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Propagation History Ranking in Social Networks: A Causality-Based
Approach
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Abstract: Information diffusion is one of the most important issues in social network analysis. Unlike most existing

works, which either rely on network topology or node profiles, this study focuses on the diffusion itself, i.e., the

recorded propagation histories. These histories are the evidence of diffusion and can be used to explain to users

what happened in their networks. However, these histories can quickly grow in size and complexity, limiting their

capacity to be intuitively understood. To reduce this information overload, in this paper we present the problem of

propagation history ranking. The goal is to rank participant edges/nodes by their contribution to the diffusion. We

first discuss and adapt a causal measure, Difference of Causal Effects (DCE), as the ranking criterion. Then, to

avoid the complex calculation of DCE, we propose two integrated ranking strategies by adopting two indicators. One

is responsibility, which captures the necessity aspect of causal effects. We further give an approximate algorithm,

which could guarantee a feasible solution, for this indicator. The other is capability, which captures the sufficiency

aspect of causal effects. Finally, promising experimental results are presented to verify the feasibility of the proposed

ranking strategies.
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1 Introduction

In the digital age, online social networks have become
a key communication platform for millions of internet
users. Every day, huge number of posts (tweets,
messages) are emerging from and disseminating among
online Social Network Sites (SNS)[1]. Usually, users
are eager to make sense of the information propagation
process around them. For example, a user may receive
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the same news from several different followees or
friends. At this time, the user might want to know
why he/she received this news, or what the role was
of each user involved in the propagation. Fortunately,
propagation histories, which record the diffusion
process, are partially provided to users in some online
SNS, such as Sina Weibo (the Chinese counterpart of
Twitter).

Example 1 (Propagation history of a diffusion on
Weibo). Bill Gates posts a message about his speech
on Sina Weibo, and Tom receives this news via
Bob (one of his followees). The trace of the repost
processes, via Alice/Bob, is recorded and illustrated on
Tom’s homepage (Fig. 1a). In addition, the other two
propagation traces are included, i.e., via Alice/Cain and
Delx respectively.

People may then be curious to know something
“hidden” rather than the superficial diffusion process
of the news. For example, does Bob play a key role
in propagating the public speech of Bill Gates to Tom?
What is Alice’s contribution to Tom’s reception of the
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(a) Screenshot of Tom’s homepage on Sina Weibo
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Fig. 1 An illustration of the propagation history in Example 1. (a) Sina Weibo reminds Tom of the three ways to receive this
message (via Alice and Bob, via Alice and Cain, and via Delx); (b) The propagation graph constructed by the propagation
history (top), where every edge stands for a user’s retweet behavior; the underlying network structure (bottom), where every
node stands for a user and some users are tagged for convenience.

news?
Note that only propagation histories, rather than

the underlying network topology, are used to explain
information diffusion in this study. An illustration of
Example 1 is given at the top of Fig. 1b, where
the propagation history is represented as a set of
propagation traces (i.e., ordered edge lists). We can see
that these traces exactly capture users’ repost behaviors
in the dynamic flow of information, regardless of
the underlying network topology. With these recorded
traces, we can intuitively explain this diffusion; e.g.,
Alice tends to be an important person since there are
two propagation traces going through this user.

However, propagation histories can rapidly grow
in size and complexity, making them difficult to
understand intuitively. To reduce this information
overload, in this paper, we present the problem
of propagation history ranking. The goal is to
rank propagation participants (edges/nodes) by their
contribution to the diffusion. As such, we put
forward our solution from the viewpoint of causality[2].
Causality-based reasoning plays a vital role in
various human decision making activities (such as
legal/business decision making) and has long been a hot
topic in philosophy, AI, and areas of cognitive science
research. The kind of method we propose here can draw
a clearer picture of each participant’s contribution to the
information propagation process.

Example 2 (Ranking the propagation history in
Example 1). For convenience, as illustrated in the
top of Fig. 1b, we describe the repost behaviors in a
diffusion as “directed edges”. The propagation history

of this diffusion is then f.A;B/, .A; C /, .D/g, where
.A;B/ represents a propagation trace from A to B , and
similarly for .A; C / and .D/.

To evaluate the contribution of each of the relevant
edges to the diffusion, we show a causal measure:
Difference of Causal Effects (DCE) (we explain
in Section 3 how these scores are computed). For
comparison, we also show a non-causal measure: “out-
degree”. Table 1 lists the results. As an example, we
compare edge B to edge D. Although edge B has
a higher out-degree score, edge B makes a limited
contribution to the diffusion compared to edge D.
Looking at the corresponding propagation history (from
the top of Fig. 1b), we can explain this in two ways.
Firstly, B lies in a branch path (A;B) of the diffusion,
while D lies in a trunk path, where a branch path is
one with a high fan out source node and a trunk path
is one with a low fan out source node. Secondly, D
itself can directly guarantee the diffusion, whileB alone
cannot. These interpretations are captured in the causal
measure DCE generated from the propagation history.
In addition, the propagation history size can become
very large in practice, and it is critical to reduce this
information overload.

Table 1 Different kinds of measures for the diffusion in
Example 1.

Edge
Causal measure Non-causal measure

(DCE) (Out-degree)
A 3/8 5
B 1/8 12
C 1/8 2
D 5/8 2
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Applications. Propagation history ranking aims to
determine the most important or influential edges/nodes
on diffusion paths. This approach has a variety of
applications; without loss of generality, we discuss two
of particular interest.

In online SNS, rumor can disseminate on an
unsurpassed scale and can cause great damage[3, 4]. The
task of identifying the party that is primarily responsible
(such as a rumor-monger or key mediator) for the
damage has attracted considerable interest recently.
Most works[5, 6] identify these parties based on network
properties, such as the network structure and user
profiles. Nevertheless, as most online SNS record the
reposting behavior, i.e., propagation histories, of all the
users involved, legal judgements based on this evidence
are more convincing.

Another interesting application is network
reliability[7, 8]: Given a network where each edge/node
has a probability of failure, we are asked to identify
the edges/nodes that are necessary to guarantee
connectivity. However, in practice, the entire network
structure is not always available, e.g., for security
reasons[9]. The distribution records of gateways[10, 11],
which are another kind of propagation history, might
be examined as a priority in making diagnoses.

Challenges. Generally, the ground truth of many
ranking problems is given by human judgement, such
as the relevance score between a query and a web
page in information retrieval[12]. However, this would
be impractical as a solution to the propagation history
ranking problem, due to the large size and complex
dependencies of propagation histories.

When human judgement is not reliable, an alternative
solution is to use ranking criteria. However, the
selection of criteria has not been investigated to
date. Specifically, certain characteristics of propagation
histories need to be considered to make this selection.
Once the ranking criterion has been chosen, the next
challenge is how to calculate it efficiently; a naive
idea is to make the calculation directly according to its
definition, which is not always efficient. Therefore, for
practical use, we need to consider the trade-off between
accuracy and speed.

Contributions. To the best of our knowledge, this
paper is the first to study the propagation history
ranking problem in SNS. Our main contributions in this
paper are summarized as follows:

(1) We present the propagation history ranking
problem in SNS. We further discuss and adapt DCE as

the ranking criterion.
(2) We propose two integrated ranking strategies (to

avoid the hardness of DCE calculation) by adopting
two indicators, responsibility and capability, to capture
the necessity and sufficiency aspects of causal effects,
respectively.

