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Valuable Data Extraction for Resistivity Imaging
Logging Interpretation

Yili Ren*, Renbin Gong, Zhou Feng, and Meichao Li

Abstract: Imaging logging has become a popular means of well logging because it can visually represent the
lithologic and structural characteristics of strata. The manual interpretation of imaging logging is affected by the
limitations of the naked eye and experiential factors. As a result, manual interpretation accuracy is low. Therefore,
it is highly useful to develop effective automatic imaging logging interpretation by machine learning. Resistivity
imaging logging is the most widely used technology for imaging logging. In this paper, we propose an automatic
extraction procedure for the geological features in resistivity imaging logging images. This procedure is based on
machine learning and achieves good results in practical applications. Acknowledging that the existence of valueless
data significantly affects the recognition effect, we propose three strategies for the identification of valueless data
based on binary classification. We compare the effect of the three strategies both on an experimental dataset
and in a production environment, and find that the merging method is the best performing of the three strategies.

It effectively identifies the valueless data in the well logging images, thus significantly improving the automatic

recognition effect of geological features in resistivity logging images.
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1 Introduction

Well logging is one of the most important means of
identifying and evaluating oil and gas reservoirs in the
process of oil exploration and development. It is also
an important tool for helping to solve a number of
geological problems. Mostly drawing on the principles
of sound, electricity, nuclear, and magnetic fields, well
logging also uses a large number of new materials,
crafts, and technologies to measure dynamic oil and gas
information. It is usually carried out in high temperature
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and high pressure wellbore environments. Logging
technology is developing rapidly in response to the
demand for oil exploration and development. Open
hole logging technologies, such as microresistivity
imaging logging, cross-dipole acoustic logging, nuclear
magnetism logging, and logging while drilling, provide
powerful measures for studying the anisotropy of strata.
The use of imaging logging is particularly extensive
in geology due to its high resolution, coverage, and
visibility.

Imaging logging is a method for the physical
parameter imaging of a borehole wall and surrounding
objects based on the observation of the geophysical
field in the borehole. Imaging logging includes borehole
imaging, side-hole imaging, and cross-hole imaging
technologies. Borehole imaging logging technology is
the most mature, including borehole acoustic imaging
and formation microresistivity scanning imaging. Side-
hole imaging mainly refers to resistivity imaging!'!, and
uses the azimuth lateral logging and array induction
logging methods. Cross-hole imaging, including
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acousticl>™#, electromagnetic, and resistivity imaging,
has been widely used in engineering exploration, and
has obtained some successful results in petroleum
exploration.

Resistivity imaging logging is the most widely
used of all the imaging logging methods. It can
accurately describe the sedimentary characteristics
of reservoirs, and can clearly reflect shale, clastic,
calcite crystal, porosity, fracture, suture line, bedding,
and biological disturbance. It is also of interest for
lithology and sedimentary facies researchl®~!3. The
structural characteristics of fractures, dissolution
cavities, faults, and folds can also be identified by
resistivity imaging logging, and it is an effective
tool for reservoir identification, well-side structure,
and in-situ stress analysis!!*'3]. In addition, the
response characteristics of resistivity imaging logging
to dissolution voids and fractures are obvious. Under
the constraints of core data and conventional curves,
it can calculate porosity, permeability, and other
parameters quantitatively!!®18],

Because of the huge amount of information contained
in resistivity imaging logging images, the imaging
interpretation must be carried out at the scale of
1:10 or 1:20, if it is to accurately identify the
structural components and sedimentary structures of the
strata. This makes manual interpretation highly time-
consuming and inefficient. Furthermore, the accuracy
of manual interpretation is limited by the restrictions
of the naked eye and by empirical factors. Therefore,
the automatic and intelligent processing of resistivity
imaging logging images is of great benefit. Identifying
the best methods to accurately classify, identify, and
quantitatively extract all kinds of geological features
from resistivity imaging logging images is the key to
realizing this goal.

