TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 02/12 pp180-191
DOI: 10.26599/TST.2018.9010118
Volume 25, Number 2, April 2020

Personalized Real-Time Movie Recommendation System:
Practical Prototype and Evaluation

Jiang Zhang, Yufeng Wang*, Zhiyuan Yuan, and Qun Jin

Abstract: With the eruption of big data, practical recommendation schemes are now very important in various
fields, including e-commerce, social networks, and a number of web-based services. Nowadays, there exist
many personalized movie recommendation schemes utilizing publicly available movie datasets (e.g., MovieLens
and Netflix), and returning improved performance metrics (e.g., Root-Mean-Square Error (RMSE)). However, two
fundamental issues faced by movie recommendation systems are still neglected: first, scalability, and second,
practical usage feedback and verification based on real implementation. In particular, Collaborative Filtering (CF)
is one of the major prevailing techniques for implementing recommendation systems. However, traditional CF
schemes suffer from a time complexity problem, which makes them bad candidates for real-world recommendation
systems. In this paper, we address these two issues. Firstly, a simple but high-efficient recommendation algorithm
is proposed, which exploits users’ profile attributes to partition them into several clusters. For each cluster, a
virtual opinion leader is conceived to represent the whole cluster, such that the dimension of the original user-
item matrix can be significantly reduced, then a Weighted Slope One-VU method is designed and applied to
the virtual opinion leader-item matrix to obtain the recommendation results. Compared to traditional clustering-
based CF recommendation schemes, our method can significantly reduce the time complexity, while achieving
comparable recommendation performance. Furthermore, we have constructed a real personalized web-based
movie recommendation system, MovieWatch, opened it to the public, collected user feedback on recommendations,

and evaluated the feasibility and accuracy of our system based on this real-world data.

Key words: movie recommendation system; collaborative filtering; real-time; virtual opinion leader; data mining

1 Introduction

With the growth of big data generation across various
fields, information overload is becoming a critical

e Jiang Zhang, Yufeng Wang, and Zhiyuan Yuan are with the
Nanjing University of Posts and Telecommunications (NUPT),
Nanjing 210003, China. E-mail: 1217012225 @njupt.edu.cn;
wfwang @njupt.edu.cn; 2361660127 @qq.com.

eQun Jin is with the Networked Information Systems
Laboratory, Department of Human Informatics and Cognitive
Sciences, Faculty of Human Sciences, Waseda University,
Tokyo 163-8001, Japan. E-mail: jipn@waseda.jp.

* To whom correspondence should be addressed.
Manuscript received: 2018-06-03; revised:
accepted: 2018-09-01

2018-08-23;

problem. To address this, a number of Recommendation
Systems (RS) have been developed to help consumers
find items of interest and decide between products
among huge databases. These systems have been
applied to various products and services on the internet,
including film and video, music, social networking,
reading, news, and personalized e-mail and advertising.
Three of the domains in which RSs are used most
frequently are movies, documents, and product reviews,
mainly because of the ease in accessing test datal!=.
For instance, in the movie domain, MovieLens and
Netflix are two online datasets of movie ratings. The
movie industry is a prodigious producer of video.
Already by the year 2000, it was reported that more

@ The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Jiang Zhang et al.: Personalized Real-Time Movie Recommendation System: Practical Prototype and Evaluation 181

than 4500 movies are released every year around the
world, spanning approximately 9000 hours of video.
With such a massive amount of choice, there is great
demand for technologies that enable viewers to access
movies of interest conveniently and therefore facilitate
movie distribution.

1.1 Research motivation

Two fundamental issues in real movie recommendation
systems are often neglected: scalability and
practical usage feedback/verification based on real
implementation. Collaborative Filtering (CF) is one
of the most widely-used algorithms for making rating
predictions within an RS. It is based on the core
assumption that users who have expressed similar
interests in the past will share common interests in the
future. Therefore, the idea of collaborative filtering is
to identify users in a community that share appreciation
for similar things. Intuitively, if two users have rated the
same or almost the same items, then they have similar
tastes and can therefore be assigned to a group or close
neighborhood. A user can receive recommendations
for those items that he/she has not rated before, but
that have been already positively rated by users in
his/her neighborhood. As the number of users and
items grows, CF-based recommendation systems
need more resources to process information and form
recommendations. The majority of these resources
are consumed in determining users with similar tastes
and items with similar descriptions. Therefore, CF
algorithms face a scalability problem, which can
become an important factor for a recommendation
system. If the problem is not solved, it is difficult to
produce real-time recommendations.

Most existing movie recommendation schemes have
worked on improving performance metrics, such as
Root-Mean-Square Error (RMSE), utilizing publicly
available movie datasets (e.g., MovieLens). The popular
methodology is to adopt the so-called 8:2 cross
validation, i.e., 80% of the MovielLens data are used as a
training set, while the other 20% of data are used for test
purposes. However, it is reported that roughly 80% of
the publications in this field describe problems or future
work that focus on the implementation or verification
of systems®!. This result highlights the importance of
these areas in recommendation system development,
and shows a need to collect real user feedbacks on
movie recommendation through a practically deployed
movie recommendation system, and use this real-life

data to compare with public dataset-driven research.
1.2 Main contribution

This paper’s primary contributions are twofold.

