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Machine Learning-Based Multi-Modal Information Perception
for Soft Robotic Hands

Haiming Huang�, Junhao Lin, Linyuan Wu, Bin Fang, Zhenkun Wen, and Fuchun Sun�

Abstract: This paper focuses on multi-modal Information Perception (IP) for Soft Robotic Hands (SRHs) using

Machine Learning (ML) algorithms. A flexible Optical Fiber-based Curvature Sensor (OFCS) is fabricated,

consisting of a Light-Emitting Diode (LED), photosensitive detector, and optical fiber. Bending the roughened optical

fiber generates lower light intensity, which reflecting the curvature of the soft finger. Together with the curvature and

pressure information, multi-modal IP is performed to improve the recognition accuracy. Recognitions of gesture,

object shape, size, and weight are implemented with multiple ML approaches, including the Supervised Learning

Algorithms (SLAs) of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and the

unSupervised Learning Algorithm (un-SLA) of K-Means Clustering (KMC). Moreover, Optical Sensor Information

(OSI), Pressure Sensor Information (PSI), and Double-Sensor Information (DSI) are adopted to compare the

recognition accuracies. The experiment results demonstrate that the proposed sensors and recognition approaches

are feasible and effective. The recognition accuracies obtained using the above ML algorithms and three modes

of sensor information are higer than 85 percent for almost all combinations. Moreover, DSI is more accurate when

compared to single modal sensor information and the KNN algorithm with a DSI outperforms the other combinations

in recognition accuracy.

Key words: multi-modal sensors; optical fiber; gesture recognition; object recognition; Soft Robotic Hands (SRHs);

Machine Learning (ML)

1 Introduction

Soft Robotic Hands (SRHs) are presently of interest
to many scientists, as they have a number of
advantages over traditional hard hands[1, 2]. Deimel et
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al.[3, 4] designed a compliant, underactuated pneumatic
robotic hand for dexterous manipulation and robust
grasping. Gupta et al.[5] trained an SRH to perform
dexterous manipulation tasks learning from human
demonstrations. Hao et al.[6] designed a programmable
mechanical freedom and variable stiffness soft actuator
using low melting point alloy.

Although various SRHs have been developed for
safe, adaptable grasping, most of them still lack
sensory feedback. Flexible tactile sensors enable an
SRH to interact in a more friendly way with humans
and the environment, and to perform more dexterous
manipulations[7]. Most of these sensors are based
on capacitive[8], resistive, and piezoresistive[9], or
optical principles[10]. The capacitance of capacitive
sensors varies with the change of the gap between
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the conductive plates on the imposition of external
force[11]. Resistive sensors produce a change in
electrical resistance when mechanical deformation
occurs[9]. Optical fiber sensors are immune to magnetic
fields and are inherently safe for interacting with
human beings[12]. Zhao et al.[13] performed curvature
control of a soft orthotic using low cost solid-state
optical fiber, and then completed a five-finger soft
orthosis integrating these optical strain sensors and
EMG control[14]. Most recently, they developed an
optoelectronically innervated soft prosthetic hand via
stretchable optical waveguides. The optical waveguide
was fabricated with two soft silicone composites with
different refractive index. The soft prosthetic featured
active haptic sensing to detect shape, texture, and
softness, and was able to select the ripest among a group
of tomatoes[15].

However, soft prosthetics still fell short in two ways:
the use of a single modal sensor and the lack of
Machine Learning (ML) in Information Perception (IP).
To address the first of these shortcomings, Kampmann
and Kirchner[16] integrated fiber-optic sensor arrays
into a multi-modal tactile sensor processing system.
To address the other, ML algorithms have been
adopted to improve the accuracy of recognition[17–19].
Naya et al.[20] adopted a K-Nearest Neighbor (KNN)
algorithm to support a haptic interface for a pet-
like robot, while Hu et al.[21] utilized Principal
Component Analysis (PCA) to compress the attribute
data and extract feature information, and used the
Support Vector Machine (SVM) algorithm to classify
low-dimensional features. These Supervised Learning
Algorithms (SLAs) require the trained dataset to be
labeled, whereas, unSupervised Learning Algorithms
(un-SLAs) do not require parameter tuning or data
labeling[22]. Chan-Maestas and Sofge[23] performed
tactile perception based on K-Means Clustering
(KMC); and Shimoe et al.[24] developed artificial haptic
models with Neural Network (NN) technology.

From the prior research presented above, we can

establish that the tactile sensor and IP for an SRH
should include the following features:

(1) The sensors need to be flexible for compatibility
with SRHs;

(2) The sensors need to be multi-modal to describe
different aspects of tactile information; and

(3) The IP should have various recognition abilities
with the help of ML.

