
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 02/11 pp325–335
DOI: 10 .26599 /TST.2019 .9010012
Volume 25, Number 3, June 2020

@ The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Towards Connecting Discrete Mathematics and Software Engineering

Tun Li�, Wanwei Liu, Juan Chen, Xiaoguang Mao, and Xinjun Mao

Abstract: To enhance training in software development, we argue that students of software engineering should be

exposed to software development activities early in the curriculum. This entails meeting the challenge of engaging

students in software development before they take the software engineering course. In this paper, we propose a

method to connect courses in the software engineering curriculum by setting comprehensive development projects

to students in prerequisite courses for software development. Using the Discrete Mathematics (DM) course as an

example, we describe the implementation of the proposed method and teaching practices using several practical

and comprehensive projects derived from topics in discrete mathematics. Detailed descriptions of the sample

projects, their application, and training results are given. Results and lessons learned from applying these practices

show that it is a promising way to connect courses in the software engineering curriculum.

Key words: Discrete Mathematics (DM); software engineering; proof checker; database management system;

symbolic execution engine

1 Introduction

Software engineering has become a first-level discipline.
Typically, software engineering education curricula
focus on teaching students the principles of developing
software systems using engineering methods and
techniques. Such training requires much support
and material from a variety of subjects, including
programming, operating systems, database systems,
principles of compilation, Discrete Mathematics (DM),
practical projects of a certain scale, and principles of
software engineering.

In typical software engineering curricula, some
courses in the foundations of computer science are
scheduled after software engineering courses. These
circumstances are inefficient for the training of students
in software engineering, and make it difficult to design
practical projects of a suitable scale and complexity for

� Tun Li, Wanwei Liu, Juan Chen, Xiaoguang Mao, and Xinjun
Mao are with the School of Computer, National University of
Defense Technology, and are also with Laboratory of Software
Engineering for Complex Systems, Changsha 410073, China.
E-mail: ftunli, wwliu, juanchen, xgmao, xjmaog@nudt.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2019-03-15; accepted: 2019-04-04

software development training.
Furthermore, according to our teaching experience,

most students feel that the majority of software
engineering principles are too abstract to be learned
in isolation. In contrast, students who have some
experience with software development may have a
strong potential to deeply understand and apply software
engineering principles. Therefore, there is a challenge
involved in keeping students involved with software
development activities before taking the software
engineering course.

The discipline of software engineering applies
mathematical and computer science principles to the
development and maintenance of software systems.
The mathematical principles involved are primarily
those of discrete mathematics, and especially logic.
According to the ACM/IEEE Software Engineering
Curricula 2014[1], software engineering programs
require discrete mathematics at the core — “Logic and
discrete mathematics should be taught in the context of
their application to software engineering or computer
science problems.”

Typical software engineering education curricula do
not coordinate the teaching of discrete mathematics and



326 Tsinghua Science and Technology, June 2020, 25(3): 325–335

software engineering. The two courses are usually both
required in the university program, but an appropriate
way to combine them is not clearly offered.

Discrete mathematics is often set as one of the
prerequisites for a software engineering course. The
topics in discrete mathematics are important to software
development activities, especially analysis. In most
curricula, the two core courses are scheduled in different
semesters. As a result, the courses are not tightly
connected in present teaching activities.

Presently, there are three general approaches to
teaching the discrete mathematics course:

(1) Discrete mathematics as a traditional mathematics
course;

(2) Discrete mathematics with software engineering
applications; and

(3) Discrete mathematics with programming.
When teaching discrete mathematics as a traditional

mathematics course, the focus is on the elegance of
mathematical logic and proofs. In contrast, when it
is taught with software engineering applications, the
focus is on the applications of mathematical models and
algorithms in software engineering. Finally, when taught
with programming, there is a dual focus on mathematics
and programming.

We find that the scale of the programming training
cases used when teaching discrete mathematics
with programming is too small for software
engineering training purposes, containing less
than one or two hundred lines of code. We argue that
discrete mathematics should be not only taught with
programming, but also connected tightly with software
engineering.

Software development principles should be embedded
in the curriculum of software engineering courses.
Alongside programming practices, students should be
exposed to software development practices early in the

undergraduate curriculum and should gain experience
in handling various problems in software development.