(3) We give an approximate algorithm for
responsibility calculation in propagation histories,
since this problem is generally NP-hard.

(4) We conduct extensive experiments on real-world
datasets. These experiments not only illustrate the
rationality of the selected ranking criterion DCE but
also demonstrate the feasibility of our ranking strategy.

The rest of the paper is organized as follows. We
present the propagation history ranking problem in
SNS in Section 2. In Section 3, we discuss and
adapt DCE as the ranking criterion. We propose
two integrated ranking strategies by adopting two
indicators (responsibility and capability) in Section 4.
In Section 5, we propose an approximate algorithm
to calculate responsibility. Experimental results are
provided in Section 6. We review the related work in
Section 7. Conclusion and outline for future work are
given in Section 8.

2 Preliminaries and Problem Statement

In this paper, we restrict our discussion to the
information diffusion from one source node to one
target node. Without loss of generality, we consider
edges as propagation participants. Herein we give
a formal definition of propagation history and its
associated ranking problem.

Definition 1 ( Propagation history of a diffusion).
The propagation history of a diffusion records all the
actual propagation trails of an event E from the source S

to the target T , and is usually formalized as

.̊E;S;T /
Dft1; : : : ; tngDf.t11; : : : ; t

1
l1
/; : : : ; .tn1 ; : : : ; t

n
ln
/g;

where each t i is called a trace, constructed by li ordered
edges .t i1; : : : ; t

i
li
/. We drop the subscript .E;S;T / when

there is no ambiguity caused by doing so.
Propagation history ranking. Let ˚ be the

propagation history of a diffusion, and let T be the edge
set of ˚ . The goal is to rank those edges in T by their
contribution to this diffusion.

3 DCE as Ranking Criterion

In this section, we first discuss how to estimate the
importance of a particular edge in a propagation history.
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We then introduce the selected ranking criterion and
finally discuss its rationality and calculation.

Edge importance estimation. The estimation of the
importance of a specific edge to the overall diffusion
mainly concentrates on two effects: the overall effect
if the edge failed, and the overall effect if the edge is
non-failed. Considering the likelihood of a successful
transmission, these two effects can be estimated as
� P.˚x0D true/ is the probability of a successful

information transmission if edge X is intervened to be
failed.
� P.˚xD true/ is the probability of a successful

information transmission if edge X is intervened to be
non-failed.

Note that, subscripts x and x0 stand for interventions
to set edge X to “non-failed” and “failed”,
respectively, in randomized experiments[13]. Therefore,
P.˚x0D true/ and P.˚xD true/ are two causal effect
measures considering how necessary and sufficient the
edge is for the diffusion, respectively. Naturally, we
can consider the above two effects together, inspired by
Ref. [14], as follows.

Definition 2 (DCE). Suppose the propagation
history of a diffusion is ˚ , and X is a participant edge.
The difference of causal effects made by edge X in this
diffusion is defined as the expression:

DCE.X/ D P.˚xD true/ � P.˚x0D true/ (1)

Intuitively, DCE considers both the sufficiency and
necessity of edge X for this diffusion, and this property
is formally stated as follows.

Proposition 1 DCE measures both the necessity
and sufficiency aspects of causal effects.

We theoretically prove this property in Appendix A.
A similar idea is widely adopted in other research areas,
such as network reliability[7] and economics[15].

Example 3 (Example 1 continued). The propagation
history of the diffusion is ˚=ft1; t2; t3g, where
t1=.A;B/, t2=.A; C /, and t3=.D/. In this paper, we
suppose every participant edge in˚ has the same failure
probability of 50%. The P.˚x0D true/, P.˚xD true/,
and DCE values of these edges are shown in Table 2 (in
the later of this section, we explain how these values are

Table 2 DCE values of all participant edges in Example 1.
Edge P.˚x0Dtrue/ P.˚xDtrue/ DCE

A 1/2 7/8 3/8
B 5/8 3/4 1/8
C 5/8 3/4 1/8
D 3/8 1 5/8

obtained).
For the comparison of P.˚x0D true/ values, let us

consider edgeA and edgeB . Intuitively, edgeA lies in a
trunk path, while edgeB lies in a branch path. If edgeB
wants to enable the diffusion, edge A is indispensable,
i.e., A is a necessary condition for B to enable the
diffusion. However, B is not a necessary condition for
A, because of the existence of edge C . Therefore, the
removal of edge A will have a greater negative impact
on information transmission than the removal of B (the
difference in their P.˚x0D true/ values is 0:125).

For the comparison of P.˚xD true/ values, let us
consider edge A and edge D. From the sufficiency
aspect of causal effects, edge D makes a greater
contribution than edge A (the difference in their
P.˚xD true/ values is 0:125). Intuitively, this is
because D by itself can guarantee the diffusion, while
A alone cannot.

Because DCE considers causal effects from two
aspects, higher DCE values equate to more important
edges. We compare edge A with edgeD as an example.
Compared to edge A, edge D has a higher DCE value
for two reasons. On one hand, the occurrence of D
has a higher probability of guaranteeing a successful
information transmission than the occurrence of A (the
difference in theirP.˚xD true/ values is 0:125). On the
other hand, the absence of D has a higher probability
of leading to an unsuccessful transmission than the
absence of A (the difference in their P.˚x0D true/
values is 0:125).

Rationality of DCE. Choosing DCE as the
ranking criterion has several advantages. Firstly,
DCE adopts the concept of causality rather than
probability. Probabilistic measures arise from
subjective observations, reflecting what we know
or believe about the world, whereas causal measures
describe objective physical constraints in the world,
revealing more stable relationships[14]. Due to this
stability, people prefer to encode knowledge in
causal rather than probabilistic structures. In addition,
causality is inherently encoded in propagation histories,
which record the entire diffusion process[16].

Secondly, DCE is a fine-grained measure which
assesses the likelihood of causal effects. This is
important because, on the one hand, social networks
are large-scale and have complex connection structures;
on the other hand, information propagation traces can
be seen as random walks in these complex networks.
Therefore, the involved participants usually show up in
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several significantly diverse propagation traces and tend
to make different contribution to the diffusion. Thus, a
fine-grained ranking measure is needed to prioritize the
significance of these participants.

Thirdly, DCE considers causal effects from two
aspects: necessity and sufficiency. These two aspects
can be easily observed in propagation histories in
SNS. Intuitively, edges in short propagation traces are
more likely to be sufficient causes than edges in long
traces, while, edges in trunk paths are more likely
to be necessary causes than edges in branch paths.
Consequently, considering causal effects in both of
these two aspects not only matches up with common
sense but is also highly suitable for this application.

DCE calculation. According to the definition of
DCE, the most direct way to calculate this causal
measure is to perform randomized experiments[17]. We
briefly describe this procedure as follows. Given the
input edge X , we first enforce X to have “non-failed”
(or “failed”). Then, in each simulation, we randomly
set the other participant edges to be failed or non-
failed, and further check if the diffusion would be
successful under this new condition. After a great
number of simulations, we arrive at a convergent value
of P.˚xD true/ (or P.˚x0D true/). Finally, we obtain
the DCE value according to Eq. (1).