Therefore, this paper focuses on ML-based multi-
modal IP for Soft Robotic Hands (SRHs). The paper is
organized as follows. Section 2 introduces two modal
sensors: the Optical Fiber-based Curvature Sensor
(OFCS) and the pressure sensor, and the double-
modal IP system is constructed. Section 3 describes
the information pre-processing of the double modal
sensors, explains the datasets for ML algorithms,
and then provides the pattern recognition for IP. In
Section 4, the ML algorithms are implemented, and
the recognition results of gesture, object shape, size,
and weight are shown. Finally, Section 5 presents the
conclusion of this paper.

2 Double-Modal Sensors and IP System

2.1 OFCS

2.1.1 Fabrication
Figure 1 illustrates the fabrication of OFCS. The top
raw figures describe the fabrication of a 3D model,
whereas the bottom raw figures depict the fabrication
of a real object. The curvature sensor is made of
Light-Emitt Diode (LED), optical fiber, a photosensitive
sensor, and two pieces of thermo-plastic tube (see
Fig. 1a). The optical fiber is bent to a U shape (see
Fig. 1b), which is able to be conveniently embedded
into the soft finger. The surface of the optical fiber is
roughened by engraving it with a laser cutting machine
(see Fig. 1c). The LED is then attached to one end of
the optical fiber with the help of a thermo-plastic tube,
and the photosensitive sensor is attached to the other
end. The OFCS is then fabricated (see Fig. 1d).

(a)

3D
modal

(b) (c) (d)

Real 

object

Fig. 1 Fabrication of OFCS.
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2.1.2 Roughening process
The process of roughening optical fiber is shown in
Fig. 2. The U-shaped optical fibers are affixed to a
hardboard, and placed on the working plane of laser
cutting machine (see Fig. 2a). The laser head cuts one
side of the optical fiber when it is operating along
the motion trajectory (see Fig. 2b). The roughened
optical fiber features equal intervals between adjacent
roughened segments, as shown in Fig. 2c. Figure 2d
shows the motion trajectory of the laser head for the
roughening of 15 pieces of optical fiber, while the
detailed trajectory for every piece of optical fiber is
shown in Fig. 2e. There are 19 segments of roughened
area for every piece of optical fiber, and 25 straight lines
for every segment of roughened area. The lengths of
each roughened and un-roughened area are equal at 2
mm.

2.1.3 Integrated in SRH
Figure 3 shows the SRH with integrated OFCSs. Each
OFCS is embedded into a soft finger, such that the
curvature sensor bends in unison with the soft finger.
The five soft fingers with embedded curvature sensors
are integrated on a palm support. The effective length
of the middle finger is 80 mm, while the other fingers
are 70 mm long.

2.1.4 Measurement principle
The measurement principle of the OFCS is shown in

(a) Laser cutting machine

(b) Laser head is operating (c) Roughened optical fiber

(e) Motion trajectory of laser head for

roughening one optical fiber

(d) Motion trajectory of laser head for roughening one batch of 

optical fiber (number = 15)

2 mm
2 mm

19 segments

25 straight 
line for every 

segment

roughenedun-roughen

Fig. 2 Process of roughening optical fiber.

(a) Embed the curvature sensor into soft finger

(b) Back of soft robotic hand (c) Front of soft robotic hand

Soft finger

Curvature sensor

Palm support

Soft finger
Soft finger

Palm support

Fig. 3 SRH with OFCSs.

Fig. 4. The OFCS and soft finger are combined, and are
therefore bent and unbent synchronously. The light is
emitted from an LED, transmitted through optical fiber,
and received by the photosensitive sensor. In Fig. 4a,
the light transmits through an unprocessed optical fiber
(not roughened or bent), such that there is no loss of
light, with all of the light received by the photosensitive
sensor. In Fig. 4b, the optical fiber is roughened, so
that some light is lost by being shut out. In Fig. 4c, the
finger is bent, and the lost light increases. As the degree
of bending increases, the photosensitive sensor receives
less reserved light.

Assuming that the roughened optical fiber is in an
initial state (Fig. 4b) without bending, stretching, or
pressing, the baseline light energy as measured by the
photosensitive sensor is expressed as I0. When the
roughened optical fiber is bent (Fig. 4c), some light

Fig. 4 Measurement principle of OFCS.
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energy is lost, and the light energy as measured by the
photosensitive sensor is expressed as I . The lossy of
light energy can then be expressed in decibels as

a D 10 logI0=I
10 (1)

When the optical fiber is in the initial state, a D 0 ;
when the light energy is increasing, a < 0 ; and when
the light energy is reducing, a > 0 .

2.2 Pressure sensor

The pressure sensor is an intelligent digital display
pressure transmitter, as shown in Fig. 5a. In every gas
pressure channel, the pressure transmitter is installed in
parallel with the soft finger. The electrical connections
are given in Fig. 5b. The current acquisition module
converts the current signal to a voltage signal which is
acquired by an Analog-Digital Converter (ADC) on the
control board.