There are many challenges in the process of
automatic recognition of geological features in
resistivity imaging logging images. In particular,
the proportion of geological features that are to be
extracted is small in comparison with the amount of
background and valueless data. The existence of this
valueless data significantly affects the recognition
effect. After extracting all the valuable data from
resistivity logging images, it is relatively simple to
classify these valuable data correctly. The extraction of
valuable data is therefore a key part of the automatic
recognition process of imaging logging interpretation.

In this paper, we propose a framework for the
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automatic extraction of geological features from
resistivity imaging logging images. This framework
includes image processing, image segmentation,
feature extraction, and valuable data extraction and
classification. Our experimental results show that
this proposed framework is effective in extracting
geological features from resistivity logging images.

Valuable data extraction is a crucial aspect of the
framework. Valuable data extraction is similar to the
multiclass classification problem, with one exception.
In the multiclass classification problem, the training
data set contains a number of categories, and each
element of the test data belongs to one of these
categories; in the valuable data extraction problem,
some of the test data do not belong to any of the
predefined categories of the training data, but they are
not to be treated as outliers.

Many methods are available to solve the multiclass
classification problem. Li et al."”! presented a unifying
framework for studying the solution of multiclass
categorization problems by reducing them to multiple
binary problems that are then solved using a margin-
based binary learning algorithm. Goh et al.*’! used
voting and combinations of approximate posterior
probabilities to show the possibilities of simple
generalizations of the binary classification. Hastie
and Tibshirani?!! discussed a strategy for multiclass
classification that involves estimating class probabilities
for each pair of classes, and then coupling these
estimates together. Dietterich and Bakiri!??! put forward
the Error-Correcting Output Codes (ECOC) and studied
code design techniques suitable for solving multiclass
problems. Kong and Dietterich®! carried out an
investigation of the reasons why the ECOC method
can improve the classification accuracy of multiclass
classification.

Although there are many strategies and algorithms
to solve multiclass classification problems, there are
no effective methods for valuable data extraction.
Clustering and outlier detection are the most common
methods for solving this problem. Hodge and Austin/?*
provided a broad overview of outlier detection, for
which Local Outlier Factor (LOF )?>201 is a widely
used algorithm. Li and Wong/?’! and Hardin and
Rockel®®! introduced a statistical method for the
relationship between clustering and outlier detection,
which has often been considered complimentary.

In this paper, we put forward three strategies, all
based on binary classification, to solve the problem
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of valuable data extraction: the intersection method,
elimination method, and merging method. We then
verify each of the three strategies with experimental
data and in a production environment, with the results
showing that the merging method is the best of the three.

In summary, the major contributions of this study are
as follows.

e We propose a procedure for the automatic
interpretation of resistivity imaging logging images.
Since valueless data has a great influence on the effect
of automatic interpretation, we include a valuable data
extraction stage in the procedure.

e We put forward three strategies based on
binary classification for valuable data extraction: the
intersection method, elimination method, and merging
method. These strategies can effectively solve the
problem of valueless data in multiclass classification.

e We compare the effectiveness of these three
strategies both using experimental data and in a
production environment. The results show that the
merging method performs best in effectively removing
the valueless data from logging images.

The remainder of the paper is organized as follows.
Section 2 gives the definition and examples of valuable
data and valueless data, and defines the valuable data
extraction problem. In Section 3, we propose three
valuable data extraction strategies based on binary
classification. Section 4 proposes a framework for
the automatic extraction of geological features from
resistivity imaging logging images. Section 5 presents
our experimental setup and results.

2 Valuable Data Extraction Problem

2.1 Definition of valuable data and valueless data

Imaging logging interpretation aims to extract features
with geological significance,
pores and algal laminae. However, these significant
features account for a very small proportion of the
whole image, with most of the image contents made
up of background and features without geological
interpretation significance. After image segmentation,
the background and most of the unexplained features
can be removed, but there remain many redundant
features. We call the data with geological significance
valuable data and the remainder valueless data. The
main difference between valuable data and valueless
data is that valuable data belong to a category that is
predefined in the training data while valueless data do
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not. In logging images, each kind of valuable data has
its own rules, which we elaborate on in Section 2.2
below.