4 Proposed Ranking Strategies

Although conducting randomized experiments is the
preferred method for DCE calculation, this kind of
approach must run simulations many times over in
order to obtain a convergent value[13, 18]. To avoid this
complication, we introduce two ranking indicators (i.e.,
responsibility and capability) to capture the intuitive
two aspects of DCE. Finally, by considering these two
indicators together, we propose two integrated ranking
strategies.

4.1 Responsibility

In this subsection, we first introduce the concept
of responsibility. We then theoretically prove that
responsibility can be used to capture the necessity
aspect of an edge’s causal effects in a diffusion. Finally,
we analyze its time complexity.

The concept of responsibility[19] is proposed based on
the following definition inspired by Ref. [14].

Definition 3 (Causality in a diffusion). Suppose the
edge set of the propagation history is T . Let t 2 T be a
participant edge, and let � � T be an edge set. t is to be

called a cause for the diffusion w.r.t. � , if the following
two conditions are satisfied:

(1) The diffusion remains successful with T�� , and
(2) After removing � , the subsequent removal of t

would make the diffusion fail.
� is called the contingency set for t .
Although checking causality (i.e., identifying each

cause and its related contingency set) is NP-complete
in general[20], Ref. [21] gives a PTIME solution for
the provenance data[22, 23] of relational databases. This
method could be directly applied to the propagation
history in SNS. In this paper, we do not discuss this
causality checking problem, but only focus on the
related ranking problem.

Definition 4 (Responsibility). Suppose the edge set
of the propagation history is T , and let t 2 T be
a participant edge. The responsibility of t for this
diffusion is

ıt D
1

1Cmin� j� j
;

where � ranges over all contingency sets for t .
Example 4. We continue with the propagation

history in Example 1. The responsibility of edge A is
1/2, because the smallest contingency set for A is fDg.
Similarly, the responsibility of D is 1/2 with fAg being
the smallest contingency set. The responsibility of edge
B is 1/3, since its smallest contingency set is fC , Dg.
Edge C ’s responsibility is also 1/3 with fB , Dg as the
smallest contingency set.

The responsibility of edge t is determined by
the minimum edge set whose removal would
make t indispensable for a successful information
transmission; this leads to the following proposition.

Proposition 2 Responsibility measures the
necessity aspect of causal effects.

Proof The proof is based on a causal measure
Probability of Necessary (PN), which is defined as the
probability that event y would not have occurred in
the absence of event x, given that x and y did in fact
occur[14]. Therefore, PN measures the necessity aspect
of causal effects.

Let X be a participant edge, and let x and x0 stand
for the propositions “X non-failed” and “X failed”,
respectively. Let set S contain all propagation traces
which go through edgeX , with the rest of the traces put
into another set (denoted as NS ). Let s and Ns stand for
the cases in which S and NS can successfully transmit
the information respectively, and let s0 and Ns0 denote
their complements. We could calculate the PN value
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of edge X for this diffusion as PN D P.Ns0s/=ŒP.Nsx/C
P.Ns0s/� (more details about this derivation can be found
in Appendix B). Suppose every edge has the same
failure probability of 50%. Then we get the following
equation:

PN D 1=ŒP.Nsx/=P.Ns0s/C 1� D

1=ŒP.Ns/P.x/=P.Ns0s/C 1� D

1=Œ0:5 � P.Ns/=P.Ns0s/C 1� / P.Ns0s/=P.Ns/:

As the responsibility of X increases, NS becomes more
likely to break (P.Ns0/ increases and P.Ns/ decreases). In
this case, if P.s/ remains the same, PN will increase.
Therefore, responsibility has a positive relationship
with PN, i.e., responsibility measures the necessity
aspect of causal effects. �

Complexity of responsibility. In theory, to compute
the responsibility one must iterate over all contingency
sets, i.e., computing responsibility in general is
NP-hard[19]. Therefore, we propose an approximate
algorithm for general propagation histories, more
details of which can be found in Section 5.

4.2 Capability

In this subsection, we first define the concept of
capability. We then prove that capability can be used to
capture the sufficiency aspect of an edge’s causal effects
in a diffusion. Finally, we analyze its time complexity.

Definition 5 (Capability). Suppose the edge set
of the propagation history is T , and let t 2 T be a
participant edge. The capability of t for this diffusion is

�t D
1

minŁ jst.Ł/j
;

where Ł ranges over all propagation traces going
through t , and function st.Ł/ returns the edge set of Ł.

Example 5. We continue with the propagation
history in Example 1. The capability of edge A is
1/2, since it needs edge fBg or fC g to ensure the
diffusion. The capability values of B and C are
both 1/2, because they both need fAg for successful
information transmission. Edge D’s capability is 1
because D itself can guarantee the diffusion.

The capability of edge t is determined by
the minimum edge set whose addition would
make t indispensable for a successful information
transmission; this leads to the following proposition.

Proposition 3 Capability measures the sufficiency
aspect of causal effects.

Proof The proof is based on a causal measure
Probability of Sufficiency (PS). As stated in Ref. [14],

PS is defined as the probability that enabling x would
produce y in a situation where x and y are in fact
absent. Therefore, PS measures the sufficiency aspect
of causal effects.

Continuing with the same definitions of X , x, x0, S ,
NS , s, Ns, s0, and Ns0 as in the proof of Proposition 2, we

can calculate the PS value of edge X for this diffusion
as PS D P.Ns0.sjx/x0/=P.Ns0x0/ (more details about this
derivation can be found in Appendix C). First of all,
since NS consists of the traces which do not contain
edge X , P.Ns/ and P.Ns0/ are not affected by X . As
�x (the capability of X ) increases, P.sjx/ increases,
i.e., it becomes easier for S to ensure the diffusion.
Since P.Ns0/ and P.x0/ are not affected by �x , PS will
increase when �x increases. Therefore, capability has a
positive relationship with PS, i.e., capability measures
the sufficiency aspect of causal effects. �

Complexity of capability. Suppose the propagation
history contains N traces and M edges. Using an
inverted index, calculating the capability values of all
edges can be done in O.L � N/ (with O.M/ space
complexity), where L is the average length of all
propagation traces. Generally speaking, L is a small
number according to the concept of six degrees of
separation[24]. Therefore, the capability problem has
a linear complexity with respect to the number of
propagation traces.

4.3 An integrated ranking strategy

We have introduced two ranking indicators,
responsibility and capability, to capture the intuitive
notion of two aspects to DCE. In this subsection, we
show that by combining these two indicators directly,
we can arrive at a simple integrated “responsibility-
capability” ranking strategy (short for “resp-cap”) as
follows:
scoreD˛�fn(responsibility)C.1�˛/�fn(capability) (2)

where fn stands for a normalized function calculating
the standard score[25] (Specifically, fn.x/ D

x � �

�
,

where � is the mean of the population and � is the
standard deviation of the population) and 0<˛<1 is a
balance factor.

Example 6 (Example of the “resp-cap” ranking).
Continuing with the propagation history in Example 1,
the results of our method together with responsibility,
capability, “resp-cap”, and DCE values are listed in
Table 3 (note that, to facilitate understanding, we
do not use the normalized function in the “resp-
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Table 3 “resp-cap” ranking (Eq. (2)) and DCE values in
Example 1.

