proceed for resection[4]. Most lung cancer manifests as
nodules in the early stages[5]. The 10 years survival rate
can be as high as 88% if lung cancer is diagnosed at
Stage I and resected[6]. On the other hand, many benign
diseases, such as hamartoma and carcinoid tumors, can
also appear as nodules in CT slices[7], which results in
varied interpretations among radiologists, and makes
it difficult to decide whether a nodule is benign or
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malignant[8, 9]. Misinterpretation leads to unnecessary
physical and mental pain, and extra financial burden for
patients. The results reported in Refs. [10, 11] showed
that interpretation errors could be as high as 42% when
diagnosing pulmonary nodules on CT.

A “sign” on a lung CT image refers to a radiologic
finding that suggests a pathological progression of
some specific disease. Clinicians often infer the
possible pathological processes from the sign of
a lung focal[12]. Sign recognition from CT scans
is a critical stage for the early diagnosis of lung
cancer[13]. Some signs of nodules are known to be
highly associated with lung cancer, such as certain
internal structures[14, 15], spiculation, lobulation, and
some texture[12, 14]. Radiologists usually assess the
malignancy likelihood of a nodule by reference to these
characteristics[10]. Wood et al.[15] found that whether
a nodule on a CT scan was identified as suspected
lung cancer was mainly due to its type and size
(e.g., solid, part-solid, and ground-glass texture, etc).
Today, Computer Aided Diagnosis (CAD) has become
more important for both clinical diagnosis and for the
training of junior doctors[16]. Therefore, CADx for sign
recognition is deserving of further study.

Most existing studies focus on the detection of
pulmonary nodules, and this has resulted in significant
boosts in pulmonary nodule detection. The most
commonly used detection approaches in literature are
LDA[17], k-Nearest Neighbor (k-NN)[18–21], SVM[22–28],
ANN[29–32], and Decision Tree (DT)[33]. Ensemble
classification combines several weak classifiers into
one strong classifier to improve the classification
accuracy[34]. In the field of CADx, there is limited
work on the fusion of multiple classifiers. In Refs.
[35–37], the authors combined multiple traditional
classifiers together to improve detection performance.
Compared with the traditional classifier, Convolutional
Neural Network (CNN) network can automatically
extract the features of Regin Of Interest (ROI) images,
achieve an end-to-end operation, and avoid information
loss caused by intermediate processing steps. In this
paper, we propose a deep CNN ensemble scheme for
pulmonary nodule sign recognition. In our ensemble
scheme, 10 classifiers are trained by transfer learning
on 10 uncrossed sample sets selected randomly from
a dataset. Individual networks are integrated using the
artificial immune method to come up with a final
classification. A visual depiction of the fusion scheme

is given in Fig. 1. We name our approach as Artificial
Immune Algorithm-based Inception Networks Fusion
(AIA-INF) algorithm. We apply AIA-INF to a public
pulmonary nodule dataset, that is Lung Image Database
Consortium (LIDC), and compare this method to the
ensemble approaches of Bagging and Boosting.

The main contributions of our work are as follows:
� We introduced Inception modules into AIA-INF

which resulted in a higher recognition accuracy;
� Utilizing an Artificial Immune Algorithm (AIA)

integration optimization method, we produced more
superior and robust system performance; and
� We conducted a novel further exploration of

malignant nodule CADx.
The rest of this paper is organized as follows. Section

2 reviews the related work on fusion classification in
medical imaging field, Section 3 presents our ensemble
classification method, and Section 4 describes our
experimental scheme. We evaluate the efficiency of the
method in Section 5 and discuss the results in Section
6. Section 7 concludes.

2 Related Work

With the development of computer technology and
ralated research efforts, many excellent CADx schemes
have emerged. Hussein et al.[38] proposed a 3D
CNN-based nodule characterization strategy. They
utilized the volumetric information from a CT scan
to address the need for a large amount of training
data for CNN and resorted to transfer learning to

Transfer learning
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wj ×CNNj wm×CNNm

output1 outputj outputm

CNNi

Training on ImageNet

Fusing with AIA

Transfer learning Transfer learning

CNN10

CNN
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Fig. 1 Principle diagram and flow chart of AIA-INF.
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obtain highly discriminative features. They also
acquired the task dependent feature representation
for six high-level nodule attributes and fused
this complementary information via a Multi-Task
Learning (MTL) framework. Finally, they proposed
the incorporation of potential disagreement among
radiologists while scoring different nodule attributes
in graph regularized sparse multi-task learning. Shen
et al.[39] proposed a method directly modeling raw
nodule patches with an end-to-end machine-learning
architecture for classifying lung nodule malignancy
suspiciousness. They constructed a Multi-Crop
CNN (MC-CNN) to automatically extract salient
nodule information by employing a novel multi-crop
pooling strategy which crops different regions from
convolutional feature maps and then applied max-
pooling at different times. Experimental results showed
that the proposed method could not only fulfil nodule
suspiciousness classification, but also could effectively
characterize nodule semantic attributes (subtlety
and margin) and nodule diameter. Wei et al.[40]

