
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 09/12 pp270–280
DOI: 10 .26599 /TST.2019 .9010003
Volume 25, Number 2, Apri l 2020

@ The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Software Vulnerabilities Overview: A Descriptive Study

Mario Calı́n Sánchez, Juan Manuel Carrillo de Gea�, José Luis Fernández-Alemán,
Jesús Garcerán, and Ambrosio Toval

Abstract: Computer security is a matter of great interest. In the last decade there have been numerous cases of

cybercrime based on the exploitation of software vulnerabilities. This fact has generated a great social concern

and a greater importance of computer security as a discipline. In this work, the most important vulnerabilities of

recent years are identified, classified, and categorized individually. A measure of the impact of each vulnerability is

used to carry out this classification, considering the number of products affected by each vulnerability, as well as

its severity. In addition, the categories of vulnerabilities that have the greatest presence are identified. Based on

the results obtained in this study, we can understand the consequences of the most common vulnerabilities, which

software products are affected, how to counteract these vulnerabilities, and what their current trend is.

Key words: descriptive study; software security; software vulnerabilities; vulnerability databases

1 Introduction

Computers in general, and the Internet in particular,
have a great social importance nowadays; the network
of networks allows us to live interconnected in a
relatively easy way. Currently, 50% of the world’s
population uses the Internet, that is, more than 3.77
billion people are connected online[1]. From the point
of view of companies, this technological globalization
means both advantages and disadvantages. There has
been a longstanding consensus on the idea that being
connected to the Internet has its risks[2]; when the
company’s data is no longer confined under full control,
the likelihood of a third party being able to violate
that data increases[3]. Despite the security measures
currently used in any Internet service, information
systems are frequently exposed to different threats and
potential damages[4, 5].

�Mario Calı́n-Sánchez, Juan Manuel Carrillo de Gea, José Luis
Fernández-Alemán, Jesús Garcerán, and Ambrosio Toval are
with the Department of Informatics and Systems, Faculty
of Computer Science, University of Murcia, Murcia 30100,
Spain. E-mail: fmario.calin, jmcdg1, aleman, jesus.garceran,
atovalg@um.es.
�To whom correspondence should be addressed.

Manuscript received: 2018-12-12; revised: 2019-02-23;
accepted: 2019-03-11

A software vulnerability is a flaw in the system
that allows an attacker to breach the security measures
implemented[6]. Errors and bugs are not new in the
software world; a large and complex software system
could contain a large number of bugs[7], and security
bugs can sometimes be exploited by malicious users to
produce damage or obtain benefits. Security problems
due to software vulnerabilities can become particularly
worrisome in the case of compromising information of a
private nature, such as, for example, information related
to a patient’s health history[8–10].

In order to fight against software vulnerabilities,
Internet databases have been created that record
all these vulnerabilities to inform companies and
programmers. A vulnerability database is a platform
that stores, maintains, and disseminates information
about vulnerabilities discovered in real computer
systems[11]. These databases allow for security
measurement and vulnerability management. In
addition, these data can be listed and each vulnerability
can be saved with a unique identifier, which in
turn facilitates the sharing of information on those
vulnerabilities.

Currently, one of the most extensive vulnerability
databases is the National Vulnerability Database (NVD)
from the U.S. government (https://nvd.nist.gov/).



Mario Calı́n Sánchez et al.: Software Vulnerabilities Overview: A Descriptive Study 271

This governmental repository stores the vulnerability
management data. The body in charge of this database
is the National Institute of Standards and Technology
(NIST). This database provides the data according
to the Security Content Automation Protocol (SCAP)
specifications. SCAP is a set of NIST specifications
for expressing and manipulating information related to
failures and configurations in a standardized way[12].
SCAP has a number of components on which NVD
relies, as in the case of the Common Vulnerabilities
and Exposures (CVE) vulnerability dictionary. The
CVE has related Common Vulnerability Scoring
System (CVSS) scores that indicate the severity of a
vulnerability[13].

CVE is the vulnerability dictionary that contains all
the vulnerabilities with their respective identification
(https://cve.mitre.org/about/). All these vulnerabilities
are grouped into categories. Common Weaknesses
Enumeration (CWE) offers that categorization and the
required functionality to provide the security industry
with a list of types of weaknesses. The agency
responsible for the management of both CVE and CWE
is MITRE Corporation, a non-profit company that offers
information technology support to the United States
Government.

This article is structured as follows: Section 2
introduces different studies related to the identification
and categorization of software vulnerabilities. Section 3
explains in detail the methodology followed to carry out
this work about software vulnerabilities, and presents
the tool that was developed to gather the data to perform
the study. Section 5 shows the results and information
obtained after analyzing the data. Section 6 discusses
the results of this work. Finally, Section 7 presents our
conclusion and future work.

2 Related Work

Li et al.[14] classified vulnerabilities according to
the complexity of their identification, repair, and
exploitation. The vulnerabilities are thus divided
into those that are (1) easy to identify and exploit
(Bohr-Vulnerability, BOV); (2) complex to identify and
exploit (Non-aging-related Mandel Vulnerability,
NMV); (3) exploited by attackers to degrade
performance (Aging-Related Vulnerability, ARV);
and (4) not classified in any of the other three
categories (Unknown Vulnerability, UNK). Once
the study was done, the results indicated that the most

common type of vulnerabilities is NMV. In addition, the
study concludes that the time to repair a vulnerability
according to its type is 66.8 days in BOV, 70.5 in NMV,
and 60.6 in ARV.