Edge Responsibility Capability “resp-cap” DCE
A 1/2 1/2 1/2 3/8
B 1/3 1/2 5/12 1/8
C 1/3 1/2 5/12 1/8
D 1/2 1 3/4 5/8

cap” method in this example, and we set ˛ D 0:5).
As shown, “resp-cap” method gives the sorted result
.D;A;B; C /. The two highest ranked edges are D and
A. Compared to A, edge D is ranked higher because
of its higher capability value. The next two edges are B
and C , which are less important because of their lower
degrees of responsibility and capability. In this simple
example, the “resp-cap” method successfully captures
the intuition of DCE by considering two aspects of
causal effects.

4.4 A light integrated ranking strategy

The proposed “resp-cap” method needs to calculate
responsibility and capability values for every
participant. Therefore, this method cannot scale to
large datasets, since for each participant, even the
approximate responsibility calculation algorithm still
needs O.k�.L�NCM// time (Section 5.2).

In this subsection, we present a light version of
“resp-cap” (denoted as “resp-cap�”). The idea is that,
since we typically only care about the top K influential
participants in a diffusion, we do not need to evaluate
all of the participants if we can pre-select some likely
candidates. Specifically, we first get the capability
values of all participants, and then we select the r�K
highest ranked participants as candidates (r is a small
pre-defined constant). We are then required to calculate
the responsibility values for only these r�K candidates.
Finally, we adopt Eq. (2) to get the ranking scores of
these r�K candidates so as to identify the top K most
influential participants.

Complexity of “resp-cap�” The capability problem
has a linear complexity solution (Section 4.2), and
we only need to call the approximate responsibility
calculation method (a linear time complexity method
shown in Section 5.2) r � K times. Consequently,
“resp-cap�” has a linear time complexity, and can scale
to large datasets.

Note that these two indicators can be incorporated
into other more complex ranking methods, which we
leave for future work.

5 An Approximate Algorithm for
Responsibility Calculation

Since responsibility is difficult to calculate in general,
in this section we propose an approximate algorithm
which guarantees a feasible solution. The basic
idea behind our method is that we can reduce the
responsibility problem to a variant of the classical Set
Cover Problem (SCP)[26]. Let us first compare these
two problems.

5.1 Responsibility vs. SCP

Suppose the propagation history has been processed
into a collection of sets: ˚Dfc1; : : : ; cng, where ci
is the edge set of the original propagation trace
t i . In other words, each ci is a subset of the
whole participant edge set T D ft1; : : : ; tmg. We
assume function sc.tj ; ˚/ D fci jtj2ci ^ ci2˚g (sc.tj /
for short), and intuitively sc.tj / covers (contains) all the
sets (in ˚ ) containing tj . Given an edge t , the intuition
of SCP is to find the minimum k which satisfies
sc.t/ [ fsc.t1/ [ � � � [ sc.tk/g D ˚ . Note here we are
actually discussing a constrained SCP problem by
ensuring the solution of SCP to contain the input edge
t . The responsibility problem has the same intuition,
and also contains another constraint in that the removal
of ft1; : : : ; tkg must ensure t is still a cause for this
diffusion, i.e., sc.t1/ [ � � � [ sc.tk/ ¤ ˚ .

Example 7 (The difference between responsibility
and SCP). Continuing with Example 1, the
equivalent SCP form of the propagation history is
˚Dfc1; c2; c3gDffA;Bg; fA;C g; fDgg. We can also
get sc.A/Dfc1; c2g, sc.B/Dfc1g, sc.C /Dfc2g, and
sc.D/Dfc3g. Obviously, the solutions of this SCP
problem are fsc.A/; sc.D/g and fsc.B/; sc.C /; sc.D/g.

Taking edge B as an example, for an SCP problem
that has a solution containingB , sc.B/[fsc.A/; sc.D/g
and sc.B/ [ fsc.C /; sc.D/g are two answers. Now,
let us consider the corresponding responsibility
problem. The result fC;Dg is a contingency set for B ,
whereas fA;Dg is not. This is because after removing
fA;Dg, the further removal of B will not make this
diffusion fail, i.e., sc.A/ [ sc.D/ D ˚ .

5.2 Approximate algorithm for responsibility

If � is the selected contingency set for edge t , � must
satisfy two constraints: (a) after removing all edges in
� , the diffusion remains but the removal of t would
make the diffusion fail; and (b) � must be the minimum
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set satisfying
S
x2� sc.x/D˚�sc.t/. Based on these

two constraints, we propose a greedy algorithm named
Appresp; the main aspects of this algorithm are as
follows:

(1) Get the covered set SADsc.t; ˚/ and the
uncovered set STD˚�SA.

(2) Choose edge x 2 T �� which satisfies these two
rules: (a) sc.x;ST/ contains as many as possible of the
sets in ST, and (b) SA ¤ sc.x;SA/.

(3) Add x to � , remove sc.x;SA/ from SA, and
remove sc.x;ST/ from ST.

(4) Repeat Steps (2) and (3) until ST gets empty, and
compute the responsibility of t .

The key aspects of our algorithm are the two rules
listed in Step 2. The first rule is a heuristic for ranking
the edges to be added to the contingency set. The
second rule is a constraint to ensure that t is still a
cause of the diffusion (in accordance with Definition
3) after removing the calculated contingency set.
This selection guarantees a feasible solution, provided
that the propagation history contains no redundancy
(Redundancy is defined by Ref. [21], i.e., a propagation
trace t i is redundant if there exists another trace tj

whose edge set is a subset of t i ’s edge set. After
removing all redundancies, the remaining edges are
causes (Definition 3). This is also the PTIME solution
for the causality checking problem in propagation
histories). We formalize this property in Proposition 4
and present the pseudo code in Algorithm 1.

Proposition 4 Appresp guarantees a feasible

Algorithm 1:��1 Appresp
Input: The equivalent SCP form of the propagation history

˚ D fc1; : : : ; cng;
The total participant edge set T D ft1; : : : ; tmg;
The input edge t 2 T .

Output: The approximate responsibility of t .
1 SA D sc.t; ˚/;
2 ST D ˚ � SA;
3 �  fg;
4 T D T � t ;
5 while ST is not EMPTY do
6 find edge x 2 T , which enables sc.x;ST/ to cover the

sets in ST as many as possible and SA ¤ sc.x;SA/I
7 � = � [ x;
8 T D T � x;
9 ST D ST � sc.x;ST/;

10 SA D SA � sc.x;SA/;
11 end
12 return 1=.j� j C 1/I

solution, provided that the propagation history contains
no redundancy.

Proof We continue with the definitions of ˚ , T ,
� , sc, ST, and SA from Algorithm 1. Suppose the
propagation history does not contain any redundant
traces. We calculate the responsibility of edge t as an
example.

Case A (If Appresp returns a contingency set � ).
Suppose we get the initial covered set SADsc.t; ˚/
and the uncovered set STD˚�SA. In this case, ST is
covered by

S
x2� sc.x; ˚/. For simplicity, here “the

removal of edge t” refers to removing all sets in sc.t; ˚/
from both SA and ST. In accordance with our constraint
rule, the removal of � makes ST empty but cannot
render SA empty. In addition, if we first remove all
edges from � , the further removal of t renders SA
empty. Consequently, according to Definition 3, � is
a feasible contingency set for t .