Additionally, prerequisite courses should provide
practice cases for the software engineering course.
There are two benefits to this. First, the projects
undertaken in prerequisite courses will help students
to easily understand the background of the software
system to be developed and make students focus on the
application of the principles of software engineering.
Second, students will review previously learned topics
from another viewpoint, which will enhance their
understanding and application of the topics.

Discrete mathematics is a very suitable starting point
to connect software engineering courses. The topics
in discrete mathematics are the foundation of many
other courses, such as principle of compilation, database
systems, and operating systems. It is therefore natural to
connect applications in various courses using the topics
of discrete mathematics.

In this paper, we propose a method to connect discrete
mathematics and software engineering courses using
software development projects derived from various
topics in discrete mathematics. The method is shown in
Fig. 1.

The idea behind the proposed method is a try-this-
before-we-explain-everything approach. Students are
encouraged to practice software development activities
before taking the software engineering course.

Our work makes two main contributions.
(1) We present a feasible and practical method

for connecting discrete mathematics and software
engineering.

(2) We provide some examples of novel and practical
software development projects to illustrate our method.
The projects have not been provided previously and
serve as a guide to course connection practices.

The background of the work is introduced in

Fig. 1 Proposed method in this paper.



Tun Li et al.: Towards Connecting Discrete Mathematics and Software Engineering 327

Section 2. Section 3 introduces four sample projects in
detail. Lessons learned from course connection practice
are presented in Section 4. Section 5 presents related
work and its relationship with our method. Finally, we
conclude the paper in Section 6.

2 Background

At our university, software engineering is a first-level
discipline. The undergraduate curriculum consists of
a set of modules, such as introduction to computing
and programming, discrete mathematics, principles of
compilation, operating systems, networking, software
engineering, and so on. In this curriculum, the discrete
mathematics course is scheduled in the third semester
and the software engineering course is scheduled in
the fourth semester. The topics taught in discrete
mathematics are as follows:
� Sets, relations, and functions;
� Propositional logic and predicate logic;
� Proof techniques;
� Natural deduction system;
� Graphs and trees; and
� Abstract algebra.
The topics in the software engineering course

are requirements analysis, object-oriented analysis
and design methodology, software development
process, software testing, and foundations of project
management.

Before taking these two courses, students study
courses on computational thinking and programming in
Python in the first and the second semesters, respectively.
The topics covered in two courses are
� Core concepts of computational thinking;
� Foundations of programming using Python;
� Applications of computing techniques:

– Numerical computation;
– Modeling and simulation;
– Data storage and processing;
� Basic concepts in software engineering.
Each topic in the applications of computing

techniques section consists of a number of sub-
topics and concepts. For example, data storage and
processing topics include accessing data stored in
MySQL databases using Python with the PyMySQL[2]

module. Modeling and simulation topics include the
modeling and simulation of Von Neumann machines and
Turing machines. Among the topics in basic concepts in
software engineering is text parsing using compilation
techniques, which is introduced using Python modules,

such as pyparsing[3].
In association with these topics, students have

not only been assigned some simple practical
projects, such as the implementation of differential
computation based on given formulas, but also some
complicated projects, such as the implementation
of an instruction simulator for a given instruction
set. Details of project assignments are available at
www.educoder.net (https://www.educoder.net/paths/13
and https://www.educoder.net/paths/121).

Besides course topics, students are exposed to some
state-of-the-art teaching and learning paradigms, such
as flip-classroom[4], collaborative assessments[5], and so
on.

By the time the students take the discrete
mathematics course, they have therefore already gained
some programming skills and software development
experience. Every student should be able to handle
problems involving about one hundred lines of Python
code.

Through being assigned complicated projects derived
from discrete mathematics topics, students will gain
experience in software development activities, such as
requirement analysis, software architecture design, team
work, object-oriented design, and testing[6].

The prior studies of students support our proposal
for connecting discrete mathematics and software
engineering. On the one hand, students have already
gained the essential programming techniques that are
to be used in developing the derived projects. On
the other hand, the complexity of the derived projects
will stimulate students to try their best to fulfill the
development tasks.

However, students will use the methods they
have at hand (which may or may not be genuine
software engineering methods) to finish the projects.
Therefore, students will have some exposure to software
development before they study software engineering.
This exposure will motivate them to seek systematical
methods for software development, thus assisting
students to gain deeper insight into software engineering
techniques.