e First, a scalable CF algorithm called Weighted
KM-Slope-VU is proposed, which significantly reduces
time complexity and is suitable for a real-time
recommendation system. Specifically, by exploiting
users’ profile attributes, our scheme first adopts the
K-means clustering algorithm to partition users into
several clusters. Each cluster then produces a virtual
opinion leader (i.e., a Virtual User (VU)) to represent
all other users in the cluster for the evaluation of
the items. The Weighted KM-Slope-VU is designed
and applied in place of the original user rating data,
to reduce the dimensions of the user-item matrix
and make a prediction on the basis of the VU-
item matrix, which can significantly reduce the time
complexity. The method is innovative and efficient;
experiments on the MovieLens dataset illustrate that our
scheme is comparable to existing work (including two
popular Matrix Factorization (MF)-based RS methods,
Singular-Value Decomposition (SVD) and SVD++).

e Second, we have constructed a working
personalized web-based movie recommendation system
called MovieWatch (http://121.42.174.147:8080/
Movie/login.action), opened to the public. We collected
preliminary feedback from registered users of this live
system and used this real-life data as a basis to evaluate
the feasibility and accuracy of our system.

The rest of this paper is organized as follows: Section
2 provides a literature survey of previous related works;
in Section 3, we present the Slope One algorithm
and the newly proposed algorithm—Weighted KM-
Slope-VU—in detail, and illustrate its performance
through experiments; Section 4 specifies the deployed
MovieWatch system, and discusses the experimental
results; finally, Section 5 briefly concludes the paper
and discusses avenues for future research.

2 Related Work

As shown in Fig. 1, existing recommendation
algorithms can be divided into four kinds: content-
based, knowledge-based, CF, and hybrid. Among these
recommendation algorithms, CF is the most popular
technique, based on the core assumption that users who
have expressed similar interests in the past will share
common interests in the future’™. CF methods can be
model-based or memory-based.

182

Content-based

Tsinghua Science and Technology, April 2020, 25(2): 180-191

algorithm
User-based
Knowledge- CF
based algorithm
Recommendation Memory-based
algorithm CF
Collaborative
filtering Item-based
algorithm CF
Model-based
Hybrid CF
algorithm

Fig.1 Categories of existing recommendation algorithms.

Model-based algorithms first construct a model to
represent user behavior and, therefore, to predict their
ratings. The parameters of the model are estimated
using the data from the rating matrix. There are
many model-based approaches: Principal Component
Analysis (PCA) and SVD are based on algebral®7!,
Bayes methods are based on statistics!®!. Matrix
factorization for recommender systems has been a
special focus of a voluminous amount of research,
especially since the Netflix Prize competition was
announced. This methodology transforms both items
and users to the same latent factor space, thus making
them directly comparable. The latent space tries to
explain ratings by characterizing both products and
users on factors automatically inferred from user
feedback. For example, when the products are movies,
factors might measure obvious dimensions such as
comedy vs. drama, amount of action, or orientation to
children; less well defined dimensions such as depth of
character development or quirkiness; or completely un-
interpretable dimensions!®~!!!. A prevalent assumption
in constructing matrix approximations is that the
partially observed matrix is low-rank. LLORMA[?!
significantly relaxes this low-rank assumption; instead
of assuming that the user-item matrix M can be
globally approximated by a low-rank matrix, this
method assumes that the matrix M behaves as a
low-rank matrix in the vicinity of certain row-
column combinations. Therefore several low-rank
approximations of M are constructed, each being
accurate in a particular region of the matrix. Then
a smoothed convex combination of those low-rank
matrices is provided to finally approximate the observed
matrix as a weighted sum of low-rank matrices. In
brief, unlike standard low-rank matrix approximation
techniques achieving consistency in the limit of large
data (convergence to the data generating process) by

assuming that M is low-rank, this local method achieves
consistency without the low-rank assumption.
Memory-based approaches can be categorized as
user-based or item-based. User-based collaborative
filtering algorithms generate recommendations based
on the preference of similar users!!* !4, In contrast to
user-based CF, item-based CF approaches recommend
items on the basis of information about other items that
a user has previously rated!>:!°!
items for the given user are ranked by the similarities
between each candidate item and other items that
the user has rated. Since the rating data of each
virtual user emerging from a cluster of similar users
is used to predict user ratings, our proposed KM-
Slope-VU method belongs to the class of user-
based CF methods. Reference [17] designs a movie
recommendation system using data clustering and
computational intelligence, designing an algorithm
featuring K-means clustering and cuckoo search
optimization, and evaluating the recommendation
performance on the MovieLens dataset. Reference
[18] develops a hybrid clustering model to improve
the movie prediction accuracy and make more
pertinent recommendations to users. These authors
used a combination of K-means
Optimization (PSO) to find initial centers, which is
much more accurate and precise than assigning centers
randomly. These centers are then used by a fuzzy C-
means for optimization to form the final clusters, which
are directly used for the result calculation process. In
order to avoid the premature convergence of K-means
clustering, Ref. [19] considers a genetic algorithm as
the optimization tool for evolving initial seeds in the
first step of the K-means process to identify optimal
partitions. Experimental results illustrate that their
approach is capable of providing more reliable movie
recommendations in comparison with the existing

. The recommended

Particle Swarm

Jiang Zhang et al.: Personalized Real-Time Movie Recommendation System: Practical Prototype and Evaluation 183

cluster-based CF methods.