presented a novel unsupervised spectral clustering
algorithm to distinguish between benign and malignant
nodules. In this algorithm, a new Laplacian matrix
was constructed by using Local Kernel Regression
Models (LKRM) and incorporating a regularization
term. In this way, their algorithm can not only achieve
a higher classification performance, but also tackle the
out-of-sample problem. In Ref. [41], three types of
deep neural networks (CNN, DNN, and SAE) were
applied to lung cancer classification. Those networks
were applied to the CT image classification task
with some modifications for benign and malignant
lung nodules and were evaluated on the Lung Image
Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) database. The experimental
results showed that the CNN network achieved the best
performance with an accuracy of 84.15%, sensitivity
of 83.96%, and specificity of 84.32%, which was
the best result among the three networks used for
comparison. Multi-View CNNs (MV-CNN) were
proposed in Ref. [42] for lung nodule classification.
Liu and Kang[42] carried out a binary classification
(benign and malignant) and a ternary classification
(benign, primary malignant, and metastatic malignant)
on the LIDC-IDRI database using MV-CNN. The
results revealed that the deep features learned by their
proposed model had a higher separability than features

from the image space. Most of these existing works
focus on binary-classification of lung nodules. Further
study of different nodule signs analysis is needed to
understand the pathological origin of the lesion, and
more accurately distinguish different types of nodules
from the pathological perspective.

Ensemble classification is one of the most important
method to improve the efficiency of nodule recognition,
because it is able to integrate multiple classifiers into
a unified classifier, and thereby provide more accurate,
stable, and robust classification results. There are
a variety of commonly used integration algorithms,
among which Bagging and Boosting are two of
the most popular. Tartar et al.[43] compared single
SVM with Bagging SVMs. Results showed that
in Total Classification Accuracy (TCA) and False
Positive Ratio (FPR) metrics, Bagging SVM was
significantly superior to single SVM. In another
work, Tartar and Akan[44] proposed a classification
approach for pulmonary nodule detection from CT
imagery using morphological features of nodule
patterns. The ensemble learning approaches, Bagging,
Boosting, and Subspace were used for the classification
process. The proposed system with random forest-
based ensemble learning approaches resulted in the
highest performance. Jaffar et al.[45] used ensemble
Bagging trees to classify lung nodules, employing a
multi-coordinate histogram of gradient and an intensity-
based features descriptor. They verified the CADx
system on the lung image consortium database, and
attained superior results comparing with other existing
CADx systems. Xie et al.[46] proposed a Transferable
Multi-Model Ensemble (TMME) algorithm to separate
malignant from benign lung nodules using limited
chest CT data. This algorithm transferred the image
representation abilities of three ResNet-50 models,
pre-trained on the ImageNet database. Experimental
results on the LIDC-IDRI dataset showed TMME’s
classification accuracy was markedly higher than seven
state-of-the-art approaches. Farahani et al.[47] presented
a computer-aided classification method using computed
tomography lung images, based on an ensemble of three
classifiers (MLP, KNN, and SVM). In their system,
morphological features are used for the classification
process in such a way that each classifier makes its
own decision, and a majority-voting method is used
to combine the decisions of the ensemble system.
Results show a good level of improvement in the
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diagnosis of pulmonary nodules. Ma et al.[36] proposed
a new weighted-sum method of multiple classifier
fusion to recognize the common CT Imaging Signs
of Lung (CISL) diseases. The classifiers are fused
through a weighted method combining five types of
classifiers for CISL recognition, namely SVM, Back-
Propagation Neural Network (BPNN), Naı̈ve Bayes
(NB), k-NN, and DT. Through a comparison with
each single classifier of its own, and two well-known
methods of classifier fusion (Bagging and Boosting),
the method was shown to be effective and promising.
In the process of integrating multiple classifiers, the
type and number of the classifiers involved are very
important factors. For a specific classification problem,
a particular ensemble scheme is used to combine a
certain number of classifiers together. In order to attain
the best overall classification performance, the number
of the classifiers participating in the integration and
their organizing mode need to be determined with
an optimization strategy. Existing methods have used
experiments or experience to make this determaination,
but this method of combination is suitable only for
specific training datasets. The performance of the
ensemble body may not be optimal, and its generalized
performance and stability may also fall short.

3 Method

3.1 AIA-INF algorithm

Using a classifier ensemble scheme can improve
the overall classification performance[48]. Two critical
factors determining the final accuracy of the integrated
classifiers are: (a) the average generalization error of
each individual classifier, and (b) the diversity of the
individual classifiers in the ensemble.