Venter et al.[15] focused on performing a
categorization of vulnerabilities following this process:
(1) acquiring data sources (for example, the CVE list);
(2) data preprocessing to add important information
and eliminate vulnerabilities that are not of interest;
(3) making a data storage using a Self-Organized
Map (SOM); and (4) inspecting and labeling the
clusters in order to categorize the CVE database.
In this work, vulnerabilities are divided into seven
categories: buffer overflow, Denial of Service (DoS),
scripting metacharacters, privilege escalation, data
corruption, information gathering, and configuration
vulnerabilities. The results obtained show that out of
a total of 167 vulnerabilities, the most common type
was DoS (61) and the least common was the buffer
overflow (4).

Alhazmi et al.[16] carried out measurements of the
security of the systems according to their density
of vulnerability. This metric is the number of
vulnerabilities multiplied by code size, and it helps, for
example, a provider to know when a product should be
placed on the market. This work studies this metric
in the five most used operating systems in 2005. In
Windows XP, it showed a lower density compared to
Windows 95 and Windows 98 because it was more
recent and not so many vulnerabilities were discovered
so far. This article concludes by stating the benefits
of this metric and the possibility to expand it with
additional data.

Alqahtani et al.[17] used a research methodology
focused on a unified ontological representation that
processes vulnerabilities and project information. The
objective is to establish a bidirectional relationship
between the vulnerability databases and traditional
software repositories. This study focuses on high-level
security vulnerabilities, creating its own ontology to
relate products with vulnerabilities, and vulnerabilities
with a series of properties such as date, weakness,
author, source, etc. The product has a series of
properties such as library, application, and operating
system. With this ontological representation, the
authors[17] expect to make their analysis accessible to
developers.

Cruz et al.[18] established a categorization of existing
vulnerabilities in the context of cloud computing. The



272 Tsinghua Science and Technology, April 2020, 25(2): 270–280

objective of this work is to study existing security
research on cloud computing to analyze the state of the
art and identify future directions in this field. Finally,
security companies also release periodic reports on
computer security threats and general information about
the latest news in the security world. For example,
McAfee[19] highlighted at the end of 2016 the increase
of threats in Mac OS and mobile devices, the increase of
malware based on macros, or the decrease of phishing
URLs within the web.

In addition to these research articles, there are
different classifications available on the Internet. The
CVE Details database makes a series of interesting
classifications on its website. For example, the top
50 products by total number of distinct vulnerabilities
are reported (https://www.cvedetails.com/top-50-
products.php). The same top 50 ranking is also
presented but concerning vendors instead of products
(https:// www.cvedetails.com/top-50-vendors.php). In
other databases, such as NVD, the percentage of
vulnerabilities of each type found in their database
is shown in a chart (https://nvd.nist.gov/vuln/
visualizations/cwe-over-time). In addition, they
offered a study of how the frequency of the type of
vulnerabilities has changed with time, based on the
CWE vulnerability classification.

3 Method

The method proposed in this work offers an approach
for the study of software vulnerabilities. It is focused
on the number of software products affected by
each vulnerability in the NVD database (the presence
metric), and the measure of severity of those
vulnerabilities. Both parameters are related by means
of a formula with which a metric called impact is
calculated. Each year is investigated individually to
later unify the results and conduct a general study.

3.1 Data collection

We relied on the NVD database website to obtain
data, which provides a series of XML files that
contain information about the emergence of software
vulnerabilities following the SCAP specifications.
Vulnerabilities from the year 2015 to 2017 were studied
in order to analyze the current situation on this regard.

The information used to carry out this study is as
follows:
� entry id (Identifier). It is a unique vulnerability

identifier per file.

� cvss:score (Severity). Each vulnerability has a
degree of severity from 0 to 10 that is given according to
the CVSS metric. Within this metric, the classification
of a vulnerability is mild if the value is between 0.0–3.9,
medium if the value is between 4.0–6.9, high if the value
is between 7.0–8.9, and critical if the value is between
9.0–10.0[13].
� vuln:cwe (Category). Categories are used to

group the vulnerabilities. These categories are defined
according to the SCAP component called CWE
and there are about 1000 different categories of
vulnerability types.

3.2 Obtaining the annual impact

We initially address each year separately. For each
year, a process to obtain the impact of a vulnerability
is carried out. In the context of this study, the
impact is defined as a relation between the number of
software products that are affected by a vulnerability in
a specific year, and the severity that is assigned to that
vulnerability. For example, if two vulnerabilities affect
100 different systems and one has a severity of 5 and
another one has a severity of 7, the vulnerability with
a severity of 7 will have more impact than the other.
The process described below is followed to calculate the
impact:
� The software products that are affected by each of

the vulnerabilities are identified, and their severity is
obtained.
� The percentage of software products that are

affected by a vulnerability with respect to the total
number of products of that year is obtained.