From the perspective of machine learning, data value
can be defined as follows. In the classification task of
machine learning, it is assumed that the distributions
of training data and test data are consistent. Assuming
that the training data set contains n categories, all data
in the test data set can be classified into n categories
through the classification model. However, in practical
problems, test datasets often contain data that does not
fit any of the n categories. We call data belonging to
the n predefined categories of training data set valuable
data, and data outside the n categories valueless data.
The main reason for the existence of valueless data in
the test data is inconsistency in the data distribution
between training and test data.

Valuable data: Valuable data refers to the elements
that belong to one of the categories predefined in the
training data. Each kind of valuable data has its own
rules and they can be assigned to their true class by a
classifier.

Valueless data: Valueless data refers to the elements
that do not belong to any of the categories predefined
in the training data. They have no rules, and therefore a
classifier is unable to assign them to a class.

2.2 Examples of valuable data and valueless data

Logging professionals are only interested in valuable
data. There are five main types of valuable data in
resistivity logging images: dissolution pores, algal
laminae, thick mudstone, clay band, and induced
fracture. Each of these types of data has its own graphic
features that distinguish it from the others. Following is
a description of the five types of data, along with sample
images.

Dissolution pores have a different appearance from
the other four types of data, as shown in Fig. 1.
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Fig. 1 Sample pictures of dissolution pores are shown from
(a) to (d), (e) shows the coring result of dissolution pores.
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Algal laminae, clay band, and thick mudstone share
certain similarities. All are cross bar, although they have
different thicknesses. Thick mudstone is the thickest
and algal laminae is the least thick, as shown in Fig. 2.

Figure 3 shows the difference between algal laminae,
clay band, and thick mudstone. Each image is shown in
the same proportion, so it can be seen that these three
types of geological features have different thicknesses.

Induced fracture is another common geological
feature. Some sample images of induced fractures are
shown in Fig. 4.

Valueless data are the geological features that are not
of interest, and therefore are not to be extracted from
resistivity logging images. They have no specific rules,
and their shapes are irregular and random, but they do
have a different appearance than valuable data. Figure 5
shows some sample images of valueless data, although
it is far from exhaustive.

2.3 Problem definition

In the process of automatic extraction of geological
features for resistivity imaging logging, the attribute
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Fig. 2 Sample pictures of algal laminae are shown from (a)
to (d), (e) shows the coring result of dissolution pores.

(a) Algal laminae. (b) Clay band. (c) Thick mudstone.

Fig.3 Comparison pictures of algal laminae, clay band, and
thick mudstone. These three are very similar. The difference
between them is the thickness.

4

Fig. 4 Sample pictures of induced fracture.
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Fig. 5 Sample pictures of valueless data.

values of geological features can be extracted after
image segmentation. Therefore, we can identify every
type of geological feature using a classifier. But the
problem remains that there is still a large amount of
valueless data after image segmentation.

Assuming that there are n categories in the training
data and their class labels are T = {y1, ¥2,..., Vn}»
each element of the training dataset will have a class
label y; satisfying the following conditions y; € T.
However, in the test dataset there is at least one element
with a class label y; ¢ T'; these elements make up the
valueless data. A classifier will assign all of the test data
a predicted class label y;, which is predefined in the
training data, such that y; € T. Valueless data will thus
be misclassified by the classifier, so the elimination of
valueless data before classification is an important and
difficult problem.

3 Valuable Data Extraction Based on Binary
Classification

Valuable data extraction is very similar to the multiclass
classification and outlier detection problem, but not the
same. The difference between valuable data extraction
and multiclass classification is that valueless data do
not belong to any predefined class in the training data,
whereas for multiclass classification, all data in the test
dataset belong to predefined categories. The difference
between valuable data extraction and outlier detection
is that outliers are small and scattered, and usually do
not belong to a specific category, whereas valuable data
usually belong to a specific category, but this category
is not defined in the training data.