Aiming to achieve superior performance from the
fewest individual components, Zhou et al.[49] proposed
a selective ensemble method named as Genetic
Algorithm-based Selective ENsemble (GASEN).
GASEN first trains a number of neural networks and
assigns them random weights, then employs a genetic
algorithm to evolve the weightings. In the process of
ensemble generation, GASEN can find the optimal
weight of the best matching degree between sub-
networks by genetic crossover and mutation operations.
Finally, according to the evolved weights, neural
networks with high weights are selected to make up the
final integrated network.

When selecting sub-networks, GASEN does not
take the differences between individual networks
into account. Moreover, genetic algorithm in Ref.
[49] is liable to fall into local optima. The AIA-
INF ensemble algorithm we proposed in this paper
considers both the average generalization error and the
diversity of component networks and, to the greatest
extent possible, chooses classifiers with high output
heterogeneity.

To apply AIA-INF, firstly we pre-train an Inception
network on a natural image database and conduct
transfer learning on 10 different sign sample sub-sets
as the original individual classifiers. Then, we adopt
the AIA method to integrate the sub-networks together
while enhancing the difference between individual
networks, thereby improving the classification accuracy
of the ensemble network. This method actively chooses
individual networks with a high degree of difference
and high individual classification accuracies into an
ensemble through immune cloning and their weights
mutation.

Corresponding to the idea of AIA, in this paper, we
look at each sub-network as an antibody, and the label
value of the real category as an antigen. The principle of
our fusion Inception network algorithm is illustrated in
Fig. 2, which shows the step-by-step fusion procedure
of the AIA-INF.

In Fig. 2, each rectangle stacked structure represents
an individual sub-network. O represents the output of
an individual, and is looked as an antibody; af is the
affinity between values of the predicted category and
the real label of an input sample. The lines between
each two sub-network entities represent the similarity
of the two predicted outputs, denoted as sm. For a sub-
network neti in the ensemble, when it is removed from
the ensemble, the mean similarity between the remained
sub-networks is called the residual average similarity
sm of neti , if the sm of neti is lower than that of the
other sub-networks, and the predictive affinity af of
neti is the lowest, then sm � af of neti must be the
smallest in the ensemble. If this neti is removed from
the ensemble in the process of classifier fusion, it will
be also beneficial to improve the overall classification
accuracy and the diversity of individual classifiers in the
ensemble. According to this idea, in the fusion process,
if the value of sm � af of a subnetwork is less than a
certain threshold � , the subnetwork will be excluded
from the ensemble classifier.
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Fig. 2 Fusion scheme of Inception networks.

For an input ROI image patch, each individual
classifier in an ensemble predicts a normalized vector
O, in which each element corresponds to a class. The
category corresponding to the highest element in the
vector will be regarded as the predicted category of
the classifier. For example, the highest value of the
elements in O1.Œ0:0002; 0:0060; 0:0088; 0:98; 0:005�/,
is the 4th element (0.98), so classifier net1 places
the input ROI patch into Category “3”. In Fig. 2,
the residual average similarities of net1 to net5
are 0.188 24, 0.175 972, 0.195 633 3, 0.223 353, and
0.216 218, respectively, their predicted affinity is 0.90,
0.67, 0.64, 0.60, and 0.99. The product of their residual
average similarities and predicted affinity sm�AF
is 0.169 942, 0.117 901, 0.125 205, 0.134 012, and
0.214 055, respectively. Obviously, the product of sm�
AF of net2 is the smallest, and net2 will be excluded
from the ensemble.

We use cosine similarity to measure the affinity
between the classifier prediction and the sample label.
Assuming that at a given time, the number of the sub-
networks in an ensemble is N, and we want to learn an
Inception ensemble network to approximate function f:
Rm!C, where m refers to the number of the samples to
be classified, and C means the set of categories used in
the classification task. Let “f i” represent the prediction
of the i-th classifier, such that Fi D Œfi1, f i2, : : : , f ij ,

: : : , f im], where f ij means the prediction of the i-th
classifier for the j-th example. Let cj present the real
label of the j -th example. For an individual network i,
the similarity between f ij and cj can be attained by

cos distij .fij ; cj / D

9P
kD0

.eikejk/s
9P
kD0

.eik/2 C

s
9P
kD0

.cjk/2

(1)

where eik is the k-th element of classifier f i ’s
prediction vector, and cjk is cj ’s k-th element, with k
in the range of 0 to 9.

The number of involved sub-networks will change
after each evolution. So, we use a normalized reciprocal
Euclidean to measure the similarity between two subnet
outputs,

smij D
1/ Euclidean dist.neti ; netj /

mP
k

mP
t

(1/Euclidean dist.netk; nett //
(2)

where i, j, k, tD 1, : : : , m; i ¤ j I k ¤ t.
Then the residual average similarities of neti is:

smi D

NP
1

smn

N � 1
.n ¤ i/ (3)

According to the immune algorithm theory of the
survival of the fittest, and suppressing the high-
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density antibodies, the main goals of our AIA-INF
algorithm are to: (a) clone and mutate individual
networks with higher output affinity, and (b) moderately
exclude individual networks with lower affinity and
high similarity between. For the same input, if no
two individual networks are able to produce the same
correct prediction, we at least want to ensure they are
not providing the same wrong output at least. In this
way, the diversity of the networks is enhanced.