However, these recommendation schemes have two
common problems. First, based on a user-item rating
matrix, K-means is directly employed to find all
like-minded users, called neighbors. However, as the
number of users and items increases, the dimension
of the user-item rating matrix increases quickly, which
slows the operation of the clustering algorithm. Second,
considering that the sensitivity selection of initial seeds
in K-means could influence the final output and easily
fall into local optimum, in order to find the nearest
neighbor of the user and improve prediction accuracy
in RS, K-means often requires a combination of other
heavy-computing intelligence algorithms, such as a
genetic algorithm like cuckoo search optimization, to
form a hybrid clustering model, which also increases
the time complexity.

To enable recommendations, it is
imperative to solve the scalability problem in a
practical movie recommendation system. In response,
we propose a simple and scalable KM-Slope-VU
recommendation algorithm, with three main features.
First, instead of user ratings on items (i.e., user-item
matrix), K-means is employed to find several groups
of similar users based on their typical profile attributes
(age, occupation, etc.), to ensure that the time overhead
of clustering does not increase as the number of
items increases. Second, each cluster produces a
virtual opinion leader (i.e., virtual user) to represent
all of the real users in the corresponding cluster, by
calculating average rating of the items. Finally, the
formed virtual user-item rating matrix is fed into the
Weighted Slope One-VU, an improved and lightweight
recommendation algorithm based on Slope One, to
generate the recommendation results?’!. Compared
with the raw user-item matrix, the dimensions of
the virtual opinion leader-item matrix are greatly
reduced. All of the features above significantly
accelerate the classification model training and ensure
recommendations can be delivered in real time.

real-time

3 Proposed Recommendation Algorithm

Intuitively, we can assume that people who share the
same gender, similar age, similar occupations, etc., are
likely to share similar tastes in movies, and assign
similar ratings to movies. Based on this assumption,
we designed a CF algorithm, KM-Slope-VU, in which,
according to users’ profile attributes, K-means is
utilized to partition users into several clusters, and then

each cluster produces an opinion leader by calculating
the average rating of the items. We also intuit that
the historical data of user evaluations of items are
naturally correlated to their tastes, and therefore should
be utilized to cluster users. Specifically, for each cluster,
a virtual opinion leader acts on behalf of other users in
the same cluster to rate all items, and then all of virtual
opinion leader’s ratings are gathered to approximate the
real user’s rating data. That is, the original user-item
rating matrix is replaced with a reduced virtual opinion
leader-item rating matrix, meaning that the user-item
matrix is compressed and the computational complexity
is reduced. Note that the key idea behind the traditional
Slope One algorithm is to predict a user’s rating for
an item based on the score differences between pairs
of items. Following this idea, the proposed Weighted
Slope One-VU works on the intuitive principle of a
popularity differential between items for virtual users
in a pairwise fashion, i.e., determines hows much more
liked one item is compared to another. One way to
measure this differential is to simply subtract the virtual
user’s average rating of the two items. In turn, this
difference can be used to predict real users’ ratings of
one of those items, given their rating of the other.

In the training phase, we first use K-means to find
user neighbors based on profile characteristics, such as
age, sex, and profession. Secondly, the average rating
of each item is calculated under the same cluster to
form a virtual user who represents all users in this
cluster. For example, if there are users and movies,
that is, the original user-item rating matrix is Rz,
and the K-means outputs K clusters, implying that there
are K virtual users, then the virtual user-item rating
matrix is uvRyx,, where uv represents virtual users.
Finally, this virtual user-item rating matrix uvRpx,
is fed into our proposed Weighted Slope One-VU
algorithm to infer the recommendation results. In the
recommendation phase, our system makes a prediction
for users according to the collected user history data.

We use the following notations to describe our
scheme. The number of elements in a set S is card(S);
u; represents the rating given by user u to item i; vu;
denotes the rating given by virtual user vu to item 7.
The subset consisting of all items rated by the user u is
S'(u), and P, ; represents the predicted rating of user u
on item i.

3.1 Basic Slope One based on virtual user (Slope
One-VU)

Given a training set y including a virtual user’s ratings

184

for all items, the ratings of a virtual user vu € S; ;(x)

on items i and j, are vu; and vu;, respectively. The

average deviation of item 7 with respect to item j (i.e.,

the deviation in between the ratings of the virtual user

vu on the pair of items i and ;) is given as Eq. (1).

ZquS,‘J 0 (vu; — Vuj))
card(S;,; (x))

Considering that dev; ; + u; is a prediction for u;
given u;, a reasonable predictor can be the average of
all such predictions, as shown as Eq. (2):

1
= — (dev;,j + uj) 2)
card(R;) jEZRi / /
where R; = {j|j € S(u),j # i,card(S; ;(x)) > 0} is
the set of all relevant items.

To illustrate, consider seven users (A — G) and two
items, as shown in Table 1, with each user having rated
items from 1 to 5 (with an empty value meaning that
the user has not evaluated that item). We suppose that
K-means divides the users into 3 clusters, and each
cluster forms a virtual user by calculating the average
rating of the items to represent all of the users in the
cluster. As shown in Table 2, for example, virtual user
1 gave Item 2 a rating of 4, with the term in parenthesis
(2) representing the number of evaluators (in this case,
users A and F). The real user H has not yet rated Item
2. We observe that the rating of 4 given by virtual user
1 to Item 2 is 1 point higher than the same vu’s rating
of Item 1 (4 — 3 = 1), while the same differential for
virtual users 2 and 3 are —0.5 and 0 points, respectively.
Thus we predict that user H will give Item 2 a rating of
equation.