3.1 Multiclass problem and binary classification

When the input data is divided into two categories,
the problem becomes a binary classification problem,
which some classification techniques, such as Support
Vector Machine (SVM) and AdaBoost, were originally
designed for. When there are more than two categories,
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it becomes a multiclass problem. There are several
approaches for extending the binary classifier to handle
multiclass problems. For the following, let Y = {y,
¥2,-..., Yk} be the set of classes in the input data.

e One-against-rest (1—r) approach

1 — r decomposes the multiclass problem into K
binary problems'?”). For each class y; € Y, all of
the instances that belong to y; are considered positive
samples and the remaining instances are considered
negative samples. A binary classifier is then used to
identify y; and —y; (where —y; refers to these objects
that do not belong to y;).

e One-against-one (1—1) approach

1 — 1 constructs C; = K(K — 1)/2 classifiers®,
each of which is used to distinguish between y; and y;.
When constructing a classifier for y; and y;, all of the
samples that do not belong to either y; or y; are ignored.

o Error-Correcting Output Codes (ECOC)

The 1 — r and 1 — 1 approaches are sensitive
to the binary classification errors. ECOC provides
a more robust method for dealing with multiclass

problems!?%23],

For multiclass learning, each class y;
is represented by a unique bit string with a length of n,
which becomes its code word. n binary classifiers are
then trained to predict each binary of the code string.
We cannot simply apply multiclass strategies to
our current problem, because the valueless data is
not a class. Instead, we put forward three strategies
for valuable data extraction that draw on the idea of
the multiclass problem. These strategies are based on

binary classification.

3.2 Strategies for valuable data extraction based
on binary classification

Suppose that there are n categories of valuable data
in the training dataset D. Let T = {y1,y2,...,Vn}
be the set of class labels of valuable data. Our goal is
to identify all the valueless data, to which we give a
class label of yg, so that we can eliminate them from
the logging images. Following is a description of three
strategies.

e Strategy I: Intersection method

The intersection method is very similar to the 1 —r
approach. We construct n binary classifiers, each of
which divides the dataset D into two categories: y; and
—y; (where y; refers to all the objects that belong to y;,
and —y; refers to all the objects that do not belong to

vi). We thereby identify —y;, —=y,, ..., =y, once at a

time. The set I = —y;N—y,N---N—yy, is the valueless
data, and all the elements that belong to I are given a
class label of yo. The flowchart is shown in Fig. 6.

o Strategy II: Elimination method

We again construct n binary classifiers to identify
the valuable data yq, ys, ...
dataset is constantly changing. For each classifier, D; =
Di—1 \ Dy,—1, where D;_; is the input data of the
last classifier and D, is the set of all valuable data
yi—1 identified by the last classifier. Set I = =y, is
the valueless data, and all the elements that belong to /

, Yn in order, but the input

are given a class label of yo. The flowchart is shown in
Fig. 7.

o Strategy III: Merging method

For the merging method, we regard all of the valuable
data as a single class and use one binary classification
to identify the valuable data y. and the valueless data
—Ve. Set I = —y, is valueless data, and all of the
elements that belong to I are given a class label of
vo. The flowchart is as shown in Fig. 8.
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Binary \
D classification <:
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Binary Y2
D classification >_| Y10 =y, N Ny, =
n

—Y2

valueless data

Binary In
D classification
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Fig. 6 Flowchart of intersection method.
Binary
D1 classification

Binary Y2
D=D\D — ..o <
2 2 classification -
E2 _— » -y, = valueless data

B Binary yn
D, anl\D\n_l_> classification <
—Yn

Fig. 7 Flowchart of elimination method, D, is equivalent to
D in Figs. 6 and 8.

Ye
D—> ey —Y, = valueless data
classification

Ve
Fig. 8 Flowchart of merging method.
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4 Automatic Extraction of Geological
Features for Resistivity Imaging Logging

Traditional imaging logging interpretation depends on
human expertise and experience, as people use the
naked eye to identify geological features in imaging
logging images. This manual method is inefficient and
its accuracy is affected by human factors.

Machine learning technology has been applied to
the intelligent interpretation of conventional logging
curves, but as yet the results have not been ideal. A
very important factor is that the existence of valueless
data severely affects the classification results.