Presencevul D Productsvul

TotalProducts
:

Once the frequency of appearance is obtained (i.e.,
the presence), the severity of the vulnerability is also
considered to compute the impact of the vulnerability.
In this way, a value is obtained that allows us to relate
presence and severity giving a similar importance to
both values.

Impactvul D Presencevul � Severityvul:

3.3 Obtaining the annual category

The vulnerabilities are split up into categories once the
presence of each vulnerability is obtained. Despite the
large amount of information available in NVD, there are
many vulnerabilities that do not have a category within
this data source. Part of the desired information can thus
be missing. Even so, all existing categories are studied
and the most repeated ones are obtained.



Mario Calı́n Sánchez et al.: Software Vulnerabilities Overview: A Descriptive Study 273

4 Data Collection Tool

A tool was developed using the Java programming
language to work with the XML files, allowing for
the extraction and presentation of data in the CSV
format, which is compatible with spreadsheet solutions
such as Libreoffice Calc and Microsoft Excel. The
developed tool is also a contribution of this work,
and it is open source, so it is possible to download,
use, and modify it through a repository (https://github.
com/mariocalin/nistAnalysis).

This tool is developer-oriented; neither graphical
user interface nor command-line program is therefore
provided. In order to use the tool, the repository must
be downloaded or cloned, and imported into your
preferred Java Integrated Development Environment
(IDE). Then, the tool can be run, and its parameters can
be changed as desired.

4.1 Source code description

The complete Java documentation of the tool can be
found in the doc folder inside the mentioned repository.
In this section, however, the most important aspects of
the tool in terms of development are described.

Firstly, the package src/nist/functions is presented.
There are three important files in this package:
� INistDataAnalysis.java: Interface that defines the

operations a NIST data analyzer must have. This
interface is created to provide parsers to different file
formats (e.g., XML or JSON).
� INistDataResult.java: Interface that defines

the elements a NistDataResult must have. Every
NistDataAnalyzer must create NistDataResults.
� XMLNistParser.java: It implements INistData

Analysis. This parser processes the XML Data Feed.
It will parse the XML into the tool model.

Secondly, the package src/nist/model includes the
three main concepts that can be found in the model:
� Entry represents a vulnerability entry.
� Category represents a CWE vulnerability

category.
� Result represents a summary of a year in terms of

vulnerabilities. It offers two different types of Result:
(1) per categories, and (2) per entries.

Thirdly, in the package src/nist/utils, there is only one
class. It contains some utilities in terms of readability.

Finally, the Main.java file is the entry point for the
tool and contains the main function to be run with the
IDE.

4.2 Usage of the tool

A usage example of the data collection tool is shown in
Fig. 1.

A typical execution flow of the tool is illustrated in
Fig. 2. As shown in the diagram, an XML file is injected
into the XMLNistParser, which processes the file and
creates a Result that includes yearly data, either focused
on categories of vulnerabilities or vulnerabilities.

4.3 XML data feeds

In order to run the tool and get results, it is mandatory
to download the data feeds that NIST provides in their
official website (https://nvd.nist.gov/vuln/data-feeds),
and place them into the corresponding folder with
the same exact name that is initially defined. At the
moment, only XML feeds are allowed and the folder
is XML Data.

4.3.1 XML data feed structure
Each XML file contains multiple elements of the type
entry. This element represents a vulnerability registered
in the database. There are some elements appended
as children of each entry; among other info elements
(e.g., vuln:cve-id or vuln:published-datetime), the most
interesting elements are as follows.
� vuln:vulnerable-configuration. This element

refers to the configuration in which the vulnerability

4 Tsinghua Science and Technology, April 2020, 25(2): ???–???

4 Data collection tool

A tool was developed using the Java programming
language to work with the XML files, allowing for
the extraction and presentation of data in the CSV
format, which is compatible with spreadsheet solutions
such as Libreoffice Calc and Microsoft Excel. The
developed tool is also a contribution of this work,
and it is open source, so it is possible to download,
use, and modify it through a repository (https://github.
com/mariocalin/nistAnalysis).

This tool is developer-oriented; neither graphical
user interface nor command-line program is therefore
provided. In order to use the tool, the repository must
be downloaded or cloned, and imported into your
preferred Java Integrated Development Environment
(IDE). Then, the tool can be run, and its parameters can
be changed as desired.

4.1 Source code description

The complete Java documentation of the tool can be
found in the doc folder inside the mentioned repository.
In this section, however, the most important aspects of
the tool in terms of development are described.

Firstly, the package src/nist/functions is presented.
There are three important files in this package:
� INistDataAnalysis.java: Interface that defines the

operations a NIST data analyzer must have. This
interface is created to provide parsers to different file
formats (e.g., XML or JSON).
� INistDataResult.java: Interface that defines

the elements a NistDataResult must have. Every

4.2 Usage of the tool

A usage example of the data collection tool is in Fig. 1.
public static void main(String[] args) throws Exception {

// Creates an analyzer instance with the year to analyze
INistDataAnalysis analyzer = new

XMLNistParser(XMLNistParser.XMLFiles.FULL_YEAR_2017);

// Creates a result
Result result = analyzer.createResult();

// Prints the entries result to a CSV file or String
result.entriesResult().toCSV("entries-2017.csv", true);
result.entriesResult().toString();

// Prints the categories result to a CSV file or String
result.categoriesResult().toCSV("categories-2017.csv",

true);
result.categoriesResult().toString();

System.out.println("END OF PROGRAM");
}

A typical execution flow of the tool is illustrated
in Fig. ??. As shown in the diagram, an XML file
is injected into the XMLNistParser, which processes
the file and creates a Result that includes yearly
data, either focused on categories of vulnerabilities or
vulnerabilities.