3.2 Proposed Weighted Slope One-VU

deV,‘,j =

u,i

In the above simple virtual user-based CF methods,

Table 1 Original user-item rating data (users with same
color means they belong to a same cluster).

User Item 1 Item 2 User Item 1 Item 2
A 3 4 E 3 3
B 5 4 F ? 4
C 2 3 G 2 3
D 5 ? H 3 ?

Table 2 Each cluster producing an opinion leader (virtual
user) through calculating the average rating of the items in a
same cluster.

User Item 1 Item 2
Virtual user 1 (A, F) 3(1) 4(2)
Virtual user 2 (B, E) 4(2) 3.5(2)
Virtual user 1 (C, D, G) 3(3) 3(2)
H 3 ?

Tsinghua Science and Technology, April 2020, 25(2): 180-191

each cluster produces a virtual user just by calculating
the average evaluation of the items. The weak point of
this method lies in the fact that the number of ratings is
not taken into consideration. Intuitively, the more times
an item is evaluated by real users, the more the rating
represents the preferences of other users in the same
cluster, and thus the greater the contribution to dev.
Thus, we modify Eq. (1) as follows:

> (vu; — vu;) - min(vu}, vu7)

2 _wes; ; () min(vuf, vuj)

where Vu? denotes the number of times that the real user

3)

deV,-,j =

has evaluated the item i in the cluster represented by
the virtual user vu. Equation (3) implies that the higher
Vu;’ is, the higher the credibility of vu; should be. When
the confidence of vu; and vu; are high, the value of
dev;,; is accurate. Therefore, we use min(vu}, vu7) as
the weight of dev; ;. As shown in Table 2, we could
then predict that user H will give Item 2 a rating of
equation.

3.3 Experiment using real dataset

3.3.1 MovieLens dataset

To verify the performance of our proposal, we
used two real MovieLens datasets: MovieLens
100K and MovieLens 1M; both are collected as
part of the GroupLens Research Project of the
University of Minnesota (and are available online
at https://grouplens.org/datasets/movielens/). The
MovielLens 100K dataset consists of 100000 ratings
(with value-5) from 943 users on 1682 movies, and
the sparse degree of this dataset is 6.30%. Each user
has rated at least 20 movies. The larger MovieLens
1M dataset contains 1000209 anonymous ratings of
approximately 3900 movies made by 6040 MovieLens
users who joined in the year 2000. Both datasets
include user demographics.

3.3.2 [Evaluation metrics

The most common CF evaluation measure for
prediction accuracy is the RMSE, defined as follows:

RMSE = | Z

u,i €TestDataset

(Pu,i - ru,i)z 4

where P, ; and ry; are the predicted and observed
ratings, respectively, for user and item in the test
dataset, and N is the number of elements in the
dataset. The lower the RMSE is, the more accurate the
recommendation engine is at predicting user ratings.

Jiang Zhang et al.: Personalized Real-Time Movie Recommendation System: Practical Prototype and Evaluation 185

3.3.3 Experimental platform

All of our experiments were implemented using Java
and compiled using MyEclipse. We ran the experiments
on a PC with an Intel(R) Core(TM) i15-2450M CPU at a
speed of 2.50 GHz and with 10 GB of RAM.

3.3.4 Experimental results

For MovieLens 100K, the whole dataset is divided
equally into 5 sub-datasets. The first sub-dataset acts
as the test data (represented as ul.test), and the other
sub-datasets are used as the training data (represented
as ul.base). Furthermore, the second sub-dataset is used
as u2.test, and the others u2.base. Similarly, we form
further training and test sets until we reach uS.test
and uS.base. That is, the data sets ul.base and ul.test
through to uS.base and uS.test are 80/20 splits of the
entire MovieLens 100K dataset into training and test
data. Each sub-dataset from ul to u5 has disjoined test
data, adopting the so-called 5-fold cross-validation.

For MovieLens 1M, to illustrate that our proposal is
robust for various ways of splitting the dataset, we adopt
an alternative splitting method. From the whole dataset,
for every consecutive four records, one is randomly
selected into the test dataset and the rest are used as
training data. That is, the ratio of training set to test
set is 3 to 1. Repeating the process five times, we
similarly obtain 5 samples of training datasets and test
datasets, represented by trainl.dat and test1.dat through
to trainS.dat and test5.dat.

In our experiments, in terms of the metrics of
recommendation accuracy and the time complexity,
we compare the typical MF-based recommendation
algorithms SVD and SVD++?!1 with our approach, the
KM-Slope-VU and Weighted KM-Slope-VU.

Figures 2 and 3 illustrate the recommendation
accuracy of KM-Slope-VU, Weighted KM-Slope-VU,
SVD, and SVD++ for MovieLens 100K and MovieLens
IM. We can observe that the average RMSE of our

0.98
0.96

% 0.94+
5 092+
0.90
0.88 . . .
ul u2 u3 ud u5

m KM-Slope-VU mWeighted KM-Slope-VU m SVD

SVD++

Fig. 2 Comparison of recommendation accuracy (using the
dataset of MovieLens 100K).