3 Sample Projects

In this paper, we provide four typical examples to
illustrate our method and practices. In fact, there are
various comprehensive projects that could be derived
from the various topics in discrete mathematics. We
provide our samples as motivation for teachers to



328 Tsinghua Science and Technology, June 2020, 25(3): 325–335

practice the proposed method using these and other
projects.

The sample projects derived from the topics of the
discrete mathematics course are
� A proof checker of natural deduction system;
� A simple database management system;
� A propositional logic proof system; and
� A simple symbolic execution engine.
As shown in Table 1, each project covers several

topics in discrete mathematics and some topics in
other courses, such as principles of compilation. All
of the projects are to be implemented in Python. The
implementation techniques used in each project do
not go beyond the capabilities of students. However,
some of the software development activities are new to
students, such as requirement analysis. Other activities,
such as testing, may not be new to students, but may
have a new emphasis.

Consequently, we will introduce each project in
detail from the viewpoint of motivation, requirement,
implementation and software development activities.

3.1 Proof checker of natural deduction system

Natural deduction is a name for the class of proof
systems composed of simple and self-evident inference
rules. In a natural deduction system, a proof is
constructed by building the syntactic deducibility
relation between proof steps using the given inference
rules.

Different natural deduction systems may have

different inference rules. In our discrete mathematics
course, we introduce a natural deduction system with
21 inference rules. For example, the rule of conjunction
elimination is defined as follows,

�;A ^ B ` A;B:

In this rule, � is a set of predicate logic formulas, and
` is used to point out that the relation of deducibility
holds between the premises and the conclusion of a
rule instance. In what follows, such phrases are called
sequents.

Students new to natural deduction, and even more
advanced students, are often left stuck in the middle of
a proof not knowing what to do next, and even when
they have accomplished the task they can be still unsure
whether the proof is valid.

3.1.1 Motivation
The project is motivated by some existing tools,
including a natural proof editor, proof checker, and
proof assistant with a proof-hint for each step[7–9]. In
fact, constructing an automatic natural deduction proof
generator is very hard for second-year undergraduate
students. However, based on the distinct feature
of natural deduction proof sequents — syntactically
matching according to the given rules — building a proof
checker is a highly suitable project. The checker will
be used to determine whether the given proof sequent is
correct according to the given premise, conclusion, and
inference rules. Therefore, we derive a project from the
natural deduction system topic.

Table 1 Overview of the sample projects.

Project DM topics Implementation techniques Software development activities
Proof checker of natural
deduction system

� Basic logic
� Natural deduction system
� Sets

� Compiler construction
� Object-oriented programming
� Recursion
� Pattern matching of objects stored
in a list

� Requirement analysis
� Architecture design
� Decomposition
� Interface design
� Testing

Simple database management
system

� Relations
� Sets

� Python sequential data structure
� Object-orient programming
� Domain specific language

� Requirement analysis
� Decomposition
� Testing

Propositional logic proof
system

� Basic logic
� Sets

� Compiler construction
� Object-oriented programming
� Recursion
� Interaction and integration with
third-party modules

� Requirement analysis
� Decomposition
� Composition
� Testing

Simple symbolic execution
engine

� Predicate logic
� Graph
� Sets
� Semantic equivalence

� Compiler construction
� Object-oriented programming
� Recursion
� Interaction and integration with
third-party modules

� Requirement analysis
� Architecture design
� Decomposition
� Composition
� Testing



Tun Li et al.: Towards Connecting Discrete Mathematics and Software Engineering 329

3.1.2 Requirements
The system to be implemented should have the following
features.
� The system should support a predefined format

for the user to enter a natural deduction proof sequent
associated with the inference rules used in each step.
The format is defined as shown in Fig. 2. Each line
consists of five parts separated by Tabs: line no, premise,
`, conclusion, and inference rule used.
� The checker will notify users whether the proof

sequent is valid. In case of an invalid proof, the user
should be notified with some hint as to the incorrect
parts of the proof that cause it to be invalid.
� At present, no graphical user interface is required

and the user input is provided in a formatted text file.
3.1.3 Implementation
To implement the system, the following techniques are
involved.
� Compiler construction: Lexical analysis and

parsing techniques are required to parse the predicate
logic formula and the proof sequent entered by the user.
In this project, the pyparsing module is sufficient to
construct a compiler for grammar in Backus-Naur Form
(BNF).
� Object-oriented programming: Classes are defined

and used to encapsulate formulas/sub-formulas and
inference rules of a natural deduction system.
� Recursion: For formula defined in BNF format, it

is naturally to traverse the parsing tree in a recursive
manner.
� Matching of objects in a list: For formulas and

inference rules stored as objects, pattern matching
should work at an object level, dealing with objects
stored in Python sequential data structures, such as in a
List.