2.3 Double-modal IP system

The double-modal IP system is shown in Fig. 6. The
object connection is shown in Fig. 6a, while the control
principle is shown in Fig. 6b. The CPU of the control
board is an STM32 (STM32F407, STMicroelectronics
Inc.). The proportional valves are controlled with the
voltage output from the DAC module, and output
controllable pressure to the soft fingers. The pressure
transmitters output a current signal which is processed
by the current acquisition module and acquired by the
data acquisition card. The OFCSs are embedded in soft
fingers and also output voltage type signals acquired by
the data acquisition card. A PC receives the sensor data
from the data acquisition card via Universal Serial Bus
(USB).

3 Data Processing for ML Algorithms

3.1 Information pre-processing

3.1.1 Information expression
The voltage is used to express the Pressure Sensor
Information (PSI) and Optical Sensor Information

Fig. 6 Double-modal IP system.

(OSI). When the soft fingers are unbent, the PSI is
expressed as Vpi;0 (here and in what follows, i D 0;
1; 2; 3; 4 represent the thumb, index, middle, ring, and
little fingers, respectively), and the OSI is expressed
as Voi;0. When the soft fingers are bent to their
maximum state, the PSI is expressed as Vpi;max, and
the OSI is expressed as Voi;max. Therefore, when the
soft fingers are in states of bending between the initial
and maximum, the PSI Vpi and OSI Voi are expressed,
respectively, as

Vpi 2 ŒVpi;0; Vpi;max� (2)

and
Voi 2 ŒVoi;0; Voi;max� (3)

3.1.2 Normalization processing
The necessary to execute normalization processing is

Fig. 5 Intelligent digital display pressure transmitter and its connection circuit
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based on several considerations: (1) The output voltages
of PSI and OSI are different for different soft fingers in
their initial or maximum state; (2) The voltage ranges
between PSI and OSI are not at the same level; and
(3) The ML algorithms applied in the IP system require
normalized data.

For PSI, the normalization process is expressed as

NORpi D
Vpi � Vpi;0

Vpi;max � Vpi;0

(4)

While for OSI, the normalization process is expressed
as

NORoi D
Voi � Voi;0

Voi;max � Voi;0

(5)

3.2 Datasets for ML algorithms

3.2.1 Dataset pattern
The dataset pattern arising from N -dimension samples
and M -dimension features is shown in Table 1. Xn

(n D 1; 2; : : : ; N ) is the feature vector of the n-th
sample, while xnm (m D 1; 2; : : : ;M ) is the feature
value corresponding to the m-th feature of the n-th
sample. yn is the class label corresponding to the n-th
sample. yn 2 cm (m D 1; 2; : : : ;M ), where m is the
object class, and the total number of classes is M .
3.2.2 Datasets for different ML algorithms
The related datasets for use with ML algorithms are
shown in Fig. 7. These datasets are set up according to
the dataset pattern given in Table 1.

The dataset with labels for use with SLAs is
expressed as

DS super D f.X1; y1/; .X2; y2/; : : : ; .XN ; yN /g
T

(6)
Table 1 Dataset pattern.

Sample
Feature

Dim.1 Dim.2 Dim.3 � � � Dim.M Label
X1 x11 x12 x13 � � � x1M y1

X2 x21 x22 x23 � � � x2M y2

X3 x31 x32 x33 � � � x3M y3

� � � � � � � � � � � � � � � � � � � � �

XN xN1 xN 2 xN 3 � � � xNM yN

Train dataset Validation dataset

Train data

Test dataset

Test data

Test dataset

Test data

SLA

un-SLA

DS_super_train

DS_super

DS_unsuper

DS_super_val

DS_unsuper_test

DS_super_test

Fig. 7 Datasets for different ML algorithms.

The dataset without labels for use with the un-SLA is
expressed as

DS unsuper D fX1; X2; : : : ; XN g
T (7)

For SLAs, there are two kinds of data. One kind is
the training data for training model parameters, which
includes a training dataset and a validation dataset for
cross-validation of the model parameters. The other
kind is the test data, which includes a test dataset for
predicting outcomes and evaluating the accuracy of the
algorithms.

Training dataset for SLAs:
DS super trainDf.X1; y1/;.X2; y2/; : : : ; .XN1;yN1/g

T

(8)
Validation dataset for SLAs:

DS super valDf.X1; y1/;.X2; y2/; : : : ; .XN 2;yN 2/g
T

(9)
Test dataset for SLAs:

DS super testDf.X1;y1/;.X2;y2/; : : : ; .XN 3;yN 3/g
T

(10)
where N1, N2, and N3 are the total number of
samples in the datasets DS super train, DS super val,
and DS super test, respectively.

For the un-SLA, no training data are not required as
no model parameters needed to be trained, but a test
dataset is used to predict outcomes and evaluate the
accuracy of the algorithm.

Test dataset for un-SLA:
DS unsuper test D fX1; X2; : : : ; XN4g

T (11)
where N4 is the total number of samples in the dataset
DS unsuper test:
3.2.3 Pattern recognition for IP
As shown in Fig. 8, the IP includes the recognitions
of gesture, object shape, size, and weight. The pattern
recognition methods include SLAs and an un-SLA. The

Fig. 8 Pattern recognition for IP.
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adopted SLAs are KNN, SVM, and Logistic Regression
(LR), whereas the adopted un-SLA is KMC. For the
SLAs, the training data are used to derive optimal
model parameters, then the test dataset is used to
predict outcomes and evaluate the recognition accuracy
according to these trained model parameters. For the
un-SLA, the test data are used to perform clustering and
evaluate the recognition accuracy.