Fig. 1 Data collection tool diagram

4.3 XML data feeds

In order to run the tool and get results, it is mandatory
to download the data feeds that NIST provides in their
official website�, and place them into the corresponding
folder with the same exact name that is initially defined.
At the moment, only XML feeds are allowed and the
folder is XMLData.

4.3.1 XML data feed structure

Fig. 1 A usage example of the data collection tool.

Fig. 2 Data collection tool diagram.



274 Tsinghua Science and Technology, April 2020, 25(2): 270–280

was found. NIST provides a list of configurations
where they test the vulnerabilities.
� vuln:vulnerable-software-list. It contains the

specific software products that are affected by the
vulnerability.
� vuln:cvss. It includes the CVSS metrics of the

vulnerability. Among them, it is of special interest the
score given by the cvss:score element.
� vuln:cwe. This element refers to the category of

the vulnerability in the CVE dictionary.

4.3.2 Parsing mechanism
The parsing mechanism implemented to process the
XML files is described below:

(1) The XMLNistParser receives an XML file path
that corresponds to the NIST XML year data feed.
It loads the file and, by using the Java libraries of
javax.xml.parsers and org.w3c.dom, it creates a Result
object containing the information needed in a object
oriented way.

(2) With the Result object, it can be chosen whether
to print the entries results or the categories results (via
CSV or console). The only difference between them is
the way of representing the information:
� EntryResult is focused on vulnerability entries;

it shows information about the entry code, the
entry CVSS score, and the products affected by the
vulnerability.
� CategoryResult is focused on CWE categories;

it shows information about the total number of
vulnerability entries that a category has, and its average
vulnerability CVSS score.

5 Results

The next step is to present the results. As it has been
defined in the method, the results are extracted on an
annual basis (see Section 5.1) and after that, the global
results are shown (see Section 5.2).

Some vulnerabilities have different identifiers but
they can be analyzed together for the sake of simplicity.
Since both their causes and their consequences are
similar and have little differences between them, we
have grouped these vulnerabilities into one.

5.1 Annual analysis

Firstly, Fig. 3a shows the results regarding the impact
of vulnerabilities in 2015. The vulnerability with the
greatest impact (CVE-2015-1290) is buffer overflow in
the Google Chrome browser versions ranging from 0.1
through 43, which allow attackers to obtain operating
system privileges.

The second, third, and fourth vulnerabilities with the
greatest impact this year (CVE-2015-0569/70/71) are
also buffer overflow, but this time in the Linux kernel,
in versions 3.x and 4.x. These vulnerabilities allow
attackers to obtain privileges through an application ran
on the mentioned platform.

The fifth (CVE-2015-0573) vulnerability also affects
the Linux 3.x kernel through a driver that is used in the
Qualcomm Innovation Center (QuIC), allowing guest
users to obtain operating system privileges or produce
a DoS.

Figure 3b shows a breakdown by categories of the
vulnerabilities with greater presence detected in 2015.
Among them, there is a category (CWE-119) that
refers to Improper Restriction of Operations within the
Bounds of a Memory Buffer that has been registered
1073 times, followed by CWE-79 (i.e., Improper
Neutralization of Input During Web Page Generation
(“Cross-site Scripting”)) with 773 records. The third
most important category is CWE-200, which refers to
Information Exposure, with a record of 690 times.

It should be noted that there are 1911 vulnerabilities
not associated with a specific category whose average
severity is 6.68, which represent 24% of the total
number of vulnerabilities registered in 2015.

Secondly, the results of the year 2016 are presented
in Fig. 3c. As shown in the chart, the vulnerability with
the greatest impact (CVE-2016-6380), which refers to
obtaining sensitive information or causing DoS, occurs
in the DNS forwarder in Cisco IOS 12.0 through 12.4
and 15.0 through 15.6 and IOS XE 3.1 through 3.15.

The vulnerability with the second highest impact
is CVE-2016-1409, referring to DoS. It affects the
Neighbor Discovery (ND) protocol implementation in
the IPv6 stack in Cisco IOS XE 2.1 through 3.17S,
IOS XR 2.0.0 through 5.3.2. The occurrence of this
vulnerability reaches 9795 cases, but a severity score
of just 5 (i.e., medium) is assigned.

The third vulnerability with the greatest impact is
CVE-2016-6393, referring to inadequate management
of system resources. It mainly affects CISCO DNS
forwarders from 4.1 through 7.2.