3.1.4 Software development activities
Implementing the project in a course context is a
difficult task for a single student. Therefore, students
are organized into teams of four to five students. During

Fig. 2 A sample proof sequent.

the implementation, the software development activities
include:
� Requirements analysis to find all the functionalities

to be implemented;
� Designing the architecture of the system and

decomposing the whole system into sub-systems;
� Defining detailed data structures and interfaces for

system composition;
� Cooperations among team members; and
� Testing of the checker by the team, other teams and

teachers using corresponding homework from textbooks.
Figure 2 shows a sample proof sequent, where a

user is aiming to construct a proof using the given
inference rules to show that the premise will deduce
the conclusion. The sequent is correct, and the checker
will return a valid result.

However, if we change the “ore 3, 6” to “ore 4,
6”, the proof sequent is invalid and, according to the
requirements, notifications should be provided to help
the user to locate the errors in the proof sequent. The
output for this example is shown in Fig. 3 in Chinese,
indicating that the seventh step is wrong due to the
incorrect use of an inference rule.

3.2 Simple database management system

In the discrete mathematics course, after introducing
the traditional binary relation on a set, we extend the
relation topic to cover n-ary relations on n sets. The
n-ary relation and the operations defined on it are
the theoretical basis for relational databases. Three
operators are introduced on n-ary relation R and S with
condition c.
� “Selection” is used to select a subset of R that

satisfies the given condition c;
� “Projection” is used to define a new relation

identical to R except that it has only the specified fields;
and
� “Join” is used to define a new relation that has

tuples with all fields from R and S constructed by
matching R and S tuples, where matching here means
identical values on sets of joined fields.
3.2.1 Motivation
We show students the application of formal mathematics
topics, such as relations, to reveal the principles of
database management. At the same time, it is useful

Fig. 3 Output of the checker.



330 Tsinghua Science and Technology, June 2020, 25(3): 325–335

for students to continue to be exposed to software
development activities. Therefore, the project to be
derived from this topic is to implement a simple database
management system.

3.2.2 Requirements
The simple database management system should have
following features.
� Users can create tables.
� The system has support for “projection”,

“selection”, and “join” operations.
� A Domain-Specific Language (DSL)[10] is defined

(to simplify the development task, we do not require
the system to support SQL). The DSL should be
implemented as objects in Python supporting the former
two features.
� At present, no graphical user interface is required.
Figure 4 shows a sample result of running the system.

In Fig. 4, “>>>” is the command prompt token of the
Python IDLE consoler. “Rel”, “add”, and “display” are
operators of the DSL that are used to create a table, add
records to a table, and display the contents of a table,
respectively.

3.2.3 Implementation
To implement the system, the following techniques are
used.
� Object-oriented programming: Classes are defined

and used to define and support the DSL for relational
database operations. All operations involving database
management and operations are then implemented as
member functions or functions based on the defined
classes.

Fig. 4 Sample running output of the simple database
management system.

� Python data types: Selecting a suitable data
structure will help students to simplify the task. Taking
the background of students into consideration, we
recommend using the embedded data structures of
Python, such as tuple and dictionary, rather than defining
new data structures.
� Domain-specific language: A DSL is defined and

implemented based on existing languages, (e.g., Python).
Students are first required to analyze the operations
involved in database management and operations. These
common operations are then extracted and defined as
member methods inside a class or functions outside of
classes with necessary parameters and proper outputs.

3.2.4 Software development activities
According to the complexity of the project, students are
organized in teams of at least two members. During
the implementation, the software development activities
include:
� Requirements analysis and development task

decomposition according to functional requirements;
� Extraction of the supported database management

operations and mapping them to corresponding
functions;
� Assigning of sub-tasks to team members;
� Composing the necessary modules to form the

system; and
� Testing of the database management system by

students from other teams or by teachers.

3.3 Propositional logic decision system

In computer science, the satisfiability problem is
concerned with deciding whether a given Well-Formed
Formula (WFF) is valid, satisfiable or unsatisfiable. The
given WFF may be expressed in propositional logic
language or in predicate logic language.