In order to compare the recognition accuracies with
information from different sensors, PSI, OSI, and
Double-Sensor Information (DSI) are employed. There
are five channels of PSI, and five channels of OSI.
Therefore, the dimension of features is 5 (M D 5)
in DS super train, DS super test, and DS unsuper test
when either PSI or OSI is used, while the dimension of
features is 10 (M D 10) when DSI is used.

4 IP-Based ML Algorithms

4.1 Implementation of the ML algorithms

4.1.1 KNN
The Euclidian distance is employed to perform the
KNN algorithm, which is expressed as

DistE.Xt ; Xv/ D

vuut MX
jD0

.Xtj �Xvj /2 (12)

where Xv D fxv1; xv2; : : : ; xvM ; yvg is one validating
vector in DS super val; v D 1; 2; : : : ; N2; Xt D

fxt1; xt2; : : : ; xtM ; ytg is one training vector in
DS super train; and t D 1; 2; : : : ;N1.

In the KNN algorithm, the number of nearest
neighbors (k) is the unknown parameter to be obtained.
4.1.2 SVM
For the SVM algorithm, the software development
kit named Libsvm is used to solve multi-classification
problems. The Gaussian-based Radial Basis Function
(RBF) as a kernel function is expressed as

W.Xv; Xt / D exp
�
jj.Xv �Xt /jj

2

2�2

�
(13)

where � is variance which is an adjustable parameter.

The function SVMcgForClass is used to find the
optimal penalty parameter C and kernel parameter g.
The function libsvmtrain is used to train the model for
the SVM algorithm, and the function libsvmpredict is
used to test the accuracy of the model.

In the SVM algorithm, the penalty parameter C and
kernel parameter g need to be obtained.
4.1.3 LR
For the LR algorithm, the function OneVsAll is used
to train the model, and the function predictOneVsAll
is used to test the accuracy of the model. In the LR
algorithm, the regularization parameter � is needed,
which is obtained by searching from 0.001 to 1 at
an interval of 0.001 while repeating the functions
OneVsAll and predictOneVsAll.
4.1.4 KMC
For the KMC algorithm, the function kmeans in
Matlab is used to implement clustering, and the
function silhouette in Matlab is used to plot the cluster
silhouettes. The function princomp in Matlab is used
to perform dimensionality reduction for intuitively
displaying the cluster result.

4.2 Gesture recognition

4.2.1 Gesture exhibition
Figure 9 shows that the SRH performs twelve gestures
following the movement of data glove for gesture
recognition. The gestures are one, two, three, four, five,
six, big crawl (B. C.), good, middle crawl (M. C.), ok,
rock, and small crawl (S. C.).
4.2.2 Recognition results
(1) SLAs

The training data for gesture recognition is given in
Fig. 10. The parameters for the SLAs are shown in
Table 2.

After training the model parameters, the test
experiments were performed. In the test experiments,
every gesture was repeated three times, and 200 samples
are recorded each time, such that 7200 (N3 D 3�200�

one three four

ok rockgoodbig crawl

five sixtwo

middle crawl small crawl

Fig. 9 Twelve gestures for gesture recognition.
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Fig. 10 Training data for gesture recognition (ten times), where 1–5 on the x-axis are corresponding to the PSI for thumb, index
finger, middle finger, ring finger, and little finger, and 6–10 are corresponding to the OSI for five fingers respectively, the y-axis is
the normalized values of PSI and OSI for every finger.

Table 2 Model parameters for SLAs for different pattern
recognition.
Parameter Gesture Shape Size Weigh

k 9 9 9 9

DSI
C 5.278 0.003 903 6 0.009 765 6 0.003 903 6
g 3.0314 0.003 903 6 0.003 903 6 0.003 903 6

PSI
C 0.003 906 3 0.003 906 3 0.003 906 3 0.003 906 3
g 3.0314 0.003 906 3 0.003 906 3 0.003 906 3

OSI
C 5.278 0.003 906 3 0.003 906 3 0.003 906 3
g 3.0314 0.003 906 3 0.003 906 3 0.003 906 3