With respect to the categories, as shown in Fig. 3d,
the most repeated category of vulnerabilities is again
CWE-119, with 1322 cases out of 9431 records. The
next category with the highest representativeness, with
823 cases, is CWE-200. The third category in this
ranking is CWE-264, which refers to Permissions,
Privileges, and Access Controls, with a total of 725



Mario Calı́n Sánchez et al.: Software Vulnerabilities Overview: A Descriptive Study 275

(a) Vulnerabilities with the greatest impact of 2015 (b) Categories with the greatest presence in 2015

(c) Vulnerabilities with the greatest impact of 2016 (d) Categories with the greatest presence in 2016

(e) Vulnerabilities with the greatest impact of 2017 (f) Categories with the greatest presence in 2017

Fig. 3 Impact of vulnerabilities and presence of categories (annual breakdown).

records.
A significant percentage of vulnerabilities are not

associated with a category, with a total of 2292 cases
and an average severity of 6.3. This represents 24.3%
of the total registered vulnerabilities.

Finally, the results of the year 2017 are shown in
Fig. 3e. The vulnerability with the greatest impact is
CVE-2017-5055, which refers to out-of-bounds reads,
and allows the attacker to access information from
unauthorized memory areas or cause a failure.

The second vulnerability with the greatest impact
is CVE-2017-12240, referring to a buffer overflow
condition in the DHCP relay subsystem of Cisco IOS
12.2 through 15.6 and Cisco IOS XE Software. It could
allow an attacker to execute arbitrary code and gain full
control of the system, and also perform a DoS attack.

The third vulnerability with the greatest impact is
CVE-2017-5130, which refers to an integer overflow

that may allow an attacker to potentially exploit heap
corruption. It affects Google Chrome versions prior to
62.0.3202.62, and the libxml2 library before version
2.9.5.

With respect to the vulnerability categories, which
are shown in Fig. 3f, the most repeated category is
again CWE-119 with 2219 cases out of 14 027. The
next category with greatest presence is CWE-79. This
category has 1183 cases, followed by the 1140 cases
of the CWE-284 category, which refers to Improper
Access Control.

The number of vulnerabilities not associated with
specific categories is 1944, with an average severity
of 5.42. This amount represents 13.8% of total
vulnerabilities.

5.2 Interannual analysis

The total grouped results of this study are presented



276 Tsinghua Science and Technology, April 2020, 25(2): 270–280

below. Figure 4a shows the 20 vulnerabilities with the
greatest impact of the three years under study, and
Fig. 4b shows a breakdown of the categories with the
largest number of vulnerabilities detected during that
time.

Our results indicate that the vulnerability with the
greatest impact in the period of time analyzed was
CVE-2015-1290, referring to buffer overflow. The
second and third vulnerabilities with the greatest impact
occurred in 2016 (i.e., CVE-2016-6380 and CVE-2016-
1409). The next vulnerability is the one with the greatest
impact of the year 2017, CVE-2017-12240. Of the 20
vulnerabilities with the greatest general impact, 17 of
them are from the year 2017, while there are only one
of the year 2015 and two of the year 2016.

With respect to the categories, CWE-119 is the most
repeated category throughout the different years. It
includes 4614 vulnerabilities, which represents 14.68%
of the total. Secondly, the CWE-79 category has 2636
vulnerabilities or 8.39%. The category CWE-200 has
2606 vulnerabilities, being thus the third with the
largest global presence, 8.29%. Out of a total of 31 426
vulnerabilities, 6147 of them (or 19.5%) do not specify
category.

6 Discussion

Once the global data of the three years were
presented, some conclusions can be outlined about the
most relevant vulnerabilities according to the metrics
proposed in this study, its type and its category.

The vulnerabilities with the greatest impact identified
in this work have as a consequence the DoS, and are
of the utmost importance for software products. This
type of vulnerability causes a service or resource to be
inaccessible to legitimate users.

Another consequence of the vulnerabilities that
are among those with the greatest impact is the
escalation of privileges. Vulnerabilities of this nature

are among the most serious that exist today; there are,
however, fewer cases of this type of vulnerabilities.
When privilege management is inadequate or fails, an
attacker can compromise the security of the software
by unauthorized appropriation of permissions (e.g.,
reading, modification) on files and directories that could
contain sensitive information.

Inferential statistical analysis has been performed to
formally check whether the probability that an observed
difference between the impact of vulnerabilities in
different years has happened by chance. The statistical
software package IBM SPSS Statistics (https://www.
ibm.com/products/spss-statistics) version 20 was used
to carry out the data analysis.

The assumptions about the data that are entailed by
statistical tests must be taken into consideration to apply
the correct technique. In this regard, parametric tests
require the variables coming from a normal distribution;
when this requirement is not satisfied, a non-parametric
test is recommended. In addition, the number of groups
is a key factor to decide upon the technique. Typically,
the one-way ANalysis Of VAriance (ANOVA) and
the Kruskal-Wallis test (parametric and non-parametric
techniques, respectively) are used to test for differences
among at least three groups. Indeed, since our analysis
encompasses three years, either the ANOVA or the
Kruskal-Wallis test should to be used.

When applying the Kruskal-Wallis test to compare
the medians of the impact of the vulnerabilities
between the years 2015 (M D 0:003 147 10), 2016
(M D 0:002 572 54), and 2017 (M D 0:004 772 00),
statistically significant differences were observed
(�2.2/ D 2689:536, p < 0:001). In the post-hoc
contrasts, it can be seen that in 2017 the impact
of the vulnerabilities was greater than in 2016 (p <
0:001) and 2015 (p < 0:001). Statistically significant
differences were also found between the year 2015 and
2016 (p < 0:001) that show a greater impact of the

(a) Vulnerabilities with the greatest impact (b) Categories with the greatest presence

Fig. 4 Impact of vulnerabilities and presence of categories (combined).