3.3.1 Motivation
Satisfiability problems are solved manually as exercises
in discrete mathematics courses. However, when there
are too many propositions, a computer program is
needed to find satisfiable solutions for the given formula.
There are many solvers for this problem, such as
minisat[11] and Z3[12]. Most of these tools provide an
Application Programming Interface (API) so they can
serve as the back end of other applications. Therefore,
besides motivating students to automate theoretical
problem solving through software development, they are
also given an opportunity to experience the integration
of third-party tools in developing software.



Tun Li et al.: Towards Connecting Discrete Mathematics and Software Engineering 331

3.3.2 Requirements
The decision system should have the following features.
� The system can recognize formulas expressed in a

predefined propositional language, which is given in its
BNF format.
� Z3 is seamlessly integrated as the back-end solver.
� The system can translate the given formulas into a

format that can be recognized by the Z3 solver.
� The decision result from Z3 is to be translated into

a human-readable format.

3.3.3 Implementation
The following techniques are involved in implanting the
system.
� Compiler construction: Lexical analysis and

parsing techniques are required to parse propositional
logic formula. The pyparsing module is sufficient to
construct a compiler for grammar in BNF format. The
major part of the compiler is the code generation phase,
which will translate the parsed formula into the Z3-
recognizable format.
� Object-oriented programming: Classes are defined

and used to encapsulate formulas/sub-formulas with
their code generation operations.
� Recursion: For formulas defined in BNF, it is

natural to traverse the parsing tree in recursive manner.
Especially during the code generation phase, translating
the whole formula is implemented by translating its sub-
formulas recursively.
� Interaction and integration with third-party

modules: The generated Z3 input is fed to Z3 via its
API, then the satisfiable solution results returned by Z3
are translated into human-readable format.

3.3.4 Software development activities
The project is less difficult in comparison to the former
two projects. Therefore, students are organized in teams
with at most three members. During the implementation,
the software development activities include:
� Requirements analysis and development task

decomposition according to functional requirements;
� Design of the system architecture, divided into

several sub-modules;
� Assigning of sub-tasks to team members;
� Composing the necessary modules to form the

system; and
� Testing of the decision system by students from

other teams or by teachers using exercises from the
textbook.

3.4 Simple symbolic execution engine

In the discrete mathematics course, one of the
applications of the basic logic topic is a program
correctness proof. By constructing a Hoare triple[13]

using precondition, command, and postcondition,
assertions expressed in predicate logic are checked
to prove the correctness of the given programs. The
command is extracted from program statements under
proof, usually using symbolic execution techniques[14].

3.4.1 Motivation
To implement a complete program correctness prover
is beyond the capabilities of second-year students.
Therefore, we derived a project to implement just the
core of a prover – a simple symbolic execution engine.
The purpose of the project includes connecting the
theory of the topic to its applications, integrating third-
party modules, and experiencing software development
activities.

3.4.2 Requirements
The engine should have following features.
� It is able parse programs written in a simple

C-like programming language, supporting simple
type definitions (e.g., integer, real, and boolean),
assignments, and if-else conditional statements.
� It can translate the given programs into formulas

in a Z3-recognizable format. Static Single Assignments
(SSA) generation techniques[15] are required during
translation. Figure 5 shows an example code snippet
and its corresponding translated formulas using SSA
generation techniques.
� It can parse and translate assertions expressed in

first-order into formulas accepted by Z3. The assertions
are used to express post-condition, pre-condition, or test
generation constraints.
� The engine can solve the translated constraints by

calling Z3 and show results from Z3 in a human-readable
format.

Fig. 5 A code snippet and its SSA constraints.



332 Tsinghua Science and Technology, June 2020, 25(3): 325–335

3.4.3 Implementation
The following techniques are involving in implementing
the system.
� Compiler construction: Lexical analysis and

parsing techniques are required to parse programs
written in the predefined simple programming language.
The pycparser[16] module is sufficient to construct a
compiler for grammar in BNF. The major part of the
compiler is the code generation phase, which will
translate the parsed C-like statements into formula in
both SSA and Z3 formations.
� Static single assignment: Students should study

SSA techniques on their own. The difficult part of this
is the indexing of variables and the automatic index
increment mechanics when generating SSA.
� Object-oriented programming: Classes are defined

and used to encapsulate the parsing result and SSA
generation operations.
� Recursion: For statements defined in BNF, it

is natural to traverse the parsing tree in a recursive
manner. Especially during the SSA generation phase,
translating a statement is implemented by translating its
sub-statements recursively.
� Interaction and integration with third-party

modules: The generated SSA should be fed to Z3 via
its API, and the results of the Z3 solver should then be
translated into a human-readable format.