� 0.03 0.03 0.03 0.03

12 D 7200) samples are used to predict and evaluate the
models of the SLAs.

Figure 11 shows the confusion matrixes of the test
results for gesture recognition. The results indicate
that most of the gestures are well recognized with
each different combination of ML algorithm and sensor
information. The gesture recognition accuracies using
DSI are all greater than 50 percent and most of them are
greater than 90 percent. The worst accuracy is 59.22
percent when the LR algorithm is used to recognize
middle crawl. In this case, “M. C.” is incorrectly
recognized as “good” (21.88 percent) because the
thumb is not clearly identified, and as small crawl
(18.9 percent) because all the fingers are very close to

the critical position. Further inaccuracies are (i) The
subplot (1, 2) is the test result for the KNN algorithm
with PSI, where subplot (x; y) means that the subploy
at row x and column y, and “ok” is recognized as
“four” (44.08 percent) because the index finger is not
clearly identification. (ii) The subplot (1, 3) gives the
test results for the KNN algorithm with OSI, where
“six” is recognized as “M. C.” (88.2 percent) because
the thumb and little fingers are not sufficiently unbent.
(iii) The subplot (3, 3) displays the test results for the
LR algorithm with OSI, where “M. C.” is recognized
as “good” (76.05 percent) because the thumb is not
sufficiently bent.

Figure 12 summarizes the average accuracies of
gesture recognition. Figure 12a shows that the highest
average accuracy is 97.96 percent, achieved using the
KNN algorithm with Double-Sensor Information (DSI).
Figure 12b shows that the average accuracy of DSI
(96.70 percent) is the highest, followed by PSI at 92.59
percent, with OSI the least accurate at 88.12 percent.
Figure 12c shows that the average accuracy of the KNN
algorithms using DSI is the highest at 97.96 percent,
followed by the SVM algorithm at 96.55 percent, with
the LR algorithm the least accurate at 95.60 percent.
The results for gesture recognition using SLAs can
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one two three four five six B.C. good M.C ok rock S.C. one two three four five six B.C. good M.C ok rock S.C. one two three four five six B.C.goodM.C ok rockS.C.
one 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
two 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
three 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
four 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 67 33 0 0 0 0 0 0 0 0
five 0 0 0 0 100 0 0 0 0 0 0 0.4 0 0 0 0 62 0 0 0 0 0 0 38 0 0 0 0 100 0 0 0 0 0 0 0
six 0 0 0 0 0 79 0 0 21 0 0 0 0 0 0 0 0 89 0 4.5 6.4 0 0 0 0 0 0 0 0 12 0 0 88 0 0 0
B.C. 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
good 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 97 2.8 0 0 0
M.C 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 7.8 0 92 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0.4
ok 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 44 0 0 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 100 0 0
rock 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 84 16
S.C. 0 0 0 0 3.1 0 0 0 0 0 0 97 0 0 0 4 0 0 0 0 34 0 0 62 0 0 0 0 10 0 0 0 0 0 0 90

one two three four five six B.C. good M.C ok rock S.C. one two three four five six B.C. good M.C ok rock S.C. one two three four five six B.C.goodM.C ok rockS.C.
one 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
two 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
three 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0
four 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
five 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 62 0 0 0 0 0 0 38 0 0 0 0 100 0 0 0 0 0 0 0
six 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 93 0 0.4 6.1 0 0 0 0 0 0 0 0 71 0 0 29 0 0 0
B.C. 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
good 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 97 2.8 0 0 0
M.C 0 0 0 0 0 0.3 0 33 67 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0.3 0 0 100 0 0 0
ok 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0
rock 0 0 0 0 0.7 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 14 0 0 0 0 0 85 1.7
S.C. 0 0 0 0 7.9 0 0 0 0 0 0 92 0 0 0 1.8 0 0 0 0 34 1.8 0 62 0 0 0 0 17 0 0 0 0 0 0 83

one two three four five six B.C. good M.C ok rock S.C. one two three four five six B.C. good M.C ok rock S.C. one two three four five six B.C.goodM.C ok rockS.C.
one 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 97 0 0 0 0 0 0 0 0 0 3.1 0
two 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
three 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 99 0 0.5 0 0 0 0 0 0 0
four 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 69 31 0 0 0 0 0 0 0
five 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 36 0 0 0 0 100 0 0 0 0 0 0 0
six 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 67 0 0 33 0 0 0
B.C. 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0
good 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 1.1 0 99 0 0 0 0
M.C 0 0 0 0 0 0 0 22 59 0 0 19 0 0 0 0 0 0 0 0 99 0 0 1.2 0 0 0 0 0 0 0 76 15 0 0 9.4
ok 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0
rock 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 1.7 0 0 0 0 0 98 0
S.C. 0 0 0 0 12 0 0 0 0 0 0 88 0 0 0 0 0 0 0 0 5.3 3.3 0 91 0 0 0 0 22 0 0 0 0 0 0 78

KNN

SVM

LR

Fig. 11 Confusion matrixes of the test results for gesture recognition (%): KNN in Row 1, SVM in Row 2, and LR in Row 3.

Fig. 12 Average accuracies of gesture recognition.

be summarized as follows: (1) Accuracy is highest
using DSI, which indicates that increasing dimensions
of features makes it easier to distinguish the gestures;
(2) Different sensor information has little effect with the
SVM algorithm; and (3) The KNN algorithm combined
with DSI is the optimal method for gesture recognition.