The affinity between the prediction value (antibody)
and the sample label (antigen) — “AF”, which indicates
the matching degree between the output and the class
label. Assuming there are n samples to be tested, the
expected output is EX D Œex11; : : : ; exij ; : : : ; exnm�

T.
Here, exij means the expected i-th output of the j-th
sub-network. Then

AFD Œaf11; : : : ; afij ; : : : ; afnm�Dcos dist.EX; fi /
(4)

where afij represents the affinity metric of the j-th
individual network on the i-th sample. The individual
networks whose affinity is lower than the threshold
are discarded, and individual networks having a value
higher than the threshold will remain for cloning and
mutation. The mutation rules is expressed as

M 0 DM C ˛N.0; 1/e�smi f̨ij (5)

where M 0 means the weight vector after the mutation
of M, and ˛ is a parameter used to control the
mutation rate; by changing ˛, we can tune the mutation
latitude manually. N(0, 1) is a Gaussian random
function, the goal of which is to produce many near-0
variations. f̨ij is a [0, 1] number, measuring the
distance between the output of the ensemble network
and the label of the input; the higher the affinity,
the smaller the variation, which makes convergence
faster. The network integration algorithm of networks
is summarized in Algorithm 1.

3.2 Individual classifier design

Figure 3 shows the length distribution of nodule
diameters in LIDC, which mostly sits between 2 mm
and 33 mm. The average value of CT image pixel
intervals is 0.6761 mm; converting to pixels, the
diameters are between approximately 3 pixels and 49
pixels. To arrive at a robust ensemble classifier that can
handle ROIs of all sizes, we construct a deep learning
framework with an input size of 32�32 pixels.

CNN is inspired by biological mechanism and
designed to emulate the behavior of visual systems.

Algorithm 1 Fusing algorithm of AIA-INF

For an Inception network framework:
(1) Train an original Inception classifier on the ImageNet

database.
(2) Randomly select 10 non-intersecting sub datasets from

the nodule sign sample database. Then fine-tune this pre-trained
network on 10 sign subsets separately to gain 10 different sub-
networks.

(3) Use these 10 sub-networks as initial antibody population.
Then, select randomly another non-used training dataset from
the original database. For each sample image patch, the 10 sub-
networks output 10 different prediction vectors. Assign a random
weight wk to each output; here 0 6 wk 6 1;

PN
kD0 wk D 1;

N D 10:
(4) Compute the affinity afij for the prediction vector of

each sub-network and their corresponding actual label, and the
residual average similarity matrix smi of sub-networks in the
ensemble.

(5) If the affinity between the output of the sub-network and
the label is higher than the threshold then stop, otherwise:

(a) Clone the individual sub-network according to smi � afij.
(b) Generate new weight values by the variant formula given

in Eq. (5).
(c) Compute the affinity of the new weighted individual

network.
(d) Select all individual networks whose smi � afij value is

higher than the threshold, and add them to the ensemble.
(e) Compute the similarity of every two individual networks in

new ensemble and compute new residual average similarity smi .
(f) Eliminate the sub-networks whose smi � afij is lower and

similarity is higher than the threshold.
(g) Compute AF of the new networks.

(6) Repeat the above process until AF meets the requirement

or the iteration count reaches the preset maximum value.

Fig. 3 Distribution of nodule diameters in LIDC.

CNN can automatically learn representations of input
data by multiple levels of feature extraction[44]. In
the ImageNet recognition challenge, the use of CNN
dramatically improved the results[50–52]. ImageNet[53]

is a database launched by L. Fei-Fei for object
recognition in the field of computer vision. ImageNet
is a very comprehensive database organized according
to the WordNet hierarchy (currently only the nouns),
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including more than 1.2 million categorized natural
images in 1000+ classes. In 2012, AlexNet’s success
in the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) started the revival of CNN.
Since then, GoogLeNet[54], VGG[55], ResNet[56],
Inception[54], and Inception-ResNet-v2[57] moved
into the spotlight each in turn. Inception-ResNet-v2
obtained the highest recognition accuracy on ImageNet
among all competitors in 2016, which led to the
adoption of Inception modules in net framework
design. From LeNet to Inception-ResNet-v2, CNN
increased in depth and its convolutional ability became
more powerful, with Inception-ResNet-v2 obtaining
a 96.92% recognition accuracy. In the process of
network design and construction, GoogLeNet-ResNet-
v2 employed many Inception modules. An Inception
module contains convolution kernels of different
scale in one layer, which greatly improves the feature
extraction ability of the net, and avoids the loss of
essential feature information because of repeated
convolution and down sampling. 1 � 1, 1 � n, and
n � 1 convolution are applied in the Inception modules,
which accelerates the network training, and computing
efficiency is improved. GoogLeNet-ResNet-v2 adds a
residual connection scheme, which further enhances
the convergence speed and improves the accuracy of
the network. For these reasons, we adopted this idea
in designing our network framework, and employed
three Inception modular techniques, which are shown
in Fig. 4.