3.4.4 Software development activities
The project is to be assigned to a team of at least
three students. Suring the implementation, the software
development activities include:
� Requirements analysis and development task

decomposition according to functional requirements;
� Design of the system architecture, divided into

several sub-modules;
� Assigning of sub-tasks to team members;
� Composing the necessary modules to form the

system; and
� Testing of the engine by students from other teams

or by teachers using some sample programs.

4 Practices and Lessons Learned

We have practiced this method to connect the two
courses for three years. The projects are distributed
at the beginning of the discrete mathematics course,
when students are required to form teams and choose
one project. The discrete mathematics course is taught
in two 2-hour sessions per week over 13 weeks. It begins

with the basic logic topics, followed by sets and relations
topics. Therefore, students could begin on their projects
after three to six weeks of course study, leaving them
within eight to ten weeks for project development.

During the development process, teachers only
provide advice on the implementation techniques, not
on the engineering methods of how to develop software.
The difficulties that students encounter in software
development will assist them to develop a common sense
to take in to their work on the general principles on
software engineering.

To connect the discrete mathematics and software
engineering courses, we ask students to review and
refactor their work in the software engineering course in
the following semester. This review and refactoring take
place by comparing the actual project practices with
the principles and engineering methods taught in the
software engineering course.

The following questions are put to students to rethink
the development of the selected projects.
� What mistakes have you made in requirement

analysis? How and in what aspects could the
requirement analysis be improved?
� If object-oriented design and programming was

used in your project, can you enhance the quality of
your code by refactoring?
� Why did your project fails in meeting the

deadline? What could be done to accelerate your
development process?
� Did team work hinder the development process?

What could be done to improve team work?
� How did you carry out testing? What aspects of

testing could be improved?
By answering these questions and rethinking the

challenging aspects of their development project
experience, students will gain a deeper insight into the
engineering methods for software development.

We also conduct a survey of students regarding the
projects derived from discrete mathematics, looking at
the levels of engagement with projects, lines of code,
and the strengths and weaknesses of the projects. The
results, which help us to continually improve our project
designs, are shown in Table 2.

Generally, the survey results show that students do
obtain benefits from working on these projects. Three
major benefits can be identified: students gain a deeper
understanding of the foundations and applications of
theoretical topics in discrete mathematics; students
are motivated and trained by participating in software



Tun Li et al.: Towards Connecting Discrete Mathematics and Software Engineering 333

Table 2 Evaluation of the sample projects by students.
Project Lines of code Engaged Difficulty Strength Weakness

Natural deduction
proof checker

About 2000 � Principle of
compile
� Software
engineering

Hard � A very nice mixture of theory
and practice
� A comprehensive project to
experience software development
activities

� It may be too hard for the second
year students without systematical
software development training.
� Students need more help
from instructors on compiler
construction and pattern matching.
� The development process is late
than scheduled.

Simple database
management
system

About 600 � Database
system
� Software
engineering

Medium � A very nice mixture of theory
and practice
� A very comprehensive project to
experience software development
activities
� It is very suitable for students at
present stage

� The tough part is how to map
theoretical relational operations to
their implementation.
� Instructors need to provide more
examples on relational operations.

Basic logic proof
system

About 1000 � Principle
of compile
� Software
engineering

Medium � A very nice mixture of theory
and practice
�A very nice project to experience
software development activities
� A very comprehensive project
for experiencing integration of
existing software systems

� The most tough part is
the implementation of code
generation phase, which needs
more instructions from teachers.
� To understand the usage of
Z3 API spends too much time,
because the documents are not so
rich.

Simple symbolic
execution engine

About 1500 � Principle
of compile
� Software
engineering

Hard � A very nice mixture of theory
and practice
� A very comprehensive project to
experience software development
activities

� The C-like language compiler
may be too hard for the second
year students.
� Instructors need to provide much
help on compiler construction
and integration of third-party
modules.
� The actual development
timetable is late than scheduled.

development projects appropriate to their background
and capabilities; and students can learn much more from
the software development process by comparing their
own practices with the principles and methods learned
in the software engineering course.