0.92

0.90 |
H0.88
5 0.86
0.84
0.52 LER : : : :

Trainsetl Trainset2 Trainset3 Trainset4 Trainset5
H KM-Slope-VU m Weighted KM-Slope-VU m SVD © SVD++

Fig. 3 Comparison of recommendation accuracy (using the
dataset of MovieLens 1M).

proposed KM-Slope-VU is 0.95062 and 0.9111 on the
100K and 1M datasets, respectively. Weighted KM-
Slope-VU achieves an average RMSE of 0.946 76 and
0.9081, thus outperforming KM-Slope-VU. The reason
for this is that the basic KM-Slope-VU simply averages
cluster users’ evaluations of items to produce a virtual
user for the cluster, without considering the actual
number of ratings made by real users. Furthermore, the
accuracy of Weighted KM-Slope-VU approximates the
average RMSE of SVD, which averages 0.944 64 and
0.896 18 on the 100K and 1M datasets, respectively,
while it is inferior to the RMSE of SVD++, which
averages 0.9188 and 0.8560. The reason for this is that,
to reduce computation complexity, only one VU in a
cluster is conceived to represent all of the users in the
same cluster, which brings some margin of error and
makes our scheme less accurate than SVD++.

Table 3 illustrates the theoretical analysis of time
complexity for various recommendation methods. The
parameters are explained as follows:

k: number of clusters;

m: number of users;

n: number of items;

t: number of iterations; and

f: number of features/profile attributes of users (such
as sex, age, occupation, etc.).

Ratings matrix Ry xn = Pmuxd X Qdxn»
d is the number of factors used in MF-based
recommendation methods.

Briefly, the time complexity of KM-Slope-VU can
be approximate to O(m + n?), as the terms k, ¢, and

where

Table 3 Comparison of time complexity among different
algorithms.

Algorithm Time complexity
(Weighted) KM-Slope-VU kmt f + knn
SVD tmnd
SVD++ tmnd

186

f can be regarded as small constants relative to m
or n. Similarly the computation complexity of MF-
based schemes like SVD and SVD++ approximate to
O(m - n) (that is, t and d are regarded as the small
constants). Usually, the number of rating users in any
movie rating platform is much larger than the number
of movies (m > n). Therefore, the (Weighted) KM-
Slope-VU performs better than MF in terms of the
performance metrics of time complexity. It should be
emphasized that in the framework of the KM-Slope-VU
recommendation algorithm shown in Fig. 4, K-means
clusters users according to the their profile attributes
rather than the user-item evaluation data, although the
evaluation data of the user directly reflects the user’s
preferences. A more detailed discussion of this will be
presented in Section 4.2.

4 Practically Deployed System and Field
Results

Around 80% of publications in the field describe
problems or future work needed in the implementation
or verification areas!. This highlights the importance
of these areas to RS development. We developed a
live movie recommendation system MovieWatch, in
which users were asked to choose a set of their favorite
movies, and were then given recommendations for
another set of movies (i.e., the “guess what you like”
feature). For each recommendation, we request the
user for feedback on how good she or he feels about
it. At the time of writing this paper, our film site
has 134 registered users and has collected 225 pieces
of feedback. Since our movie recommendation site

Tsinghua Science and Technology, April 2020, 25(2): 180-191

is immature, unlike IMDB, Yahoo Movies, etc., we
cannot accumulate enough user data in such a short
period of time to train our model. Therefore, we utilize
the existing user and movie data in the MovieLens
dataset, which consists of 100000 ratings (1-5) from
943 users on 1682 movies, and proceed as though
the 943 users in this dataset are registered users of
MovieWatch. The demographic information for these
users includes age, gender, and occupation. The movie
genres include action, adventure, animation, comedy,
crime, documentary, and 19 other categories, and
users can retrieve movie resources via an IMDB URL.
Finally, we compare the prediction accuracy between
numerical calculations made on the MovieLens dataset
and the field experiments conducted on the production
MovieWatch environment.

The source code of the MovieWatch prototype system
is publicly available on GitHub. The authors welcome
all interested scholars to use and test the system at
https://github.com/batsqd/Movie.

4.1 MovieWatch personalized movie

recommendation site

4.1.1 User registration and login

All users who wish to search through the movie list
uploaded by the MovieWatch administrator, and set
ratings for movies, are requested first to register with
the site. Note that, to protect user privacy, we do not
require users to provide any sensitive information (age,
gender, identity card number, etc.); only a pseudo-
username and password are required. After successful
registration, users are able to login into the system,

I
U ti Extract
sersratingl [, ser profile K
and profile features |

—1{ Cluster 1 Virtual user 1 KM-Slope-VU
Virtual
Cluster 2 Virtual user 2 user-item

|
|
|
|
rating matrix | |
|
|
|
|
|

— Cluster k Virtual user k
Training phase
Recommended | | |— I
phase -
| | Predict the Ton N items
Collect Rating data Weighted score of the P ms
user data preprocessing | |KM-Slope-UV | unrated r
items to user

Fig. 4 Framework of the proposed recommendation system.

Jiang Zhang et al.: Personalized Real-Time Movie Recommendation System: Practical Prototype and Evaluation 187

search for a movie, and rate any movie according to
their degree of satisfaction.

4.1.2 User rating for movies

After successful login, a user can directly click on a
movie which he/she is interested in to enter the movie
details page shown in Fig. 5. From there the user can
obtain detailed information about the movie, such as
its name, director, main actors, category, release date,
rating, synopsis, and a movie player link. The user can
also search for a specific movie and rate it, based on a
5-star rating system. If the user gives 5 stars to a movie,
this indicates a 100% satisfaction level, and if 1 star is
given, the movie does not meet the user’s expectations.