The architecture of a sub-CNN network is shown in
Fig. 5.

4 Experiment

4.1 Datasets

We selected 4 categories of signs from LIDC-IDRI,
a public reference database of lung nodules on CT
scans established by the National Cancer Institute

Fig. 5 Architecture of the sub-CNN network.

(a) Module A (b) Module B (c) Module C

Fig. 4 Inception modules used in CNN framework.
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(NCI) in collaboration with the University of Chicago,
Cornell University, Iowa State University, University of
Michigan, and University of California. This database
is an essential reference for CADx research and
experiments.

The LIDC-IDRI[16] database contains 1018 cases,
and 200 000 CT slices. The thickness of these slices is
between 1.25 mm and 3 mm, and the length and width
of each image is 512 pixels. Each case includes images
from a clinical thoracic CT scan, and an associated
XML file that records the results of a two-phase image
annotation process performed by four experienced
thoracic radiologists. In the initial blinded-read phase,
each radiologist independently reviewed each CT
scan and marked lesions belonging to one of three
categories (“nodule>3 mm”, “nodule63 mm”, and
“non-nodule>3 mm”). In the subsequent unblinded-
read phase, each radiologist independently reviewed
their own marks along with the anonymized marks

of the other three radiologists to produce a final
opinion. The database contains 7371 3D lesions marked
as nodules by at least one radiologist; 2669 lesions
have been marked as nodule >3 mm by at least
one radiologist, of which 928 (34.7%) have been
marked as such by all four radiologists. These 2669
lesions include nodule outlines and subjective nodule
characteristic ratings[58]. The characteristics of the
nodules are presented in Table 1.

4.2 Selection of signs

From experience[59], the greater the degree of
lobulation, spiculation, or non-solidity of texture
signs, the greater the possibility the nodules are
malignant; on the other hand, signs of calcification
mostly indicate a benign nodule, except for cases
of non-central appearance. There is no certain
evidence showing that signs of subtlety[60], internal
structure[61], sphericity, and margin[14] have strong

Table 1 LIDC nodule characteristics with corresponding notes and possible scales.
Feature Radiologist’s description Scale

Subtlety Subtlety of nodule
1 Extremely subtle
5 Obvious

Internal structure Internal structure score of nodule

1 Extremely subtle
2 Fluid
3 Fat
4 Air

Calcification Internal calcification of nodule

1 Popcorn appearance
2 Laminated appearance
3 Solid appearance
4 Non-central appearance
5 Central calcification
6 Absent

Sphericity Shape in terms of nodule’s roundness/sphericity, three terms defined
1 Linear appearance
3 Ovoid appearance
5 Round appearance

Margin Margin of nodule, with only the extreme values explicitly defined
1 Poorly defined
5 Sharp margin

Lobulation Nodule lobulation, with only the extreme values explicitly defined
1 No lobulation
5 Marked lobulation

Spiculation Nodule spiculation, with only the extreme values explicitly defined
1 No spiculation
5 Marked spiculation

Texture Nodule internal texture, with only three terms defined
1 Non-solid/GGO
3 Part solid/mixed
5 Solid texture

Malignancy Malignancy level of this nodule (assuming 60-year-old male smoker)

1 Highly unlikely for cancer
2 Moderately unlikely for cancer
3 Indeterminate likelihood
4 Moderately suspicious for cancer
5 Highly suspicious for cancer
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relationship with the malignancy of a nodule. In
order to gain a significant comparative result, we
chose nodules with CalcificationD 4, lobulation> 4,
spiculation> 4, texture6 2, and malignancy> 3, to
serve as experimental samples, according to the scheme
shown in Table 2.

We performed a statistical analysis of 21 057 ROI
regions with characteristic descriptions in XML files.
A histogram of the selected signs distribution is shown
as Fig. 6.

We selected the 4 categories of signs which are highly
prevalent in malignant nodules as experimental objects
—non-central calcification, lobulation, spiculation,
and non-solid/Ground-Glass Opacity (GGO) texture.
Considering the normal patches as a negative class,
this results in a total of 5 classes. Samples of the 4
categories positive signs are shown in Table 3.

Fig. 6 Number of every kind of selected signs.

4.3 ROI segmentation

Based on the central point of the merged lesion regions
outlined by 4 experts, we cut out image patches of
32�32 pixels as experimental images, and selected only
positive patches as experimental objects, as shown in
Table 3. From these samples, we randomly selected
10 non-intercross subsets for the pre-trained network to
perform transfer learning. Moreover, in order to make
the trained individual networks as specific as possible,
we ensured that one category of ROI patches from a
single of one same patient will not be included in any
two training sets at the same time.