Case B (If Appresp cannot find a contingency set).
Suppose we have gotten temporary results � 0, SA0, and
ST0, when no edge satisfies our constraint rule, i.e.,
for each left edge x 2 T�� 0, we get SA0 D sc.x;SA0/.
Suppose ct is the edge set of trace t t in ST0 and ca is the
edge set of trace ta in SA0. For each edge x in ct , we
will find sc.x;SA0/ contains ca. Thus, we get ct � ca,
i.e., ta is redundant. This is opposite to our hypothesis
of non-redundancy.

Therefore, Appresp guarantees a feasible solution for
a propagation history without redundancy. �

Complexity of Appresp. Suppose the propagation
history has N traces and M edges, the average length
of traces is L, and the corresponding contingency set
size is k. On average, the time complexity of Appresp is
O.k�.L�NCM//. Note that, both k andL are usually
small numbers, i.e., Appresp has linear time complexity
(We verify the small values of k in our experiments, and
L is also small according to the concept of six degrees
of separation[24]).

Proof Given the input edge t , to calculate its
responsibility we need to loop the following steps k
times.

(1) Line 6 of Algorithm 1 performs two tasks. Firstly,
it calculates sc.x;ST/ for each edge x; we can use an
inverted index to speed up this calculation (the time
complexity is O.L�N/). It then selects edge x, which
satisfies the two rules (the time complexity is at most
O.M/, since SA is usually small).

(2) Line 9 removes all sets in sc.x;ST/ from ST. The
time complexity is O.N=k/, since on average we need
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to repeat this removal k times to empty ST.
(3) Line 10 does a similar task on SA to that

performed on ST in Line 9. Therefore, the time
complexity is also O.N=k/.

Therefore, the overall time complexity isO.k� .L�
NCMC2 �N=k// = O.k�.L�NCM//. �

Example 8 (Example of Algorithm 1). Continuing
with the same propagation history ˚ in Example 1,
we use edge B as an example and employ Algorithm
1 to compute its responsibility. We first get the
covered set SADsc.B;˚/Dfc1g and the uncovered set
STDfc2; c3g. Then, we find that A cannot be selected
because sc.A;SA/ D SA. We can select either of C or
D, since both satisfy our constraint rule and have the
same priority according to our heuristic rule. Suppose
we choose C first and then choose D in the next round.
Finally, we get the contingency set fC;Dg, so the
responsibility of B is 1=3.

Unlike the approach of our Appresp method, Qin
et al.[27] directly adopted a greedy strategy to solve
the corresponding SCP problem, i.e., they ignore the
constraint rule in our method. However, without this
rule, the greedy strategy cannot guarantee a feasible
solution for the responsibility problem (as shown in
Example 7). We will show this property and compare
the two methods in presenting the results of our
experiments.

6 Experimental Evaluation

In this section, we aim to show two major contributions
of this paper by reporting experimental results. First, we
reiterate the rationality of the selected ranking criterion
DCE using several real-world datasets. Second, we
show the effectiveness of the proposed two ranking
strategies (“resp-cap” and “resp-cap�”) by answering
the following three questions. Q1: Can the two
indicators (i.e., responsibility and capability) partly
capture the intuition of causal effects? Q2: Can the
integrated ranking strategy “resp-cap” capture two
aspects of causal effects and thus improve performance?
Q3: Is the light version of the integrated ranking
strategy “resp-cap�” effective and efficient?

Dataset. We use the real-world SNAP ego-
Facebook dataset[28], containing 4039 nodes and
88 234 undirected links. From this network, we
generate three propagation history datasets, and explain
the corresponding diffusion phenomena by ranking
participant edges. We first remove redundant parts of

these propagation history datasets, resulting in one
small and two large datasets. Table 4 shows the details
of these three trimmed datasets.

FB-Sample is a small propagation history dataset
generated as follows: (1) we sample ego-Facebook
with the Re-Weighted Random Walk strategy (an
unbiased sampling method)[29, 30] and obtain a small-
scale network; and (2) with this sampled network,
we enumerate all simple paths from source (node 0)
to target (node 197) to produce a propagation history
dataset.

FB-Walk-0-197 (start node 0 and target node 197)
and FB-Walk-158-146 (start node 158 and target node
146) are two large propagation history datasets with
different start and target nodes. These two datasets are
generated as follows: (1) we start many random walks
from the source node in the raw network; and (2) we
record a random walk path (as a propagation trace) if it
reaches the target node in a certain limited number of
steps.

To obtain the ground truth of the ranking, we run
randomized experiments to get DCE values on four
servers (with 8 cores and 32 GB memory) for 100 –
400 hours for each dataset (To get convergent values,
we need to conduct randomized experiments with many
repetitions (around 109). Moreover, larger propagation
history datasets require even more repetitions.)

6.1 Rationality of DCE

In this subsection, we use these three propagation
history datasets to illustrate the rationality of DCE. The
network constructed by FB-Sample is shown in Fig. 2a.
We can intuitively identify some critical edges in this
network. However, this does not work when the data
size grows. We can take FB-Walk-0-197 and FB-Walk-
158-146 as an example; as shown in Figs. 3a and 4a,
the networks constructed by these two datasets are large
and complex, which makes it difficult to understand
them directly. In practice, therefore, the ground truth of
the propagation history ranking problem in SNS cannot
be manually established.

Table 4 Propagation histories generated from ego-
Facebook.

Source
!Target

Number
of edges

Number
of traces

Len
(trace)

FB-Sample 0! 197 72 442 4 � 21

FB-Walk-0-197 0! 197 1052 349 1 � 18

FB-Walk-158-146 158! 146 1024 213 2 � 18
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Here we continue to explain the intuition of DCE on
FB-Sample. We show the ranked DCE values of FB-
Sample in Fig. 2c and provide more details in Table 5.
We can see that DCE estimates the causal effects of
edge X by computing P.˚x/ � P.˚x0/ (the decline
in the probability of information being successfully
transmitted if the edge is removed).

We compare edges 127!197 and 309!197 as
an example. Edge 127!197 makes the greatest
contribution to this transmission, because its removal
would cause the largest decline of information
transmission probability (from 0.3441 to 0.1194).
Comparatively speaking, edge 309!197 is less
important (ranked 6th). Looking at the corresponding
network (Fig. 2b), we can explain this from the
perspectives of both necessity and sufficiency. From the
necessity perspective, these two edges can construct a
min-cut edge set, so their nonexistence would cause the
transmission to fail. From the sufficiency perspective,
edge 127!197 is more important because it lies in the
shortest path from source to target, whereas 309!197
does not, i.e., edge 127!197’s occurrence equals a
higher probability for a successful transmission.

Since the results of the other networks show the

same trend, we do not give further accounts of the
rationality of DCE on FB-Walk-0-197 and FB-Walk-
158-146. However, we show the networks constructed
by these histories and their distributions of DCE values
in Figs. 3 and 4, from which we can also validate the
rationality of DCE.

To summarize, DCE is a fine-grained measure which
is not only able to evaluate causal effects but also
to consider the effects from the viewpoints of both
necessity and sufficiency. Therefore, we select DCE as
the ranking criterion for propagation history ranking in
SNS.