4.1.3 Recommendation (‘guess what you like”)

Recommender systems generally aim to serve a huge
number of users, sometimes millions at a time, and
there can be very many items to be recommended.
Thus, a practical and useful recommender system
should have fast real-time processing capabilities.
To meet these demands, the MovieWatch system
implemented the simple and scalable recommendation
method—Weighted KM-Slope-UV—that was proposed
in Section 3, providing users with viewing services and
recommendations for movies that the user might like.
The home page of MovieWatch is shown in Fig. 6.
After entering the home page, the user can select
the movie to watch and then rate the movie from 1 to
5 stars. The user can then click “Your Taste” to view

O'Donnell Barrymore

Do you like : »

e Movie : Mad Love| i
e Director :
® Actors :
e Genre : drama romance
e Language :
e Release date : 1995-01-01
e District :
e Link : http://us.imdb.com/M/title-exact?Mad%20Love%20(1995)
e Playcount : O
e Score : 2.0
*® Synopsis :

Fig. 5 Screenshot of movie details and rating.

Personalized Movie Recommendation System

Fig. 6 Home page of MovieWatch.

the list of movies recommended by the MovieWatch
system. Note that, in its current state, the personalized
recommendation movie site MovieWatch is best suited
to the Google Chrome and Firefox web browsers.

4.1.4 Validation in production environment

We evaluated the accuracy of our algorithm, Weighted-
Slope-UV in the live production environment. So far,
we have attracted 137 registered users and collected
225 pieces of feedback with users’ opinions on the
movies recommended by the MovieWatch system. We
evaluate the effectiveness of our proposed algorithm
based on the actual difference between the prediction
of the algorithm and the real feedback rating data.
Figure 7 shows that the numbers of users who
gave recommended movies a rating from 1-star to 5-
star are 6, 16, 49, 101, and 53, respectively. Note
that MovieWatch only recommends to users movies
with a predicted rating higher than 3 stars (inferred
by our proposed Weight KM-Slope-UV). Therefore,
intuitively, the user satisfaction level of MovieWatch
recommendations is 90.2% (i.e., 203/225). In contrast
to the popular Top-N RS systems, in which the

120

101
100 +

80 r
60 r 49 53

40 +

Number of ratings

20l 16

1 2 3 4 5
Feedback rating range from 1 to 5

Fig. 7 Distribution of feedback ratings.

188

top 5 movies with the highest predicted score
are recommended to each user, for its list of
recommendations, the MovieWatch system randomly
selects 5 movies out of those that have a predicted rating
higher than 3 stars. The reason for random selection
is that, considering that taste is somewhat subjective
and has an intrinsic uncertainty, a fuzzy process can
better incorporate the subjective dispositions of users,
and in turn enhance users’ satisfaction with the movie
recommendations. Furthermore, each time a user clicks
Your Taste, he or she can obtain similar but slightly
different results as recommended candidates. This is
a more user friendly method for a practical movie
recommendation system.

Figure 8 illustrates the prediction errors (in terms
of RMSE) of our proposed KM-Slope-VU and
Weighted KM-Slope-VU, when they are conducted
on the MovielLens dataset (the right two bars),
and the RMSE of Weighted KM-Slope-VU (the left
bar) on user feedback collected from our deployed
MovieWatch system. We can observe that, in a
live production environment, the average RMSE of
Weighted KM-Slope-VU reaches 1.084, slightly worse
than the performance value of 0.946 76 obtained when
conducting Weighted KM-Slope-VU on MovieLens
dataset (using the popular 8:2 cross validation
methodology, as explained above). The reason for this
result is given in the following discussion subsection.

4.2 Discussion

As a matter of fact, almost all of the registered users
of MovieWatch are students of Nanjing University of
Posts and Telecommunications, and most are within
the 18 to 25 age bracket. Figures 9-11 illustrate
the demographic information of the users in the
MovieLens 100K dataset in terms of gender, age,

110

1.084

105

100 -

RMSE

0.95062 0.84676
095

090

0.85
Weighted KM-Slope-VUon KM-Slope-VUon 100K Weight KM-Siope-VUon
line dataset 100K dataset

Fig. 8 Comparison of our scheme using the data collected
by MovieWatch and datasets of MovieLens.

Tsinghua Science and Technology, April 2020, 25(2): 180-191

M Man
M Female

Fig. 9 Gender ratio of users in MovieLens dataset.

66 years old and 1-17 years
above

old

41-65 years

\

18-28 years
29-40 years old
31% 36%

Fig. 10 Age distribution of users in MovieLens dataset.

Writer 5%
Administrator 8%

Technician 3%

rtist 3%
Doctor
1%

Educator
10%

Retired 2%
Entertainment
Programmer 7% 2%
Executive
3%

Healthcare
2%

Lawyer Homemaker

Librarian 1% 1%

Marketing 5%

3%

Fig. 11 Occupational distribution of users in MovieLens
dataset.

and occupation, respectively. Between the registered
users in our MovieWatch system and the users in the
MovieLens datasets, there are significant differences
in age and occupation. To alleviate the bootstrapping
problem that any new movie recommendation system
faces, we mixed MovieLens 100K data with user
feedback data collected online to train the model and
then used that model to predict the rating of registered
users. However, the difference in demographics may
have led to a deviation in prediction accuracy between
the MovieWatch system and the MovielLens dataset.
Moreover, most movies in the MovieLens dataset were

Jiang Zhang et al.: Personalized Real-Time Movie Recommendation System: Practical Prototype and Evaluation 189

produced twenty years ago, and the younger users of
MovieWatch may not be interested in the outdated
movies in the dataset, which might be another reason
for the gap in recommendation accuracy between those
two data environments.