Mario Calı́n Sánchez et al.: Software Vulnerabilities Overview: A Descriptive Study 277

vulnerabilities in 2015.
With respect to the categories, it is noteworthy that

despite the fact that the CWE organism has defined 125
categories, the 14 most common categories represent
66.13% of the total number of vulnerabilities. The
rest of the categories represent only 14.31% of the
total vulnerabilities. Likewise, in the three years under
study (i.e., 2015, 2016, and 2017), 19.56% of the
vulnerabilities have not been associated with a category.
Figure 5 shows all these details graphically.

Within these categories, buffer overflow (CWE-119)
is by far the most common problem, with almost twice
as many cases as the second largest in the ranking. A
buffer overflow is a read or write to a memory location
outside the buffer limit[20]. This category, which
represents 14.68% of the vulnerabilities, provides an
indication of the type of weaknesses the attackers
are taking advantage of, as well as where the most
significant problems are in terms of security of the
main software products. The typical consequences of
vulnerabilities in this category are usually running
unauthorized code, modifying or reading memory,
DoS, and consuming resources, among others
(http://cwe.mitre.org/data/definitions/119.html).

The categories placed next in the list also have a
considerable presence. CWE-79 corresponds to failure
to neutralize user input that is used as a web
page that is served to others; CWE-200 refers to

Fig. 5 Percentage of presence of each category.

disclosure of information to someone who does not
have authorization to have access to the information;
finally, CWE-264 is described as weaknesses related to
access control (i.e., permissions, privileges, and other
security features).

The four categories mentioned above (i.e., CWE-
119, CWE-79, CWE-200, and CWE-264) represent
38.82% of the total. This is an important detail,
since it could have been initially thought that the
amount of information about categories would be too
extensive to be studied in this way. However, in the
end the categories of vulnerabilities are constantly
repeated. Therefore, attackers frequently use the same
strategies against different software. In other words, a
large number of weaknesses are common to different
software products.

To provide more information about the categories
of vulnerabilities that stand out throughout the three-
year period, Table 1 shows a relationship between these
categories and the affected programming languages,
paradigms, technologies, and platforms.

The C, C++, and assembler languages are, despite
their age, the most affected programming languages by
the CWE-119 category, which has the highest number
of registered vulnerabilities. In addition, another of
the categories with the most vulnerabilities (CWE-200)
makes explicit mention of an information exhibition in
a mobile environment. This is in line with the drastic
increase in recorded attacks to the security of mobile
devices. According to Nokia[21], more than 100 million
mobile devices were infected by malware in 2016,
including smartphones, laptops, and a wide range of
Internet of Things devices.

In summary, buffer overflow is currently the most
common vulnerability category; on the other hand, the
main consequence of vulnerabilities is DoS.

7 Conclusion and Further Work

This work can be of help to inform users, researchers,
and security practitioners about the vulnerabilities with
the greatest impact in recent years, and the software
that is affected by them. This information can be
useful, for example, to apply the corresponding security

Table 1 Environments affected by the main categories of vulnerabilities.
Category Programming language Paradigm Technology Platform
CWE-119 C, C++, and assembler Independent Independent Independent
CWE-79 Independent Web-based Web technology Independent
CWE-200 Independent Independent Independent Mobile environment
CWE-264 Independent Independent Independent Independent



278 Tsinghua Science and Technology, April 2020, 25(2): 270–280

patches[22]. We believe that it is crucial to have a grasp
on the most relevant vulnerabilities nowadays to protect
ourselves against them. In addition, the study can serve
as a guide to foresee the evolution of vulnerabilities in
the coming years, as well as identify the most common
categories of vulnerabilities.

The results of this study indicate that the
vulnerabilities with the greatest impact are usually
found in free and open source software. The most
repeated software products in the ranking are different
versions and products of CISCO (IOS, XE, etc.),
versions 3.x and 4.x of the Linux Kernel, and Mozilla
software (Firefox and Thunderbird). To a lesser extent,
there is also presence of software products from NTP,
ImageMagick, Moodle, Tryton, Django, etc.

It is worth mentioning the notable presence of
vulnerabilities in the Linux kernel and Apple’s Mac OS
X operating system, despite their good reputation in
terms of security features. In this sense, the information
of the NVD database contains more vulnerabilities and
with greater impact of the Linux Kernel and Apple’s
Mac OS X operating system than those of Microsoft’s
Windows operating system in the three years under
study. According to Ref. [23], 384 vulnerabilities were
detected in Mac OS X, 77 in the Linux kernel, and 53
in Microsoft Windows 10 in 2015. This fact may be
motivated by the greater or lesser willingness to make
public a vulnerability detected in the system, which the
free and open source software community seems to do
more frequently than Microsoft[24].

As shown in Section 6, buffer overflow is the
most common software vulnerability. This vulnerability
causes problems ranging from a DoS to the total
appropriation of the control of the application by the
attacker. It is mainly a problem of low-level languages,
such as C or C++, while higher level languages such as
Java or Visual Basic prohibit direct access to memory
and avoid this problem. For this reason, when possible,
it is better to not allow users to work with low-
level code, and work only with high-level code. It
is also recommended that developers replace insecure
functions such as strcpy, strcat, and so on[20].