However, there are some lessons learned, from which
we can improve our future practices on the design of
projects.
� The software development abilities of students

should be estimated properly. Some projects may be too
difficult for students at this stage of their education. We
should simplify the requirements of projects or provide
more help during project development.
� For the two projects evaluated as hard, a pre-

built implementation framework is needed to ease the
development task and balance the workload between the
four projects.
� There are overlaps between the three projects

related to mathematical logic, which makes code copy
between teams possible.
� Additional projects engaging with additional topics

are needed to broaden the courses involved to operating
systems, digital circuit design, etc.

5 Related Work

Cohoon and Knight[17] were the first to attempt to
connect discrete mathematics and software engineering.
They aimed to not only promote an understanding and
appreciation of the discrete mathematical structures that
are the foundation of software engineering theory, but
also provide motivation and training in modern software
development and analysis tools. The cornerstone of their
connected courses is the use of problems that arise
in software development to motivate the mathematics
analysis.

However, our method and practices are in the reverse



334 Tsinghua Science and Technology, June 2020, 25(3): 325–335

direction to their work. We try to use the projects
that derive from discrete mathematics to motivate
the software development activities. Our object is to
maintain software development training throughout the
curriculum.

There have been some other practices used to connect
computer science and discrete mathematics. Page[18]

used a functional program to evaluate the question of
whether studying mathematics improves programming
skills. He built a software-oriented discrete mathematics
course by reasoning software using mathematical
methods. The three-year-long evaluation showed that
studying mathematics may be effective in improving
programming skills.

Flatland and Matthews[19] used an engaging problem,
which could be used in both a discrete mathematics
course and a programming course, to strengthen the
links between computer science and mathematics. They
selected a problem from a data structure course to
be used as an analysis case in discrete mathematics.
By comparing the mathematical analysis results and
simulation results, programming and mathematics were
connected.

The work in Refs. [20, 21] integrated mathematics
and computer science by reinforcing mathematical
topics through programming exercises and motivating
applications. In Ref. [22], VanDrunen argued that
a discrete mathematics course that introduces
programming in the functional style provides an ideal
context for the integration of discrete mathematics in
computer science.

However, the scale of the examples used in these
works is small, and cannot comprehensively train
students in software development. In our work, we
provide four sample projects, the implementation of
which involves around one or two thousand lines of code.
Further, we provide projects from discrete mathematics
to be used as exposure to software engineering practices.

We believe that our method complements previous
work and is an effective way to integrate mathematics
and software development for the software engineering
curriculum.

6 Conclusion

In this paper, we report on our experiences connecting
discrete mathematics and software engineering using
a try-this-before-we-explain-everything approach. The
philosophy and consideration behind the practices and

the design of several practical projects are introduced.
Survey results show that our approach is effective in
linking courses in a software engineering curriculum.
The results also provide stimulus to continuously
improve our method and to design more comprehensive
projects to tightly connect more courses in the near
future.

Acknowledgment

The work was supported in part by the National Key R&D
Program of China (No. 2018YFB1004202).

References

[1] M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M.
Sebern, and W. Visser, SE 2014: Curriculum guidelines
for undergraduate degree programs in software engineering,
Computer, vol. 48, no. 11, pp. 106–109, 2015.

[2] PyMySQL, https://github.com/PyMySQL, 2019.
[3] P. McGuire, Getting Started with Pyparsing (1st ed.).

Sebastopol, Canada: O’Reilly, 2007.
[4] B. A. T. Brown, Flipping the classroom, in Proceedings of

the 43rd ACM Technical Symposium on Computer Science
Education (SIGCSE’12), Raleigh, NC, USA, 2012, p. 681.

[5] H. Yuan and P. Cao, Collaborative assessments in computer
science education: A survey, Tsinghua Science and
Technology, vol. 24, no. 4, pp. 435–445, 2019.

[6] T. Li, W. Liu, X. Guo, and J. Wang, Software testing
without the oracle correctness assumption, Frontiers of
Computer Science, DOI: 10.1007/s11704-019-8434-4.

[7] E. Björnsson, F. Johansson, J. Liu, H. Ly, J. Olsson, and A.
Widbom, Proof editor for natural deduction in first-order
logic– The evaluation of an educational aiding tool for
students learning logic, Bachelor degree thesis, Chalmers
University of Technology and University of Gothenburg,
Gothenburg, Sweden, 2017.