(2) un-SLA
Figure 13 shows the clustering results for gesture

recognition using the KMC algorithm. The clustering
data is 7200 (N4 D 7200) samples (equal to the
number of test samples used for SLAs). Looking at
the subplots on the left of Fig. 13, for the DSI all the

silhouette coefficients are positive and most are greater
than 0.7, whereas for PSI and OSI a few silhouette
coefficients are negative, although most are greater than
0.6. Looking at the cluster scatter map on the right
of the figure, the clustering effect is shown visually
by reducing dimensions with the PCA method. The
number of errors for DSI, PSI, and OSI are 228, 548,
and 1027, respectively, out of the total of 7200 samples,
corresponding to accuracies of 96.83%, 92.38%, and
85.73%. This indicates that DSI is superior to both PSI
and OSI.

4.3 Object recognition: Shape, size, and weight

4.3.1 Grab objects
Figure 14 shows how the SRH grabs objects with
different shapes, sizes, and weights. In Row 1, there are
four different shapes all with the same size of 40 mm:
sphere, regular tetrahedron, cuboid, and cylinder. In
Row 2, there are four spheres of different diameters:
60 mm, 50 mm, 40 mm, and 30 mm. In Row 3, there are
three cylindrically shaped cups: the first cup is empty
with a weight of 38 g, the second cup is filled with green
beans with a weight of 138 g, and the last cup is filled
with metal components with a weight of 238 g. The
SRH adopts the same gesture of a big crawl to grab
every one of the objects.
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Fig. 13 Clustering results for gesture recognition by using KMC algorithm: DSI in Row 1, PSI in Row 2, and OSI in Row 3,
and the left figures represent silhouette plots and the right figures represent cluster scattep maps.

Shapes Sphere Regular Tetrahedron Cuboid Cylinder

Sphere-60mm Sphere-50mm Sphere-40mm Sphere-30mmSphere:60-30mm

Weight-38g Weight-138g Weight-238g

Weight:38-138-238g

Fig. 14 SRH grabs different objects: different shapes in Row 1, different sizes in Row 2, and different weights in Row 3.

4.3.2 Recognition results

(1) SLAs
(i) Shape. The training data for object shape

recognition is given in Fig. 15. The parameters for SLAs
are shown in Table 2.

The test experiments for every shape are repeated
three times, 200 samples are recorded each time, and
the best group data is selected to predict and evaluate
the models of the SLAs, so that the total number of test
samples is 800 (N3 D 200 � 4 D 800).

Figure 16 shows the confusion matrixes of the
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Fig. 15 Training data for object shape recognition (ten
times), where 1–5 on the x-axis are corresponding to the PSI
for thumb, index finger, middle finger, ring finger, and little
finger, and 6–10 are corresponding to the OSI for five fingers
respectively, the y-axis is the normalized values of PSI and
OSI for every finger.

test results for object shape recognition. The results
reveal that the regular tetrahedron (R.T.) and sphere
are perfectly recognized with accuracies of 100
percent. The reason for this is that the shapes of
regular tetrahedron and sphere differ greatly from
each other. Conversely, the cuboid shape is similar
to a cylinder, so these are confused frequently. The
accuracy is 2.75 percent for cuboid shape recognition
using the LR algorithm with PSI. The accuracy is
46.25 percent for cylinder shape recognition using
the KNN algorithm with OSI, and 45.75 percent for
cylinder shape recognition using the SVM algorithm
with OSI. Considering the sensor information, the best
recognition accuracy is achieved with DSI; considering
the ML algorithms, the KNN algorithm is the most

accurate.
The highest average accuracy is 98.06 percent using

the KNN algorithm with DSI. The average accuracy for
DSI is 97.40 percent, for OSI is 87.21 percent, and for
PSI is 83.71 percent. The average accuracy for the KNN
algorithm is 90.81, for the SVM algorithm is 90.56
percent, and for the LR algorithm is 86.94 percent.

(ii) Size. The training data for object size recognition
is given in Fig. 17. The parameters for the SLAs are
shown in Table 2.

The test experiments are repeated three times for
every size, 200 samples are recorded each time, and
the best group data is selected to predict and evaluate
the models of the SLAs, such that the total number of
application samples is 800 (N3 D 200 � 4 D 800).

Figure 18 shows the confusion matrixes of the test

Fig. 17 Training data for object size recognition (ten times),
where 1–5 on the x-axis are corresponding to the PSI for
thumb, index finger, middle finger, ring finger, and little
finger, and 6–10 are corresponding to the OSI for five fingers
respectively, the y-axis is the normalized values of PSI and
OSI for every finger.