We establish a procedure for geological features
extraction in resistivity imaging logging. This
procedure is based on machine learning and is
made up of visualization, image segmentation,
feature extraction, and valuable data extraction and
classification. The input data are resistivity imaging
logging images and the output data are geological
characteristics with interpretations. The procedure is
shown in Fig. 9.

Compared to the traditional interpretation process,
the automatic interpretation procedure proposed in this
paper has the following advantages:

e It can reduce the workload of logging interpreters;

e It guarantees the stability of interpretation
accuracy; and

e It improves the automation and intelligence level
of imaging logging interpretation.

4.1 Image processing

The image processing stage is made up of data
reconciliation, image representation, and image
enhancement. Ideally, the drilling tool moves at a
uniform speed; when the tool becomes slightly stuck
in the borehole, the depth of logging records will
deviate from the true measurement depth. Therefore,
velocity correction must be carried out first. Image
representation is the process of mapping the original
data acquired by imaging logging into color or
grayscale images. Image enhancement is mainly
achieved through histogram equalization and other

Input: resistivity Image Image Feature

imaging logging images processing segmentation extraction

Output: geological . . Valuable data
e <«— Classification «— .
characteristics with tags extraction

Fig. 9 Automatic extraction procedure of geological
features for image well logging.
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methods to achieve prominent features and eliminate
noise.

4.2 TImage segmentation

Imaging data can reflect geological features precisely,
and the purpose of image segmentation is to
separate these features from the background. Feature
segmentation is the basis for subsequent analysis.
Firstly, the image is binarized to separate the features
from the background, and then each region with a value
of 1 is marked separately and recorded as a single
feature. The simplest and most widely used binarization
method is to set a threshold, which can be determined
by a histogram of imaging data.

When the difference between the feature and
background is obvious, image segmentation using the
threshold method can achieve ideal results. However,
if the feature and background are similar, the threshold
method cannot distinguish them effectively. Therefore,
we use K-means for image segmentation.

K-means is a typical clustering algorithm. First, it
chooses K objects as initial centers. The distance from
each object to the initial center is then calculated, and
each object is assigned to the nearest cluster center. A
cluster center and the objects assigned to it represents
a cluster. The centroid of each cluster is updated
according to the points assigned to the cluster. K-means
will repeat the assignment and update steps until the
cluster or the centroid does not change. Its goal is to
minimize the Sum of Squared Errors (SSE), defined as

K
SSE =) " dist(c;, x),

i=1xeC;

where c; represents a centroid of the cluster C;, and K
is the number of clusters. When K-means is used for
image segmentation, each pixel is assigned to a different
cluster. For each cluster, the value of the centroid then
replaces the value of all the pixels in the cluster. Figure
10 shows the effect of several different segmentation
methods, from which it can be seen that the clustering-
based image segmentation algorithm is superior. It is
not only able to separate features from background, but
also to retain as many features as possible.

4.3 Feature extraction

After separating the features from the background, it
is necessary to quantitatively analyze these features.
This process is called feature extraction. The purpose
of feature extraction is to obtain the attributes necessary
for classification, which are of two types: shape and
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(a) (b)

texture. Each feature has various feature parameters that
are important in distinguishing them. Figure 11 shows
several common features in reef reservoir images. For
different features, the importance of various feature
parameters is also different. For example, we must
consider the general distribution law to distinguish
dissolution pores from muddy mass. But for algal
lamina and clay band, thickness is the most important
index.

It is difficult to judge the dissolution pores and muddy
mass on the basis of individual characteristics, so the
general distribution law must be taken into account.
The morphology of algal lamina is similar to that of
clay band, and thickness is an important parameter for
distinguishing them. Sawtooth is a typical feature of
suture and can be measured by curvature. For cracks,
tendency and inclination are most important. Other
descriptors of shape characteristics include appearance
ratio, eccentricity, and sphericity.

L d & o L]
(a) Group of
dissolution pores.
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(b) Muddy mass.

\

iy [ / \Q\

® o e \'
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(¢) Three similar features, = S

@ algal lamina; Q clay band: O suture. (d) High-angle fracture.