6.2 Ranking quality

Evaluation metric. Since there is no existing standard
evaluation metric for this problem, we first recall the
ranking evaluations used in information retrieval, where
evaluation metrics can be classified into two categories.
The first category is designed for situations of binary
relevant notions, such as Mean Average Precision[31].
In this situation, each ranking item is simply labeled
as relevant or non-relevant in relation to the input
queries. The second category is designed for situations
characterized by non-binary notions of relevance, such
as NDCG[32].
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126

0

54

1171

260

206

129

347

246

72

3

298

212

123

178

30

329

269

87

213
208

92

57

346

299

120

211

223

55

240

318

104

300

130
73

197

281284

51

237

270

76

106

88

125

338

165

173

163

217

69

276

170

268

3003

339

146252

103

109 14240

265

285

188

196

330
194

24
53

242

204

101

247

29

59

203

313

222

317

15882

314

1

48

251

320

183

133

84

224

331

25

31
7

169
10

304

308

113
334

100

64

128

150

16
172

231

117

77

294

121

39

236

322

50

148
176

26

271
161

277

9

199

342

325

261 60

291

168
22

332

13

65

118

248

38

311

344

134

238

232

239
345

67

303
221

122

66

56

63

229

190

96

323

295

258

85

75

21

105

98

272

280

257

141

62

187

80

249
302

180

266

94 254

340324

297

200

235
156

316

189

185
290

274

341

45

186

79

315

5

171

3290

132

119

(a) Network (b) Cropped network

200 400 600 800 10000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ranked edges @k

D
C

E
 v

al
ue

s

(c) Ranked DCE values

5 200 400 600 800 1000

Ranked edges @k

0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

Capability

Nresp

Appresp

nresp-capability

appresp-capability

appresp-capability* 
Random

(d) NDCG

Fig. 4 Causality-based ranking of FB-Walk-158-146. (a) Network constructed by the traces in FB-Sample; (b) Cropped version
of the network; (c) Ranked DCE values of all participant edges; and (d) NDCG.



172 Tsinghua Science and Technology, April 2020, 25(2): 161–179

Table 5 Causal effects and DCE values of some edges in FB-
Sample.

No. Edge P.˚xDtrue/ P.˚x0Dtrue/ DCE
1 127!197 0.3441 0.1194 0.2247
2 281!36 0.3363 0.1275 0.2088
3 0!281 0.3360 0.1277 0.2083
4 277!159 0.3337 0.1300 0.2037
5 0!277 0.3331 0.1305 0.2027
6 309!197 0.2999 0.1634 0.1365
:::

10 135!309 0.2548 0.2086 0.0462
:::

15 184!127 0.2414 0.2223 0.0192

As discussed in Section 3, we adopt DCE (a non-
binary measure) values as ground truth, so we use
NDCG as the evaluation metric in our experiments.
NDCG is a popular evaluation metric following two
rules: (1) highly related edges are more useful than
marginally relevant ones; and (2) lower ranked edges
are less valuable for users, since they are less likely to
be examined. The NDCG value of a ranking list at a
particular rank position n is defined as

NDCGn D Zn

 
rel1 C

nX
iD1

reli
log2 i

!
;

where reli is the graded rating of the i -th edge in the
ranking list, andZn is a normalization constant to make
the perfect list obtain NDCG score of 1. Note that DCE
values are used as the graded ratings (frelig) in all
experiments.

Ranking strategies. With the proposed two
indicators, we compare the following seven different
ranking strategies.

(1) Capability: Ranking by capability value
(Section 4.2);

(2) Appresp: Ranking by responsibility value
calculated by Appresp (Section 5);

(3) Nresp: Ranking by responsibility value calculated

by Nresp (Qin et al.’s method[27]);
(4) appresp-capability: The integrated “resp-cap”

ranking (Section 4.3) with responsibility calculated by
Appresp;

(5) nresp-capability: The integrated “resp-cap”
ranking (Section 4.3) with responsibility calculated by
Nresp;

(6) appresp-capability�: The light version of
“resp-cap” ranking (Section 4.4) with responsibility
calculated by Appresp; and

(7) Random: Ranking randomly.
For all three integrated ranking methods, we set the

parameter ˛ D 0:5. For appresp-capability�, we set
K D 15 and r D 3, i.e., we only want to identify the
top 15 important participants in a diffusion, and we
pre-select 3 � 15 D 45 likely candidates. In order to
evaluate the ranking quality of each method, three steps
were followed: (1) we first get its ranking result, (2) we
generate 1000 permutations of this result by shuffling
edges with the same ranking score, and (3) we use the
mean NDCG of these permutations as this method’s
performance.

(1) Comparing quality. We evaluate the seven
ranking strategies. Figures 2d, 3d, and 4d show the
NDCG results at different ranking positions. Table 6
shows the details. In addition, we illustrate the top-5
ranked edges obtained by DCE values and our appresp-
capability method in Figs. 2b, 3b, and 4b. Table 7 shows
the details of these top-5 ranked edges.

Our first observation is that our integrated ranking
methods (i.e., appresp-capability and nresp-capability)
successfully capture the intuition of DCE. For instance,
as shown in the cropped versions of networks
(Figs. 2b, 3b, and 4b), our appresp-capability method
successfully identifies the most important edges in all
three propagation history datasets. The nresp-capability
method can do the same (although we do not show
its result in the paper, we can validate its success by
its NDCG results). Therefore, our integrated methods

Table 6 NDCG results.

Method
FB-Sample FB-Walk-0-197 FB-Walk-158-146

NDCG5 NDCG10 NDCG15 NDCG5 NDCG10 NDCG15 NDCG5 NDCG10 NDCG15
Capability 0.7870 0.8703 0.9009 0:8354 0:8476 0:8726 0:7442 0:7083 0:7319

Nresp 0.9274 0.8143 0.7900 0:6706 0:7417 0:7933 0:7435 0:7758 0:7122

Appresp 0.9277 0.9004 0.8739 0:6872 0:7579 0:8061 0:7575 0:7903 0:7311

nresp-capability 0.9548 0.9762 0.9827 0:8769 0:9019 0:9100 0:8900 0:9369 0:9146

appresp-capability 0.9549 0.9892 0:9889 0.8871 0.9213 0.9291 0.9004 0.9534 0.9303
appresp-capability� 0:9548 0:9890 0.9898 0.8777 0.9153 0.9122 0.8926 0.9404 0.9178
Random 0.1110 0.1405 0.1682 0.0277 0.0299 0.0310 0.0165 0.0194 0.0223
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Table 7 Top 5 ranked edges in three propagation history datasets obtained by DCE (ground truth) and our appresp-capability
method. (Here ��� means its ranking score is equal to the preceding one.)

Top-id
FB-Sample FB-Walk-0-197 FB-Walk-158-146

DCE appresp-capability DCE appresp-capability DCE appresp-capability
1 127!197 127!197 0!197 0!197 339!146 339!146
2 281!36 281!36� 281!197 281!197 317!146 317!146�

3 0!281 0!281� 139!197 139!197� 50!146 50!146
4 277!159 277!159� 251!197 251!197� 148!146 148!146�

5 0!277� 309!197 284!197 159!197� 313!146 313!146�

achieve a high ranking accuracy. Taking NDCG@5 as
an example, the integrated methods achieve a ranking
accuracy of 90%�95%. In addition, their ranking
accuracies are very stable even when the rank position
increases.