cuboid cylinder R.T. sphere cuboid cylinder R.T. sphere cuboid cylinder R.T. sphere

cuboid 99.75 0.25 0 0 54.5 45.5 0 0 100 0 0 0
cylinder 7.5 92.5 0 0 1.25 98.75 0 0 53.75 46.25 0 0
R.T. 0 0 100 0 0 0 98 2 0 0 100 0
sphere 0 0 0 100 0 0 0 100 0 0 0 100

cuboid cylinder R.T. sphere cuboid cylinder R.T. sphere cuboid cylinder R.T. sphere

cuboid 100 0 0 0 54.75 45.25 0 0 100 0 0 0

cylinder 10.5 89.5 0 0 1.25 98.75 0 0 54.25 45.75 0 0

R.T. 0 0 100 0 0 0 98 2 0 0 100 0

sphere 0 0 0 100 0 0 0 100 0 0 0 100

cuboid cylinder R.T. sphere cuboid cylinder R.T. sphere cuboid cylinder R.T. sphere

cuboid 87.5 12.5 0 0 2.75 97.25 0 0 94.75 5.25 0 0

cylinder 0.5 99.5 0 0 0.25 99.75 0 0 40.25 59.75 0 0

R.T. 0 0 100 0 0 0.75 99.3 0 0 0 100 0

sphere 0 0 0 100 0 0 0 100 0 0 0 100

DSI PSI OSI

KNN

SVM

LR

Fig. 16 Confusion matrixes of the test results of object shape recognition (%): KNN in Row 1, SVM in Row 2, and LR in Row 3.
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30 mm 40 mm 50 mm 60 mm 30 mm 40 mm 50 mm 60 mm 30 mm 40 mm 50 mm 60 mm
30 mm 87.5 0 12.5 0 87.25 0 12.75 0 90 0 10 0
40 mm 0 99.5 0.5 0 0 100 0 0 0 94 0 6
50 mm 2.75 3.5 93.75 0 0 20.5 79.5 0 35.75 2.75 58 3.5
60 mm 0 0 0 100 0 0 0 100 0 0 0 100

30 mm 40 mm 50 mm 60 mm 30 mm 40 mm 50 mm 60 mm 30 mm 40 mm 50 mm 60 mm

30 mm 87.25 0 12.75 0 87.25 0 12.75 0 90 0 10 0

40 mm 0 99.5 0.5 0 0 100 0 0 0 94.25 0 5.75

50 mm 2.75 3.5 93.75 0 0 20.25 79.75 0 37 3.5 59 0.5

60 mm 0 0 0 100 0 0 0 100 0 0 0 100

30 mm 40 mm 50 mm 60 mm 30 mm 40 mm 50 mm 60 mm 30 mm 40 mm 50 mm 60 mm

30 mm 85 0 15 0 93.75 0 6.25 0 80.25 0 19.75 0

40 mm 0 100 0 0 0 100 0 0 0 83.25 0 16.75

50 mm 0.25 27.5 49.25 23 0 35.25 64.75 0 19.75 32 0.5 47.75

60 mm 0 0 0 100 0 0 0 100 0 0 0 100

PSIDSI

LR

OSI

KNN

SVM

Fig. 18 Confusion matrixes of the test results of object size recognition (%): KNN in Row 1, SVM in Row 2, and LR in Row 3.

results for object size recognition. Using DSI achieves
superior object size recognition than PSI or OSI.
Considering the different ML algorithms, the KNN
algorithm is superior to the SVM and LR algorithms.
The accuracies of recognizing a sphere size of 50 mm
are generally lower than for the other sizes, perhaps
because that this size is in the middle, and easy to
confuse with the neighboring 40 mm and 60 mm sizes.

The highest average accuracy is 95.19 percent
achieved using the KNN algorithm with DSI, while the
worst average accuracy is 66.0 percent using the LR
algorithm with OSI. The average accuracy for DSI is the
highest at 91.29 percent, the OSI is the worst at 79.10
percent. The average accuracy for the SVM algorithm
is 90.90 percent, for the KNN is 90.79 percent, and for
the LR algorithm is lowest at 79.73 percent.

(iii) Weight. The training data for object weight
recognition is given in Fig. 19. The parameters for the
SLAs are shown in Table 2.

The test experiments for each weight are repeated
three times, 200 samples are recorded each time, and
the best group data is selected to predict and evaluate
the models of the SLAs, such that the total number of
test samples is 600 (N3 D 200 � 3 D 600).

Figure 20 shows the confusion matrixes of the test
results of object weight recognition. All the object
weights are identified clearly regardless of which
SLAs and sensor information are used. The average
accuracies are therefore 100 percent.

(2) un-SLA
(i) Shape. Figure 21 shows the clustering results for

object shape recognition using the KMC algorithm with
DSI. The silhouette plot indicates that all the silhouette
coefficients are positive and that almost of them are
greater than 0.7. The cluster scatter map shows that the

Fig. 19 Training data for object weight recognition (ten
times), where 1–5 on the x-axis are corresponding to the PSI
for thumb, index finger, middle finger, ring finger, and little
finger, and 6–10 are corresponding to the OSI for five fingers
respectively, the y-axis is the normalized values of PSI and
OSI for every finger.