Fig. 11 Common features of reef beach reservoir images.

(d) (e)
Fig. 10 Effect of several different segmentation methods, (a) represents original image, (b) — (e) are the segmentation effects of
threshold, adaptive threshold, adaptive threshold (multi-objective), and clustering method, respectively.

In addition to the above shape features, the texture
features of images are also important. The gray level
co-occurrence matrix is an effective method for texture
feature extraction®*3!1. Based on the gray level co-
occurrence matrix, texture feature parameters, such
as second moment, entropy, and uniformity, can be
calculated.

For an image S, if the function f(x,y) defines
some spatial relationship, then the elements in the
gray level co-occurrence matrix P of S are defined as
follows30-321:

P(g1.82) = #{[(x1.y1). (x2. y2)] € S|

fx1 1) = g1& f(x2. y2) = g2}/#8,
where the molecule is the number of pairs of elements
with spatial relations f(x, y) and values g; and g5, the
denominator is the total number of pairs of elements in
S (# represents the number).

4.4 Valuable data extraction

After image segmentation, all geological features are
segmented from the background of the image. But there
will remain some valueless data and outliers, and these
will severely affect the classification effectiveness.
There are two steps to extracting the valuable data:
first, we identify all of the outliers and eliminate them;
second, we extract the valuable data.

We use LOF to identify the outliers. Traditional
distance-based noise processing algorithms are easily
affected by density, and LOF presents a good solution to
this problem. The basic principles of the LOF algorithm
are as follows.
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(1) The distance between two points p and o is
d(p,o).

(2) The definition of the k-distance d(p) for point
p is as follows. di(p) equals d(p,0) and meets the
following conditions. First, there are at least k points
except for p in the set o' € C{x # p} for which
d(p,0") < d(p,o).Second, there are up to k — 1 points
except p in the set o’ € C{x # p} for which d(p,0’) <
d(p,o0). di(p) is therefore the distance between p and
k point ranked from near to far.

(3) The k-distance neighborhood of p, Ni(p), is a set
of points whose distance from p is less than or equal to
dr(p). The number of points in Ng(p) is greater than
k: |Ne(p)l = k.

(4) The definition of the reach-distance between o
and p is
reach-distancey (p, 0) = max{k — distance(0), d(p, 0)}.

(5) This means that reach-distanceg (p, 0) equals at
least di (0), otherwise it equals d(p, 0).

(6) The definition of local reachability density for
point p is

Irdy (p) = |Ni(p)| _
> reach-distanceg (p, 0)
0€Nk(p)
(7) The local outlier factor of p is expressed as
Irdy (0) > Irdg (o)
o, D) celen
0Nk (p k(P
LOR) = 1N ol Irde ()

If this ratio is close to 1, then the density of point p is
approximately equal to the density of adjacent points, so
p may belong to the same cluster as its adjacent points.
If the ratio is less than 1, then the density of p is higher
than the density of adjacent points, so p is a dense point.
If the ratio is greater than 1, then the density of p is
lower than the density of adjacent points, so p is more
likely to be an outlier.

The main idea behind LOF is to compare the
density of each point p and its neighborhood points to
determine whether the point is an outlier. Point p is
more likely to be identified as an outlier if its density is
lower.

After eliminating all the outliers, it is still impossible
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to classify all the valuable data correctly because of the
existence of valueless data. Valueless data elements are
neither outliers nor do they belong to a specific category
defined in the training data set. Until now, There has
been no good method to eliminate such valueless data.

In this paper, we put forward three strategies for
the identification of valueless data. These strategies are
based on binary classification and we have introduced
in detail in Section 3.2.

4.5 Classification

The last step is classification. After feature extraction,
we obtain the attribute values of each geological
feature, which can be used as a basis for the
automatic classification of geological features. Since
the geological data are nonlinear and small samples, we
choose SVM as the recommended classifier.