4.4 Taining of networks

CNN is a data-driven learning algorithm, and training a
CNN requires a huge number of samples. The number
of samples in LIDC-IDRI and LISS[62] are limited and
cannot meet the training requirement of the classifier.
Therefore, we employed a transfer learning method to
train individual networks.

Firstly, we trained an Inception network on the
ImageNet database[53]. For the pre-training network
model, different from the framework shown in Fig. 5,
we set the output dimension to 27, corresponding to
the number of high synset categories in ImageNet, and
named it Inception-PreTraining-net. The accuracy of
Inception-PreTraining-net converged to 95.8%.

We then randomly selected 10 non-crossed subsets
from LIDC-IDRI for transfer learning. Through
rotation, zooming, and random clipping, the number
of ROI patches was multiplied by 200. Based on the

Table 2 Scheme of signs selection.
Selected Subtlety Internal structure Calcification Sphericity Margin Lobulation Spiculation Texture Malignancy

Yes – – D 4 – – > 4 > 4 6 2 > 3

No – – ¤ 4 – – < 4 < 4 > 2 < 3

Table 3 Sample of non-central calcification, lobulation, spiculation, and non-Solid/GGO texture signs.
Non-central calcification Lobulation Spiculation Non-solid/GGO texture

Subtlety degree 4.67 5:0 5:0 4:0 4:0 5:0 3:0 3:67

Internal structure degree 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0

Calcification degree 4.0 4.0 6:0 6:0 6:0 6:0 6.0 6:0

Sphericity degree 3:33 2:67 4:25 4:0 5:0 5:0 4:0 4:33

Margin degree 3:67 4:67 4:5 4:0 2:0 4:0 1:0 2:67

Lobulation degree 1:67 2:0 4.25 4.0 4:0 1:0 1:0 2:67

Spiculation degree 1:33 1:33 2:25 4:0 4.0 5.0 2:0 1:67

Non-solid of texture degree 5:0 4:67 4:75 4:0 5:0 4:0 1.0 1.33
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trained Inception-PreTraining-net from ImageNet, we
conducted transfer learning based on the 10 augmented
datasets, separately. We used network as shown in Fig. 5
to conduct transfer learning, naming this Inception-
FineTuning-net. The only difference between this and
Inception-PreTraining-net is that the output dimension
of the full connection layer of the former is 5. We copied
the pre-trained parameters of all the other layers prior
to the fully connected layer in the trained Inception-
PreTraining-net network to the Inception-FineTuning-
net network model. We adopted an iterative process to
fine-tune the last n-layer of the Inception-FineTuning-
net. If the verification performance improved compared
with the previous n � 1 layer, then we continued to
fine-tune the n C 1 layer, and so on. Finally, we
found that the network achieved the best classification
performance when we fine-tuned the full connection
layer of Inception-FineTuning-net and its previous B
model units are fine-tuned. By fine-tuning in this way,
10 different sub-classifiers are generated.

In the next stage, we gave a random weight w to
each classifier and integrated 10 classifiers together. At
the beginning of this stage, the performance of the
generated ensemble classifier is not optimal and the
number of the sub-networks involved is also not the
most appropriate. The optimal weight and number of
component networks in the ensemble are difficult to
determine. To address this problem, we introduced
AIA into our scheme. Compared to two common
optimization algorithms, the Simulated Annealing[63]

and the Genetic Algorithm[64], AIA is faster and
does not as easily to fall into local optima. We
randomly selected another 1000 unused samples for
sub-classifiers selection and integration. We then
applied AIA, including cloning, mutation, superior
network selection, and weighted fusion on the trained
sub-networks. After the number of sub-networks was
optimized and the optimal weights were determined, the
ensemble was generated. The final classification result
was then obtained by a weighted sum method, which is
illustrated in Fig. 1.

We set ˛ in the mutation Eq. (5) to 0.9, the
max iteration number to 50, and the initial ensemble
prediction stop affinity threshold value to 0.85, which
will be gradually increased as the iteration number
increases.

4.5 Signs recognition and classification

In the recognition stage, for a given input image patch,

each neural network component of an ensemble gives
a confidence vector “vc” as the output of the sub-
classifier. In the next classification stage, every vc
multiplies a corresponding weight “wi” generated in
Section 4.4. We summed up all weighted vectors by
category as the output of the ensemble. The highest
element in the sum vector represents the corresponding
class produced by the ensemble.