Our second observation is that our integrated
ranking methods significantly outperform unintegrated
ones (i.e., Capability, Appresp, and Nresp). Again
taking NDCG@5 as an example, integrated methods
outperform unintegrated ones by 10%�25%. This
improvement persists even when the rank position
increases. These first two observations demonstrate that
our integrated strategy can capture two aspects of causal
effects and thus improve performance by combining
these two indicators. This summary answers Q2 posed
above.

Our third observation is that appresp-capability�, the
light version of appresp-capability, is very effective.
Although, the performance of appresp-capability� is
not the highest, this method still performs much better
than unintegrated ones (i.e., Capability, Appresp�and
Nresp). Furthermore, appresp-capability� performs
better than the integrated method nresp-capability in
all three datasets. These experimental results show the
effectiveness of appresp-capability� and thus answer
Q3 posed above (the efficiency of this method is
validated in the scalability experiment).

The final observation is that ranking either by
capability or by responsibility (Appresp or Nresp) alone
can achieve passable accuracy. Again taking NDCG@5
as an example, the ranking accuracies of unintegrated
methods are around 75%. This is consistent with our
theoretical analysis that responsibility and capability
can evaluate causal contribution in two different
aspects. Consequently, these two indicators together can
partly capture the intuition of DCE, thus answering Q1
posed above.

(2) Effect of balance factor ˛̨̨ . In our integrated
“resp-cap” ranking strategy, there is a parameter ˛

that controls the balance of consideration of causation
between necessity and sufficiency. We test different
values of ˛ in our appresp-capability method on both
of the two large propagation history datasets. Figure 5
shows the results. We can see that (1) combining
appresp and capability values does increase ranking
performance; and (2) although the results fluctuate,
performance is stable and preferable with ˛ set to
around 0:5. These observations suggest that we should
consider the necessity and sufficiency of causation
equally, which matches our common sense and daily
experience.

(3) Appresp vs. Nresp. From Figs. 2d, 3d, and 4d,
we can see that our Appresp method outperforms Nresp
in both the unintegrated and integrated strategies. We
can explain this from Figs. 6 and 7, which show the
size distributions of the contingency sets calculated by
these two methods. The results of Nresp are highly
centralized, which is caused by its greedy strategy. With
this strategy, the results are highly influenced by those
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Fig. 5 Effect of changing ˛̨̨ in our appresp-capability
method.
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Fig. 6 Size distributions of the contingency sets calculated
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Fig. 7 Distributions of the contingency sets calculated by
different methods on FB-Walk-158-146.

edges that are involved in more traces. An instance of
this can be found in Example 7.

In contrast, the results of Appresp are decentralized.

We think this is because Appresp ensures causal
relationships, i.e., it guarantees a feasible contingency
set. This property allows its results to avoid being too
highly influenced by edges involved in many traces.
Therefore, our Appresp method can handle complex
propagation histories in practical applications.

(4) Scalability. We not only test the scalability of
the Appresp, Nresp, and Capability methods, but also
test the proposed ranking strategy appresp-capability
and its light version appresp-capability�. We use five
different datasets with varied propagation edge sizes
and trace sizes. Three of these are the propagation
histories already used in Section 6.2, while the other
two are newly generated propagation history datasets
called LP1 and LP2. Both are generated similarly to FB-
Walk-0-197. Specifically, LP1 contains 6�103 edges
and 105 traces, while LP2 contains 105 edges and
5�105 traces. Figure 8 shows the results.

For the responsibility calculation, we can see that
both Appresp and Nresp methods have the same
efficiency level. The small extra time cost of Appresp
is used to ensure causal relationships and, considering
the superior performance of Appresp, this cost is
worthwhile for a feasible solution to responsibility
calculation.

Compared to the responsibility calculation, our
Capability method is much more efficient. This chimes
with our analysis that the capability indicator involves
straightforward computation. Therefore, this indicator
is always recommended for its good performance and
high efficiency.
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Fig. 8 Scalability of Capability, Nresp, Appresp, appresp-
capability, and appresp-capability*. Note 72���442 (FB-
Sample), 1052���349 (FB-Walk-0-197), 1024���213 (FB-Walk-
158-146), (6���103/���105 (LP1), and 105

���(5���105) (LP2) stand
for the sizes of five propagation history datasets. Note also
that the y axis is in log scale (e.g., yDDD 5 means the time cost is
25 ms).
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Comparing the two integrated ranking strategies,
appresp-capability� is much more efficient than
appresp-capability. Taking the LP2 dataset as an
example, appresp-capability� operates approximately
2000 times faster than appresp-capability.
Consequently, this light version can be considered
an efficient ranking method.

7 Related Work

7.1 Diffusion in SNS

Social network analysis is a hot research topic over
recent years[33–35], and information diffusion analysis
is one of the most important problems in this
field[36–38]. This topic has many interesting applications,
such as the identification of influencers[39, 40], the
maximization of influence[41, 42], and the identification
of hot topics[43, 44]. Most works analyze diffusion
problems from the viewpoint of network structure under
different information propagation models, such as the
susceptible infected model[45] and the independent
cascade model[46].

In this paper, we analyze diffusion based on
propagation histories rather than network structure. To
the best of our knowledge, this is the first effort to
understand diffusion phenomena based on propagation
histories.

7.2 Causality

The classical account of counterfactual causality (if
event X had not occurred, event Y would not have
occurred) goes back to Hume in 1739[2]. Lewis[47]

analyzed it in a formal way. Recently, a rigorous
definition of causality, “Actual Causality”, was
initiated by Halpern and Pearl[14, 48]. Using this
definition, Chockler and Halpern[19] introduced the
degree of responsibility to evaluate the contribution of
each cause. Recently, Meliou et al.[21, 49] first studied
the complexity of causality and responsibility problems
in relational databases. Qin et al.[27, 50] analyzed
the causality problem for conjunctive queries with
inequalities. Lian and Chen[51] focused on causality
in the probabilistic queries in uncertain databases. We
refer to Refs. [52,53] for expositions of causality theory.

In this paper, we employ DCE as the ranking criterion
for the propagation history ranking problem in SNS.
DCE is a fine-grained causal measure which not only
matches our common sense but is also well suited to
the SNS scenario. To avoid complex calculations, we

further propose an integrated ranking strategy to capture
the intuition of DCE.

7.3 Edge/node ranking in networks

Edge/node ranking is a traditional problem in a number
of research areas, including information retrieval[54, 55]

and network reliability[7]. In the information retrieval
domain, most works (e.g., Page Rank[12] and HITS[56])
rank nodes (pages) by considering (1) the relevance
of pages with respect to input queries, and (2) the
network topology. In the network reliability domain,
edges/nodes are ranked in terms of their overall
importance to reliability[8, 57]. Here, reliability is a
measure of the connectivity of a network where each
edge/node has a probability of failure.

In these works, the importance of each edge/node
is rated mainly based on network architecture. In
contrast, for the propagation history ranking problem
the importance of each edge/node is evaluated by its
causal contribution to the actual information diffusion
process, regardless of the underlying network structure.