Since the 1990s, and especially in the current
century, the use of SVM has been gradually increasing
in the natural and social sciences. Guangren Shi
found that SVM performs better on geological
data with strong nonlinearity and recommended
using Multiple Regression Analysis (MRA) for
dimensionality reduction and SVM to verify the
effects3],

The performance of SVM depends on model
selection, which is mainly related to kernel functions
and their parameters. Table 1 shows different kernel
functions and their parameters. Different kernel
functions and parameters have an important influence
on SVM performance!®!. The technique for their
selection breaks down into two main categories: data-
independent and data-based!®!. The data-independent
technique uses the a priori information of the problem
rather than statistical information, so it is experimental
and probabilistic, whereas the data-based technique
draws on the training data. The latter technique has
become the more popular of the two.

Because the performance of SVM is influenced
by many factors, especially the penalty factor C,
kernel functions and their parameters, we use k-cross
validation®®371 and grid search*¥4% to identify
the optimal SVM parameters. We compare the

Table 1 Different kernel functions of SVM.

Kernel function Formula Parameter Merit
Linear K(r.x;) = x - x; i It is only used Wl?en thf? sample is separable in
low dimensional space.
Polynomial K(x,x;) = [y*(x - x;) +coefl? y,coef,d Global kernels

Radial Basis Function (RBF)
Sigmoid

K(x,x;) = exp(=y*[|x — x;[|*) %
K(x,x;) = tanh(y(x - x;) + coe f)

Good local performance

y, coe f Needs to meet certain conditions
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classification performance of different kernel functions
in our experiments. The experiment results show
that kernel functions are key factors in classification
results, and the polynomial function offers the best
performance.

o k-cross validation: The training dataset is split
into k separate files of equal size, from which k — 1
is selected as the training dataset and the remainder as
a validation set. The modeling process is repeated k
times and the average value of MSE after k iterations is
obtained to estimate the expected generalization error.

e Grid search: A practical method of searching for
data, grid search, is quite suitable for searching
multidimensional data growing
directions. To illustrate the principle, when choosing
the RBF kernel function for SVM, two parameters need
to be confirmed: the penalty parameter C and the kernel
function parameter o. Grid search chooses the change
step Cs for C € [Cy, C,] and oy for o € [07, 02]. Each
pair of parameters (C’, ¢’) is then used for modeling
and the best performing pair is selected as the final
parameters.

We use the combination of k-cross validation and

from different

grid search to optimize parameters to avoid overfitting.
First, we use grid search to set the range of parameters.
For each pair of parameters, we use k-cross validation
to calculate classification accuracy. Second, we further
subdivide the grid according to the range of formal
parameters to find the most accurate parameters.
Finally, we adopt those parameters which have the
highest classification accuracy.

5 Experiment and Analysis

5.1 Description of our data

After image segmentation, we arrived at structured data
set with 19 attributes. The training data contains 600
instances and 6 categories. Their class labels are y;,
V2, V3, Y4, V5, and yg. We also collect some valueless
data and add these to the training dataset with a class
label of yo. Note that although we add valueless data to
the training data set, these are far from exhausting the
characteristics of valueless data.

We use t-distributed Stochastic Neighbor Embedding
(t-SNE)*#!-431 to reduce dimensions and visualize data.
t-SNE is a nonlinear dimension reduction algorithm that
is very suitable for reducing high-dimensional data to
two or three dimensions for visualization.

Figure 12 shows the data structure diagram after

dimension reduction by t-SNE. Figures 12a and 12c
are the structure diagrams after reduction to two
dimensions, and Figs. 12b and 12d are the structure
diagrams after the reduction to three dimensions.
Figures 12c and 12d are the structure diagrams after
transforming the problem into a two-class problem,
with all valuable data as one category and valueless data
as another.

We can see from the graphs in Fig. 12 that the class
overlap is more serious when dealing with multiclass
classification. When the problem is transformed into
a binary classification problem, the difference between
valuable data and valueless data is obvious, with just a
few overlaps. When we consider all the valuable data as
one category and the valueless data as another, the two
are spatially separable.

By analyzing the data structure, it is feasible to
extract the valuable data using a binary classification
method. We identify all the valueless data items and
remove them from the resistivity imaging logging
images, to ensure that all the data with geological
interpretation significance can be identified by the
classifier.