5 Result

In order to measure the performance of AIA-
INF, three metrics were adopted: sensitivity &
specificity, classification accuracy, and confusion
matrix. Sensitivity is also named as True Positive
Rate (TPR) or recall rate, and it represents the
percentage of samples recognized as positive that
are actually positive. Specificity is also called True
Negative Rate (TNR), and it reflects the percentage
of recognized negative samples that are actually
negative. Let “TP” (True Positive) denote the positive
samples that are correctly identified, “TN” (True
Negative) denote the negative samples that are correctly
identified, “FP” (False Positive) represent wrongly
identified positive samples, and “FN” (False Negative)
represent wrongly identified negative samples. The
sensitivity and specificity can then be formulated as
TP=.TP C FN/ and TN=.TN C FP/. Classification
accuracy means the percentage of correctly recognized
samples in terms of both sensitivity and specificity. A
confusion matrix is a commonly used method to
evaluate the performance of classification. Compared
to Receive Operating Characteristic (ROC) curve and
Area Under the Curve (AUC), a confusion matrix
can also describe the misclassification rate between
multiple classes. The row-wise elements in a confusion
matrix correspond to the actual category of the
object, and the column-wise elements correspond to
the recognized category. Elements on the diagonal
indicate the percentage rate of patterns that have been
recognized correctly, whereas non-diagonal elements
indicate the percentage of the corresponding row
patterns that have been wrongly identified in a column.
In the model recognition procedure, if two patterns are
very similar, their samples can easily be misidentified
with each other. Ideally, if the categories of all samples
are correctly predicted, the confusion matrix will form
a diagonal matrix.

To ensure the independence of the validation set, we
sought to avoid introducing training data in a circular
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fashion. As such, we randomly selected 450 unused
image patches of signs to conduct a 5-fold cross-
validation experiment.

We made an overall performance comparison
between the ensemble and its sub-classifiers. This
ensemble was eventually made up of a fusion of 6
individual classifiers. The outcome of the performance
comparison is shown in Table 4, in which “SE”, “SP”,
and “ACC” represent “sensitivity”, “specificity”, and
“accuracy”, respectively.

As shown in Table 4, our proposed ensemble
Inception network obtained significant improvement in
performance compared to the 6 individual classifiers. In
addition, the sensitivity and specificity also recorded a
corresponding improvement. The increase in the rate of
sensitivity is 18.35% to 22.61%, the minimum increase
in the rate of specificity is 9.91% as compared with that
of Sub-net2, and 14.35% compared with Sub-net1. The
accuracy is improved by a maximum of 23.52% and a
minimum of 14.44%.

6 Discussion

Bagging and Boosting are two popular prevailing
ensemble approaches. Bagging[34], also called bootstrap
aggregating, is an integrated technique that trains
sub-classifiers on new data sets selected from an
original dataset. Samples for the new data sets are
sampled with a replacement method, with reuse
permitted. The trained classifier ensemble is used to

Table 4 Performance comparison between sub-nets &
ensemble.

(%)
Classifier SE SP ACC
Sub-net1 63.87 83:07 73:67

Sub-net2 59.61 78:82 72:92

Sub-net3 61.52 82.45 65:15

Sub-net4 62.23 83:76 71:32

Sub-net5 62.15 82:31 70:72

Sub-net6 63.73 81:36 74:23

Net-ensemble 82.22 93.17 88.67

classify new samples, and then the majority votes or
average methods are used to count the results of all
classifiers. The final prediction class is the one with the
most votes. Boosting[65] is an iteration-based algorithm,
in which a new weak classifier is added in each round
until the ensemble’s classification error rate is reduced
to a preset small value. Each training sample is assigned
a weight denoting the probability of the sample being
selected into a classifier training set. If one sample
is classified correctly, its probability of being selected
will be decreased when constructing dataset for the
next training round. By using this method, Boosting
“focuses on” the samples that are difficult to correctly
classify.

We compared the performance of our proposed
ensemble classifier with Bagging and Boosting.
We implemented our methods in a TensorFlow
environment. We adopted 6 sub-networks as weak
classifiers and conducted Bagging and Boosting
classification integration experiments. The average
recognition result of each sign is recorded, and is shown
in Table 5. From the experimental results, it is clear that
our algorithm offers superior performance to Bagging
or Boosting.

For a more comprehensive analysis, we compared our
ensemble Inception network, Bagging, and Boosting
with a confusion matrix. Firstly, we computed
the classification confusion matrix of the Inception
ensemble network, Bagging, and Boosting, then
performed subtraction operations on a confusion matrix
of Inception ensemble network and Bagging, and a
confusion matrix of Inception ensemble network and
Boosting. Thus, we obtained two different confusion
matrices, which are illustrated in Fig. 7. As can be
seen from Fig. 7, all the values of diagonal elements
are positive in the two confusion matrices, while all
the non-diagonal values are negative. The average of
diagonal elements are 0.1321 and 0.1431, respectively,
while the sum of non-diagonal values are inversely
�0:1321 and �0:1431. These results indicate that the

Table 5 Performance comparison between our method, Bagging, and Boosting.
(%)

Sign
Our method Bagging Boosting

SE SP ACC SE SP ACC SE SP ACC
Calcification 88.89 94.72 – 77.78 90.56 – 82.22 89.72 –
Lobulation 77.78 92.5 – 56.67 86.39 – 56.67 85.83 –
Spiculation 75.56 90.83 – 55.56 82.78 – 55.56 84.17 –

Texture 81.11 93.61 – 66.67 88.89 – 57.78 86.67 –
Negative 87.78 94.17 – 71.11 89.72 – 68.89 88:33 –
Average 82.22 93.17 88.67 65.56 87.67 75.46 64.22 86.94 74.36
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(a) (b)

Fig. 7 (a) Accuracy comparison between our method and Bagging, and (b) our method and Boosting.

classification accuracy rate of AIA-INF is superior to
Bagging and Boosting, and its classification error rate
is lower.