There are two underlying reasons why, instead of
clustering users directly based on the user-item matrix,
our scheme intentionally clusters users according
to their profile attributes. First, the computational
overhead of clustering on users’ profile attributes is
significantly less than that of clustering on the raw
user-item matrix. Second, it is sometimes difficult or
even impossible to conduct clustering using the raw
matrix due to its sparseness. This can be seen in the
example shown as Table 4, in which users 1 and 2 have
no common ratings; it is impossible to infer similarity
between those two users, thus no clustering can take
place. We have run our proposed Weighted KM-Slope-
VU on the MovieLens 100K and 1M datasets using
clustering based on raw matrix and simple user profile
attributes and, as shown in Figs. 12 and 13, respectively,
comparable RMSE:s are achieved.

Finally, in our scheme, Weighted KM-Slope-VU, the
popular K-means algorithm is chosen to cluster users,
for its simplicity and effectiveness. The contingent issue
is how to practically determine the proper number of
clusters, i.e., the value of K. This problem can be
partially solved as follows. Depending on the specific
recommendation system, there typically exist several

Table 4 Illustration of 2 users rating on 7 movies.

Movie Movie Movie Movie Movie Movie Movie

1 2 3 4 5 6 7

User 1 3 3 3 - - - -

User 2 - - - 4 4 4 -
e 0.9573 o 0.958

o

0.955
0.9489

0950, 09479 0.9463 —
A 00ss| 0.943 0.9433
g 0.9428 0.9419

0940}

0935

0930 . . .

ul u2 u3 ud

us
B Weighted KM-Slope-VU based on profile clustering
B Weighted KM-Slope-VU based on ratings clustering
Fig.12 Comparison of the accuracy of KM-Slope-VU based
on user profile and raw rating matrix (MovieLens 100K
dataset).

0.9095

0.9090 0 087 0.9087

09085 | 5082 0.9084
49 03080 9079 -
Z 0075 Lo 0

0.9070

0.9065

0.9060

Trainset1 Trainset2 Trainset3 Trainset4 Trainset5

u Weighted KM-Slope-VU based on profile clustering
¥ Weighted KM-Slope-VU based on ratings clustering

Fig.13 Comparison of the accuracy of KM-Slope-VU based
on user profile and raw rating matrix (MovieLens 1M
dataset).

key latent factors/user profile attributes (sex, age,
occupation, etc.), and each attribute can be further
divided into several categories. For instance, the number
of sex categories is 2, age categories might be 3,
and main occupation categories might be 5. Using
these figures, the total number of categories can be
roughly estimated as 30 (i.e., 2x3x5). As it happens,
in our experiments, setting K to 30 can achieve good
performance.

5 Conclusion and Future Work

In this paper, we developed a novel collaborative
filtering approach called Weighted KM-Slope-VU
for fast and scalable movie recommendations, and
furthermore developed and deployed a personalized
movie recommendation site, MovieWatch, to provide
users with viewing services and collect user feedback
on recommended movies to practically evaluate our
proposed algorithm using real-life data. Specifically, we
adopted K-means to partition users into several clusters,
and then for each cluster conceived a virtual opinion
leader to represent all of the users in that cluster. Then,
instead of processing the original full user-item
rating matrix, a reduced virtual opinion leader-item
matrix is processed by the proposed Weighted Slope
One-VU recommendation algorithm. Experiments
on MovieLens datasets show that our scheme
can achieve performance (measured by RMSE)
comparable with recommendation algorithms based
on matrix factorization, but reduce time complexity
in common scenarios. Furthermore, a practical movie
recommendation system called MovieWatch was
developed, deployed, and opened to the public to
collect user feedback on the movies recommended to
them. Our scheme was then evaluated based on this real

190

feedback by registered users of MovieWatch.

However, in the present work, only one virtual
opinion leader is conceived to represent each whole
cluster. Because this may lead to the loss of valuable
information in the cluster, the prediction accuracy of the
proposed algorithm is slightly lower than that of SVD
and SVD++. Furthermore, due to some outdated movies
and the small number of data samples collected by
our MovieWatch system, the real feedback evaluation
is somewhat higher than the performance obtained on
the MovieLens dataset. For future work, we plan to
improve our recommendation system in the following
two ways: first, make the latest films available for
users instead of having outdated movies in the dataset;
and second, optimize the selection of virtual users to
better represent the entire set of real users in a cluster,
by using for instance fuzzy C-means!*?!, which could
further improve the recommendation accuracy.

References

[1] C. G. Chiru, C. Preda, V. N. Dinu, and M. Macri,
Movie recommender system using the user’s psychological
profile, in IEEE International Conference on Intelligent
Computer Communication and Processing, Cluj-Napoca,
Romania, 2015.

[2] M. N. Jelassi, S. B. Yahia, and E. M. Nguifo,

A personalized recommender system based on users’
information in folksonomies, in Proc. 22nd . Conf.

World Wide Web, Rio de Janeiro, Brazil, 2013.

[3] X. B. Wang, F. J. Luo, C. Y. Sang, J. Zeng, and S.
Hirokawa, Personalized movie recommendation system
based on support vector machine and improved particle
swarm optimization, IEICE Trans. Inf. Syst., vol. E100.D,
no. 2, pp. 285-293, 2017.