[8] K. Klement, Fitch-style natural deduction proof editor
and checker, https://github.com/OpenLogicProject/fitch-
checker, 2019.

[9] J. Jacky, FLiP: Logical framework in Python, http://
staff.washington.edu/jon/flip/www/index.html, 2019.

[10] M. Fowler, Domain Specific Languages (1st ed.). Upper
Saddle River, NJ, USA: Addison-Wesley Professional,
2010.

[11] N. Eén and N. Sörensson, An extensible SAT-solver, in
Proceedings of the 6th International Conference on Theory
and Applications of Satisfiability Testing (SAT’03), Santa
Margherita Ligure, Italy, 2003, pp. 502–518.

[12] L. M. Moura and N. Bjørner, Z3: An efficient SMT solver,
in Proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08/ETAPS’08), Budapest, Hungary, 2008,
pp. 337–340.

[13] C. A. R. Hoare, An axiomatic basis for computer
programming, Communications of the ACM, vol. 12, no.
10, pp. 576–580, 1969.



Tun Li et al.: Towards Connecting Discrete Mathematics and Software Engineering 335

[14] R. Baldoni, E. Coppa, D. C. Delia, C. Demetrescu, and I.
Finocchi, A survey of symbolic execution techniques, ACM
Computing Surveys, vol. 51, no. 3, pp. 50:1–50:39, 2018.

[15] J. Aycock and R. N. Horspool, Simple generation of
static single-assignment form, in Proceedings of the
9th International Conference on Compiler Construction
(CC’00), Berlin, Germany, 2000, pp. 110–124.

[16] E. Bendersky, pycparser module, https://github.com/eliben/
pycparser, 2019.

[17] J. P. Cohoon and J. C. Knight, Connecting discrete
mathematics and software engineering, in Proceedings of
the 36th IEEE Annual Conference on Frontiers in Education
(FIE’06), San Diego, CA, USA, 2006, pp. 13–18.

[18] R. L. Page, Software is discrete mathematics, SIGPLAN
Notices, vol. 38, no. 9, pp. 79–86, 2003.

[19] R. Y. Flatland and J. R. Matthews, Using modes of inquiry
and engaging problems to link computer science and

mathematics, in Proceedings of the 40th ACM Technical
Symposium on Computer Science Education (SIGCSE’09),
Chattanooga, TN, USA, 2009, pp. 387–391.

[20] K. McMaster, N. Anderson, and B. Rague, Discrete math
with programming: Better together, in Proceedings of the
38th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE’07), Covington, KY, USA, 2007, pp.
100–104.

[21] R. Arnold, M. Langheinrich, and W. Hartmann, Infotraffic:
Teaching important concepts of computer science and
math through real-world examples, in Proceedings of the
38th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE’07), Covington, KY, USA, 2007, pp.
105–109.

[22] T. VanDrunen, Functional programming as a discrete
mathematics topic, ACM Inroads, vol. 8, no. 2, pp. 51–58,
2017.

Tun Li is a professor in the School of
Computer, National University of Defense
Technology. He received the PhD degree
from National University of Defense
Technology in 2003. His research interests
include electronic design automation and
VLSI design verification. He taught several
courses for undergraduate and graduate

students, such as discrete mathematics, computer programming,
advanced software engineering, etc.

Wanwei Liu is an associated professor in
School of Computer, National University
of Defense Technology. He received the
bachelor degree and the PhD degree from
National University of Defense Technology.
His research interests include theoretical
computer science, software/hardware
verification, and software engineering.

Juan Chen received the PhD degree
from National University of Defense
Technology, China, in 2007. She is now an
associate professor at National University
of Defense Technology, China. Her
research interests focus on supercomputer
systems and energy-efficient software
optimization method.

Xiaoguang Mao is a professor in National
University of Defense Technology. He
received the PhD degree from National
University of Defense Technology in
1997. His research interests include
software maintainability and software
dependability. He taught several courses
for undergraduate and graduate students,

such as discrete mathematics, computer programming, software
dependability, etc. He has published more than 100 papers in
various conferences and journals.

Xinjun Mao is currently a professor in the
School of Computer, National University
of Defense Technology. His main research
interests are in the area of software
engineering for intelligent systems,
self-adaptive and self-organized systems,
and autonomous robot systems. He taught
several courses for undergraduates, such as

software engineering, software architecture and design, etc. He
has published more than 100 papers in various conferences and
journals.