We also computed efficiency between AIA-INF,
Bagging, and Boosting, with the corresponding
recognition being shown in Table 6. We can see
that our Inception ensemble network has the highest
computational efficiency. The main reason behind this
efficient result is that Bagging needs resampling in
training and Boosting needs retraining of the weight of
wrongly classified samples in each iteration, meaning
that the Inception network consumes the least time in
performing recognition. For learning time, AIA-INF
consumes more time because the initial number of our
sub-networks is 10, and the artificial immune system

Table 6 Time consumption of three methods.
Learning (h) Recognition (s)

Bagging 1.32 0.009 41
Boosting 1.65 0.010 26
AIA-INF 2.27 0.007 65

algorithm needs to perform many matrix operations to
obtain the optimal weights of each sub-network.

In order to verify the effectiveness of the Inception
module network, we designed a common CNN with
three convolution layers, as shown in Table 7. Instead
of doing transfer learning, we simply conducted a
performance comparison experiment between the two
classifiers on a pulmonary nodule sign database. The
performance is illustrated in Fig. 8.

Using the same transfer training pipeline, we grouped
the four types of sign samples into one class as positive
nodules and randomly selected 2-time non-pathological
lung parenchyma patches as negative samples to
conduct a 2-class distinguishing experiment. The

Table 7 Structure of the common CNN.
Layer Image size Kernel size Stride

1 32�32 7 1
2 27�27 7 2
3 11�11 5 1
4 8�8 – –

Fig. 8 Performance comparison between our Inception network and a common CNN.
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sensitivity, specificity, and accuracy of our algorithm
are 89.75, 94.21, and 93.78, respectively. Compared
with the existing state-of-the-art algorithms, our
algorithm achieved similar classification performance,
as shown in Table 8.

From Fig. 8, we can see that a common CNN
converges faster than the Inception network, but the
final classification performance is clearly lower than
Inception network. This shows that the Inception
network can obtain more discriminanting features than
a common CNN network.

The ˛ in the mutation Eq. (5) controls the latitude
of the maximum mutations. Its value should not be
too small, which would lead to a drastic increase
in the number of iterations. In our experiments, the
best integration performance is usually achieved in
around 30 to 40 steps, as shown in Fig. 9. Therefore,
we set the maximum number of iterations to 50. An
appropriate initial affinity threshold value can speed up
the convergence of the integration. So we set it to 0.85
for this experiment.

7 Conclusion
In this paper, we presented a new AIA-INF and applied
it to lung CT signs recognition. This repersents an
in-depth study of pulmonary nodule computer-aided
diagnosis, and it is the first attempt to analyze four

Table 8 Performance comparison of six algorithms.
(%)

Algorithm SE SP ACC
Zhou et al.[66] – – 88.40
Chen et al.[67] – – 78.70
Xie et al.[46] 91.43 94.09 93.40

Shen et al.[39] 77.00 93.00 87.14
Paul et al.[68] – – 89.45
Our ensemble 89.75 94.21 93.78

types of pulmonary nodule signs closely related to
lung cancer using a deep neural network. Given a ROI
image patch, our Inception network ensemble outputs a
weighted sum of class confidence vectors. Experiments
showed that our Inception network ensemble holds
great advantages for lung CT signs recognition, after
optimization by an artificial immune algorithm.

Compared with individual networks, our ensemble
gives a 12.49% improvement in sensitivity and 7.67% in
specificity; compared with Bagging and Boosting, the
improvement rates are 16.66% and 5.50%, 18.00% and
6.23%, respectively. The recognition time is 0.007 65 s,
which shows the Inception ensemble to be a real time
classification method. Experiments demonstrated that
the ensemble classifier integrated with an artificial
immune algorithm gives good results for lung sign
recognition. This CADx scheme can offer a more
detailed reference for diagnosis, and can also be of
value for junior radiologist training.

In the process of experimentation, we found that the
lack of labeled samples is the key problem affecting
the performance of lung sign recognition systems.
Hospital Radiology Information System (RIS) hold
many diagnostic reports on CT images. In future work,
we plan to combine the qualitative or quantitative
analysis results in the diagnosis report with the
corresponding CT images to obtain a large number of
weakly labeled samples, and study dedicated algorithms
to further improve the recognition performance of
CADx systems.
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