Among other solutions, there is a series of well-
known countermeasures to protect against buffer
overflow[25]:
� Dynamic linking of secure libraries. These

libraries replace unsafe functions with other functions
with the same purpose that incorporate measures
that protect against this attack. An example of

this countermeasure is the library libsafe (https://
directory.fsf.org/wiki/Libsafe).
� Compiler tools. The compilers insert instructions

that allow verifying the integrity of the stack, as
well as eliminate the conditions that an attacker
needs to perform a buffer overflow attack. The
best known solutions are StackShield (http://
www.angelfire.com/sk/stackshield/info.html) and
StackGuard[26].

Our future work includes the monitoring of
vulnerabilities that can compromise the main operating
systems for mobile devices (i.e., iOS and Android).
Owing to the strong presence of this type of devices in
our daily life[27], we consider this topic of the utmost
importance. Another possible line of future work is
the study of the variation of the consequences of the
vulnerabilities with the greatest impact. This kind of
study would analyze the situation of a vulnerability
or category of vulnerabilities in a given year, and
compare it to the situation in the previous years. As
presented in Section 5, DoS attacks in 2017 are not
as frequent as in 2015 and 2016. This suggests that
we could be witnessing a change of trend, which
could be caused by a greater ability or interest of the
cybercriminals to attack other software weaknesses that
were less common in the past[28]. In this sense, the
study of the evolution over time of vulnerabilities in
software products is another interesting line of work for
researchers in this field.

Acknowledgment

This research was part of the BIZDEVOPS-GLOBAL-
UMU project (No. RTI2018-098309-B-C33) supported by
the Spanish Ministry of Economy and Competitiveness
and the European Fund for Regional Development
(ERDF).

References

[1] We Are Social and Hootsuite, Digital in 2017: Global
overview, https://wearesocial.com/special-reports/digital-
in-2017-global-overview, 2017.

[2] S. Lichtenstein, Internet risks for companies, Comput.
Secur., vol. 17, no. 2, pp. 143–150, 1998.

[3] M. P. Qi, J. Chen, and Y. Chen, A secure biometrics-
based authentication key exchange protocol for multi-
server TMIS using ECC, Comput. Methods Programs
Biomed., vol. 164, pp. 101–109, 2018.

[4] M. Jouini, L. B. A. Rabai, and A. B. Aissa, Classification of
security threats in information systems, Proced. Comput.
Sci., vol. 32, pp. 489–496, 2014.

[5] A. N. Navaz, M. A. Serhani, N. Al-Qirim, and M. Gergely,
Towards an efficient and energy-aware mobile big health



Mario Calı́n Sánchez et al.: Software Vulnerabilities Overview: A Descriptive Study 279

data architecture, Comput. Methods Programs Biomed.,
vol. 166, pp. 137–154, 2018.

[6] O. Alhazmi, Y. Malaiya, and I. Ray, Security
vulnerabilities in software systems: A quantitative
perspective, in Proc. 19th Ann. IFIP WG 11.3 Working
Conf. on Data and Applications Security XIX, Storrs, CT,
USA, 2005, pp. 281–294.

[7] J. T. Gong and H. Y. Zhang, BugMap: A topographic
map of bugs, in Proc. 9th Joint Meeting on Foundations
of Software Engineering, Saint Petersburg, Russia, 2013,
pp. 647–650.

[8] J. L. Fernández-Alemán, I. C. Señor, P. Á. O. Lozoya, and
A. Toval, Security and privacy in electronic health records:
A systematic literature review, J . Biomed. Inform., vol. 46,
no. 3, pp. 541–562, 2013.

[9] I. C. Señor, J. L. Fernández-Alemán, and A. Toval, Are
personal health records safe? A review of free web-
accessible personal health record privacy policies, J . Med.
Internet Res., vol. 14, p. e114, 2012.

[10] C. T. Li, D. H. Shih, and C. C. Wang, Cloud-assisted
mutual authentication and privacy preservation protocol for
telecare medical information systems, Comput. Methods
Programs Biomed., vol. 157, pp. 191–203, 2018.

[11] Y. H. Gu and P. Li, Design and research on vulnerability
database, in Proc. 3rd Int. Conf. on Information and
Computing, Wuxi, China, 2010, pp. 209–212.

[12] C. Schmidt, Technical introduction to SCAP, https://www.
energy.gov/sites/prod/files/cioprod/documents/Technical
Introduction to SCAP - Charles Schmidt.pdf, 2010.

[13] P. Mell, K. Scarfone, and S. Romanosky, Common
vulnerability scoring system, IEEE Secur. Privacy, vol. 4,
no. 6, pp. 85–89, 2006.

[14] X. D. Li, X. L. Chang, J. A. Board, and K. S. Trivedi,
A novel approach for software vulnerability classification,
in Proc. 2017 Ann. Reliability and Maintainability Symp.,
Orlando, FL, USA, 2017.