[4] H. Li, J. T. Cui, B. Q. Shen, and J. F. Ma, An
intelligent movie recommendation system through group-
level sentiment analysis in microblogs, Neurocomputing,
vol. 210, pp. 164-173, 2016.

[5] L Portugal, P. Alencar, and D. Cowan, The use of
machine learning algorithms in recommender systems: A
systematic review, Expert Syst. Appl., vol. 97, pp. 205-227,
2018.

[6] D. Goldberg, D. A. Nichols, B. M. Oki, and D. Terry,
Using collaborative filtering to weave an information
tapestry, Commun. ACM, vol. 35, no. 12, pp. 61-70, 1992.

[71 B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
Incremental SVD-based algorithms for highly scalable
recommender systems, in Proc. 5" Int. Conf. Computer

and Information Technology, Dhaka, Bangladesh, 2002.
[8] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins,

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

Tsinghua Science and Technology, April 2020, 25(2): 180-191

Eigentaste: A constant time collaborative filtering
algorithm, Information Retrieval, vol. 4, no. 2, pp.
133-151, 2001.

J. S. Breese, D. Heckerman, and C. Kadie, Empirical
analysis of predictive algorithms for collaborative filtering,
in Proc. 14" Conf. Uncertainty in Artificial Intelligence,
Madison, WI, USA, 2013, pp. 43-52.

X.Y. Suand T. M. Khoshgoftaar, A survey of collaborative
filtering techniques. Adv. Artif. Intell., vol. 2009, p. 4,
2009.

Y. Shi, M. Larson, and A. Hanjalic, Collaborative filtering
beyond the user-item matrix: A survey of the state of the
art and future challenges, ACM Comput. Surv., vol. 47, no.
1, pp. 3, 2014.

Y. Koren, Factorization meets the neighborhood: A
multifaceted collaborative filtering model, in Proc. 147
ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, Las Vegas, NV, USA, 2008, pp. 426-434.

J. Lee, S. Kim, G. Lebanon, and Y. Singer, Local low-rank
matrix approximation, in Proc. 30'"* Int. Conf. Machine
Learning, Atlanta, GA, USA, 2013.

J. Herlocker, J. A. Konstan, and J. Riedl, An
empirical analysis of design choices in neighborhood-
based collaborative filtering algorithms,
Retrieval, vol. 5, no. 4, pp. 287-310, 2002.
R. Jin, J. Y. Chai, and L. Si, An automatic weighting

Information

scheme for collaborative filtering, in Proc. 27" Annu.
Int. ACM SIGIR Conf. Research and Development in
Information Retrieval, Sheffield, UK, 2004, pp. 337-344.
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-
based collaborative filtering recommendation algorithms,
in Proc. 10" Int. Conf. World Wide Web, Hong Kong,
China, 2001.

M. Deshpande and G. Karypis, Item-based top-N
recommendation algorithms, ACM Trans. Inf. Syst., vol.
22, no. 1, pp. 143-177, 2004.

R. Katarya and O. P. Verma, An effective collaborative
movie recommender system with cuckoo search, Egypt.
Inf. J., vol. 18, no. 2, pp. 105-112, 2017.

R. Katarya and O. P. Verma, A collaborative recommender
system enhanced with particle swarm optimization
technique, Multimed. Tools Appl., vol. 75, no. 15, pp.
9225-9239, 2016.

Z. Wang, X. Yu, N. Feng, and Z. H. Wang, An
improved collaborative movie recommendation system
using computational intelligence, J. Visual Lang. Comput.,
vol. 25, no. 6, pp. 667-675, 2014.

D. Lemire and A. Maclachlan, Slope one predictors for
online rating-based collaborative filtering, in Proc. 2005
SIAM Int. Conf. Data Mining, Newport Beach, CA, USA,
2005, pp. 21-23.

Jiang Zhang et al.: Personalized Real-Time Movie Recommendation System: Practical Prototype and Evaluation 191

Jiang Zhang a master student of
Nanjing University of Posts and
Telecommunications (NUPT), China.
His research interest is big data-based
recommendation system.

Zhiyuan Yuan received the MS degree
from Nanjing University of Posts and
Telecommunications (NUPT), China in
2018. His research interest is big data-
based recommendation system.

Qun Jin is a full professor at the
Networked Information Systems
{9 Laboratory, = Department of Human
Informatics and Cognitive Sciences,

Faculty of Human Sciences, Waseda
University, Japan. He has been extensively
engaged in research works in the fields of
computer science, information systems,
and social and human informatics. He seeks to exploit the
rich interdependence between theory and practice in his work

%

£ |

X

with interdisciplinary and integrated approaches. His recent
research interests cover human-centric ubiquitous computing,
behavior and cognitive informatics, big data, data quality
assurance and sustainable use, personal analytics and individual
modeling, intelligence computing, blockchain, cyber security,
cyber-enabled applications in healthcare, and computing
for well-being. He is a senior member of ACM, IEEE, and
Information Processing Society of Japan (IPSJ).

Yufeng Wang received the PhD degree
from Beijing University of Posts
and Telecommunications (BUPT),
China. He acts as a full professor
in Nanjing University of Posts and
Telecommunications, China. From March
2008 to April 2011, he acted as an
expert researcher in National Institute of
Information and Communications Technology (NICT), Japan.
His research interests focus on cyber-physical-social systems,
mobile social networks, etc.