5.2 Experimental results

Our experiment verifies the effect of the three
strategies using experimental data and in a production
environment. We use F-measure, Receiver Operating
Characteristic (ROC), and other indicators to evaluate
the effect of the three strategies on the experimental
data®!, whereas we observe the cleaning effect
of the three strategies intuitively in the production
environment.

We extracted some experimental data from the
production environment. The data volume of the
training dataset is 600 and that of test dataset is 400.
These experimental data are structured, including 19
attributes: xpos, depth, ar, etc. There are six kinds of
valuable data: dissolution pores, algal laminae, thick
mudstone, clay band, induced fracture D, and induced
fracture S. Among them, induced fracture D and
induced fracture S are very similar. We also included
some valueless data in the training dataset, but these do
not cover all kinds of valueless data. The classifiers we
chose were kNN, naivebayes, logistic regression, SVM,
and decision tree. We use F-measure, precision, and
recall to evaluate the classification performance. The
experiment results are shown in Fig. 13.

From the experimental results, we can see that
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(c) Two-dimensional plan for two-class.

(d) 3D stereogram for two-class.

Fig. 12 Data structure diagram after dimension reduction of t-SNE. (a) and (b) are dimensionality reduction effects when
they consider problems as multi-class problems. (c) and (d) are dimensionality reduction effects when converting problem into

two-class problem.
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Fig. 13 Classification results on experimental data.
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the merging method is the most effective of the
three strategies; its F-measure, precision, and recall
are higher than the other strategies. Among the five
classifiers, KNN offers the best performance.

We encapsulate the three strategies into a program
package and integrate them into the logging software
CIFlog to verify the effectiveness of the three strategies
in the production environment. CIFlog, a well logging
interpretation software independently developed by the
PetroChina Research Institute of Petroleum Exploration
and Development (RIPED), has been widely used in
the field of well logging interpretation in China and
internationally. We use kNN as the classifier.

Figure 14 shows the valueless data elimination effect
on a well in an oilfield. The first column shows the
depth, the second shows the resistivity imaging logging
image, and the third shows the result of image clustering
segmentation.

We use the K-means method for image clustering
segmentation. According to the gray value of an image,
the K-means method is used to divide the image into
five categories: brightest, brighter, intermediate, darker,
and darkest. The intermediate, brighter, and darker
parts generally represent the response of rock matrix.
The brightest and darkest parts are the geological
features that we are concerned about, such as gravel,
fracture, muddy beds, muddy strips, and other areas
of geological phenomena distribution. There are also

many uninteresting image features that have no specific
geological significance, influenced by the measurement
and complexity of strata and rocks.

The fourth column shows the recognition result of
image features. It can be seen that the algal laminae,
clay band, thick mudstone, induced fracture, dissolution
pores, and other features in the image are well
recognized. However, there are still many uninteresting
features, which have an impact on the subsequent
analysis.

We apply the three valuable data extraction strategies
mentioned earlier to this well, with the effects
shown in the fifth to seventh columns. The fifth to
seventh columns show the results of the merging
method, intersection method, and elimination method,
respectively. We can see that merging method can
effectively remove valueless data from the image.

6 Conclusion

In the multiclass classification problem, the
classification result is greatly affected by the presence
of valueless data. To solve this problem, we propose
three valuable data extraction strategies: the merging
method, intersection method, and elimination method.
These strategies attempt to identify interesting and
valueless data using the binary classification method.
The experimental results and effects when operating
in the production environment show that the merging
method can effectively extract the valuable data,

Algal laminae

Clay band

Thick mudstone

Induced fracture

) ) _
Dissolution pores

Fig. 14 Effect diagrams of three image cleaning strategies in practical production environment. Columns 1 to 3 refer to depth,
the resistivity imaging logging image, and the result of image clustering segmentation. The fourth column is the recognition
result of image features. Columns 5 to 7 refer merging method, intersection method, and elimination method, respectively.
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to produce a clean image. Therefore, the merging
method is well suited to improving the accuracy of the
automatic recognition of geological characteristics in
resistivity imaging logging images.
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