[15] H. Venter, J. H. P. Eloff, and Y. L. Li, Standardising
vulnerability categories, Comput. Secur., vol. 27, nos. 3&4,
pp. 71–83, 2008.

[16] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, Measuring,
analyzing and predicting security vulnerabilities in
software systems, Comput. Secur., vol. 26, no. 3, pp. 219–
228, 2007.

[17] S. S. Alqahtani, E. E. Eghan, and J. Rilling, Tracing known
security vulnerabilities in software repositories—
A semantic web enabled modeling approach, Sci. Comput.
Programming, vol. 121, pp. 153–175, 2016.

[18] Z. B. Cruz, J. L. Fernández-Alemán, and A. Toval, Security
in cloud computing: A mapping study, Comput. Sci.
Inform. Syst., vol. 12, no. 1, pp. 161–184, 2015.

[19] McAfee, McAfee labs threats report, https://www.mcafee.
com/enterprise/en-us/assets/reports/rpquarterly-threats-
mar-2016.pdf, 2016.

[20] J. C. Foster, V. Osipov, N. Bhalla, N. Heinen, and D. Aitel,
Buffer Overflow Attacks. Syngress Publishing, 2005.

[21] Nokia, Android & iOS infections rose by 400%. Windows
Infections declined, https://nokiapoweruser.com/nokia-
malware-report-smartphones-infections-rose-nearly-400
-percent-2016/, 2016.

[22] A. V. Uzunov, E. B. Fernandez, and K. Falkner, Assessing
and improving the quality of security methodologies for
distributed systems, J . Softw.: Evol. Process, vol. 30, no.
11, p. e1980, 2018.

[23] C. Manes, 2015’s MVPs-the most vulnerable players,
https://techtalk.gfi.com/2015s-mvps-the-most-vulnerable-
players/, 2016.

[24] N. Metha and B. Leonard, Disclosing vulnerabilities
to protect users, https://security.googleblog.com/2016/10/
disclosing-vulnerabilities-to-protect.html, 2016.

[25] W. L. Du, Chapter 4: Buffer overflow attack, Computer
Security: A Hands-on Approach, Syngress Publishing,
2017.

[26] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P.
Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang,
StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks, in Proc. 7th Conf. on USENIX
Security Symp., San Antonio, TX, USA, 1998, p. 5.

[27] Newzoo, Newzoo global mobile market report 2018—
Light version, https://newzoo.com/insights/trend-reports/
newzoo-global-mobile-market-report-2018-light-version/,
2018.

[28] F. Mercaldo, A. Di Sorbo, C. A. Visaggio, A. Cimitile,
and F. Martinelli, An exploratory study on the evolution
of android malware quality, J . Softw.: Evol. Process, vol.
30, no. 11, p. e1978, 2018.

Mario Calı́n Sánchez received the BS
and MS degrees from University of
Murcia, Murcia, Spain, in 2016 and 2018,
respectively. He worked as a researcher
in the software sustainability area for the
Software Engineering Research Group of
the University of Murcia, and now he is
currently a software developer with the

Polytechnic University of Cartagena, where he is a member of
the INDIe project development team.

Juan Manuel Carrillo de Gea received
the BS, MS, and PhD degrees from
University of Murcia, Murcia, Spain, in
2000, 2009, and 2016, respectively. He is
an assistant professor with the University
of Murcia. He has published more than
30 articles on software engineering,
requirements engineering, and applications

in the e-health and e-learning domains in relevant journals and
conferences. His current research interests include software
engineering, sustainability, medical informatics, and education.



280 Tsinghua Science and Technology, April 2020, 25(2): 270–280

José Luis Fernández-Alemán received
the BS and PhD degrees from University
of Murcia, Murcia, Spain, in 1994 and
2002, respectively. He is currently an
associate professor with University of
Murcia, where he is a member of the
Software Engineering Research Group. He
has published more than 50 JCR papers in

the areas of software engineering and requirements engineering
and their application to the fields of e-health and e-learning.
Currently, his main research interest is m-health and m-learning
and their application to computer science, medicine, and nursing.

Jesús Garcerán received the BS degree
from University of Murcia, Murcia, Spain,
in 2018. He has worked for 8 months
in HOP Ubiquitous S.L. as a software
developer, where he was managing some
apps, and he has experience with IoT
and FIWARE. He has specialized in
information systems, but he is interested in

other areas inside computing, like front-end development with
AngularJS, cybersecurity, and how to protect an enterprise and,

finally, in the possibilities of IoT agents, especially from the side
of software. He is pending to publish a research work about
Semantically-Enhanced System for Pest Recognition in AISC
Springer as an author.

Ambrosio Toval received the BS degree
from University Complutense of Madrid,
Madrid, Spain, in 1983, and the PhD
degree from Technical University of
Valencia, Valencia, Spain, in 1994. He is
currently a full professor with University
of Murcia, Spain, where he is the head
of the Software Engineering Research

Group. He has conducted a variety of research and technology
transfer projects in the areas of requirements engineering
processes and tools, privacy and security requirements,
sustainable requirements, and applications in the e-health,
e-learning, and mobile development domains. He has published
in the same topics in international journals, such as IEEE
Software, Information and Software Technology, Requirements
Engineering, Computer Standards & Interfaces, IET Software,
International Journal of Information Security, etc.