38 g 138 g 238 g 38 g 138 g 238 g 38 g 138 g 238 g

38 g 100 0 0 100 0 0 100 0 0

138 g 0 100 0 0 100 0 0 100 0

238 g 0 0 100 0 0 100 0 0 100

38 g 138 g 238 g 38 g 138 g 238 g 38 g 138 g 238 g

38 g 100 0 0 100 0 0 100 0 0

138 g 0 100 0 0 100 0 0 100 0

238 g 0 0 100 0 0 100 0 0 100

38 g 138 g 238 g 38 g 138 g 238 g 38 g 138 g 238 g

38 g 100 0 0 100 0 0 100 0 0

138 g 0 100 0 0 100 0 0 100 0

238 g 0 0 100 0 0 100 0 0 100

DSI PSI OSI

KNN

SVM

LR

Fig. 20 Confusion matrixes of the test results of object
weight recognition (%): KNN in Row 1, SVM in Row 2, and
LR in Row 3.

object shapes are clearly identified with no errors.
(ii) Size. Figure 22 shows that the clustering results

for object size recognition. The silhouette plot indicates
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(a) Silhouette plot

(b) Cluster scattep map

Fig. 21 Clustering results for object shape recognition.

(a) Silhouette plot

(b) Cluster scattep map

Fig. 22 Clustering results for object size recognition.

that all the silhouette coefficients are positive and
that most of them are greater than 0.8. The cluster
scatter map shows that the object shapes are able to be
identified correctly in almost all cases, and the accuracy
reaches 99.375 percent with five errors out of the total
of 800 recognitions.

(iii) Weight. Figure 23 shows the clustering results of
weight recognition. The silhouette coefficients are all
near to 1, meaning that the effect of weight recognition
is excellent. The cluster scatter map also shows that the
different weights are identified clearly with no errors.

(a) Silhouette plot

(b) Cluster scattep map

Fig. 23 Clustering results for object weight recognition.

4.4 Summary

Comparing the experimental results of recognizing
gesture, object shape, size, and weight using KNN,
SVM, LR, and KCM with DSI, PSI, and OSI, several
conclusions can be drawn: (1) The IP of the SRH is
able to perform gesture recognition, and object shape,
size, and weight recognitions using PSI and OSI, but the
use of DSI results in superior recognition accuracy; (2)
The SLAs and KMC algorithms are able to perform IP,
but the KNN algorithm is superior to the others in most
cases, and (3) The ideal combination for information
perception is the KNN algorithm with DSI.

5 Conclusion

The OFCS is designed and embedded in the soft
finger to provide curvature sensing. Combining OSI
with PSI can provide dual-modal sensor information
to perform information perception for an SRH. Three
SLAs, namely the KNN, SVM, and LR algorithms,
and one un-SLA, namely KMC, were excuted with
dual-modal sensor information to recognize gestures
made by an SRH and identify object shape, size, and
weight. The experimental results demonstrate that the
KNN algorithm with DSI is the best combination for
information perception.

Current SRHs often have a single modal sensor,
and lack of learning ability. Therefore, this research
into ML-based multi-modal information perception
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for SRHs presents a novel idea for SRHs and
soft robots. Although the sensors are somewhat
crude, and classical ML algorithms are adopted, the
recognition effect is clear. In the future, to study in
more depth the perception of SRHs for performing
dexterous manipulation, we will conduct the following
exploratory researches:

(1) Design a nanometer material-based pressure
contact sensor for detecting positive pressure in the
palm and three-dimensional force in the tip of a
soft finger, which can increase multi-modal sensor
information for tactile perception;

(2) Introduce a neural network-based ML algorithm
to perform pattern recognition for tactile perception;
and

(3) Develop a real-time tactile perception system
in the FPGA-based system on chip for practical
applications.

Appendix
A Training Data for Pattern Recognition
A.1 Gesture recognition
As shown in Fig. 10, the training data has 5-d PSI (1–5
on the x-axis) and 5-d OSI (6–10 on the x-axis), thus the
number of dimensions of features isM D 10. The data are
normalized data, with the value ranging from 0 to 1 on the
y-axis.

The experiments for every gesture are repeated five
times and more than 200 sampling values are recorded
each time. The average values of the odd number series
and even number series are calculated as the samples of the
dataset. Therefore, there are 5 � 2 � 12 D 120 samples.
The number of samples in the training dataset is N1 D
120 � 75% D 90; in the validation dataset it is N2 D
120 � 25% D 30.

A.2 Object shape recognition

There are 5 � 2 � 4 D 40 samples in the training data for
object shape recognition (N1 D 40 � 75% D 30, N2 D
40 � 25% D 10). Figure 15 shows the training data for
object shape recognition.

A.3 Object size recognition

There are 40 samples in the training data for object size
recognition (N1 D 30, N2 D 10). Figure 17 shows the
training data for object size recognition.

A.4 Object weight recognition

There are 30 samples in the training data for object weight
recognition (N1 D 20, N2 D 10). Figure 19 shows the

training data for object weight recognition.

B Model Parameters for SLAs

The model parameters for the SLAs for different pattern
recognitions are given in Table 2.
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