8 Conclusion and Future Work

This study establishes a connection between the
diffusion process that has been extensively studied
in social network analysis and the causality theory
that has been heavily studied in artificial intelligence.
Specifically, this study presents the propagation
history ranking problem in SNS, and proposes a
solution from the viewpoint of causality. In this study,
we first show the difference between propagation
histories and network structure. Then we introduce
the causal measure DCE as the ranking criterion.
Due to the hardness of DCE calculation, we propose
two integrated ranking strategies by introducing
the indicators “responsibility” and “capability”,
which capture the necessity and sufficiency aspects,
respectively, of causal effects. Furthermore, for the
responsibility calculation, we design an approximate
algorithm that can guarantee a feasible solution
for general propagation histories. Finally, extensive
experiments demonstrate the feasibility and advantages
of our approach.

There are some interesting directions for future
work. Firstly, in this paper, we study the propagation
history ranking problem only in the simplest diffusion
case: information diffusion from one source node to
one target node. However, there are more complicated
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diffusion cases, such as one-to-many or many-to-many
diffusion, that have not yet been studied. Secondly,
although this paper only focuses on information
diffusion in SNS, the proposed methods can be
generalized to other domains. For future work, we
plan to extend our method to other applications, such
as network reliability and model checking. Finally,
causality-based reasoning and management is a useful
tool to explore the potential value of big data, which
points to other worthwhile future research directions.

Appendix
A DCE as Ranking Criterion

We first review Pearl’s definition of Probability of
Necessity and Sufficiency (PNS)[14], which has been
proved to consider causal effects from both the necessity
and sufficiency aspects. We then prove Proposition 1 by
showing that PNS and DCE are equivalent in the scenario
of propagation history ranking.

Definition 6 (PNS). Suppose the propagation history
of a diffusion is ˚ , and X is a participant edge. Let x
and x0 stand for the propositions “X non-failed” and “X
failed”, respectively. The probability of the necessity and
sufficiency of edge X for diffusion ˚ is defined as the
expression:

PNS , P.˚x D true; ˚x0 D false/ (3)
In this definition, ˚x D true stands for that enabling

edge X leads to a successful information transmission,
and ˚x0 D false stands for the removal of X makes this
transmission fail. Thus, PNS considers causal effects from
both the necessity and sufficiency aspects; a rigorous proof
can be found in Ref. [14].

Proof of Proposition 1 We continue with the same
definitions of ˚ , X , x, and x0 in Definition 6. Let set
S contain all propagation traces which go through edge
X , with the rest of the traces is put into another set
(denoted as NS ). Let s and Ns stand for the cases that S and
NS , respectively, can successfully transmit the information,

and let s0 and Ns0 denote their complements. We first get the
following two properties.

Property 1 X does not affect Ns and Ns0:
P.Nsx/ D P.Nsx0/ D P.Ns/ andP.Ns0x/ D P.Ns

0
x0/ D P.Ns

0/.
Property 2 Since all traces in S go through X , we have

P.sx0/ D 0.
Consider the definition of DCE (Definition 2):

DCE.X/ DP.˚xDtrue/ � P.˚x0Dtrue/ D

P
�
.s C Ns/x

�
� P

�
.s C Ns/x0

�
D

P.sx C Nsx/ � P.sx0 C Nsx0/ D

P.sx C Nsx/ � P.Nsx0/ D (Property 2)

P.sx C Ns/ � P.Ns/ D (Property 1)

P.sx/C P.Ns/ � P.sx ; Ns/ � P.Ns/ D

P.sx/ � P.sx ; Ns/ D

P.sx/
�
1 � P.Nsjsx/

�
D

P.sx/P.Ns
0
jsx/ D

P.sx ; Ns
0/:

Consider the definition of PNS (Definition 6):

PNS.X/ D P.˚x D true; ˚x0 D false/ D

P
�
.s C Ns/x ; .s C Ns/

0
x0

�
D

P
�
.s C Ns/x ; .Ns/

0
x0

�
D (Property 2)

P.sx C Nsx ; Ns
0
x0/ D

P.sx C Ns; Ns
0/ D (Property 1)

P.sx ; Ns
0/: (only Ns0=true satisfies this)

Combining the above two results, we get the following
equation:

DCE.X/DPNS.X/DP.˚xDtrue/ � P.˚x0Dtrue/ (4)

Note that a similar equation has also been proved
by Pearl[14], when an elaborate complex assumption
(exogeneity and monotonicity) holds true. As an extension,
we prove it from the viewpoint of information propagation.

As shown in Eq. (4), PNS and DCE can be seen as the
same causal measure in the problem of propagation history
ranking. Therefore, we successfully prove Proposition 1.

�

B PN Calculation

We first review Pearl’s definition of Probability of
Necessity[14]. Then, we show how to calculate it from the
propagation history.

Definition 7 (PN). Continuing with the same
definitions of ˚ , X , x, and x0 in Definition 6, the
probability of the necessity of edge X for diffusion ˚ is
defined as the expression:

PN,P.˚x0DfalsejXDtrue; ˚Dtrue/:

Proposition 5 Continuing with the same definitions of
X , x, x0, s, Ns, s0, and Ns0 in the proof of Proposition 1 found
in Appendix A, the PN value of edge X (for diffusion ˚ )
can be estimated as the expression:

PNDP.Ns0s/=ŒP.Nsx/CP.Ns0s/� (5)

Proof To calculate PN, we need to find a situation
where XDtrue and ˚Dtrue did in fact occur, but where
the removal of X will produce ˚Dfalse. In the first step,
we find the situation .Ns _ Ns0s/ ^ x ensures that XDtrue
and ˚Dtrue did in fact occur. The next step is to find
a situation (based on the first step) where the removal of
X will produce ˚Dfalse. Here s Ns0 satisfies, because the
removal of X will cause s ! s0 (since all traces in S
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go through edge X ). Consequently, we get the following
equation:
PN DP.˚x0DfalsejXDtrue; ˚Dtrue/ D

P
�
s Ns0 ^ xjŒ.Ns C Ns0s/ ^ x�

�
D

P
�
s Ns0x ^ .Ns C Ns0s/x

�
=P
�
.Ns C Ns0s/x

�
D

P.s Ns0 Nsx C Ns0sx/=P.Nsx C Ns0sx/ D

P.s Ns0 NsxCNs0sx/=ŒP.Nsx/CP.Ns0sx/�P.Nsx Ns0sx/�D

P.s Ns0 Nsx C Ns0sx/=ŒP.Nsx/C P.Ns0sx/� D

P.Ns0sx/=ŒP.Nsx/C P.Ns0sx/� D

P.Ns0s/=ŒP.Nsx/C P.Ns0s/�: �

C PS Calculation

We first review Pearl’s definition of Probability of
Sufficiency[14]. Then, we show how to calculate it from
the propagation history.

Definition 8 (PS). Continuing with the same
definitions of ˚ , X , x, and x0 in Definition 6 in Appendix
A, the probability of the sufficiency of edgeX for diffusion
˚ is defined as the expression:

PS,P.˚xDtruejXDfalse; ˚Dfalse/:

Proposition 6 Continuing with the same definitions of
˚ , X , x, x0, s, Ns, s0, and Ns0 in the proof of Proposition 1 in
Appendix A, the PS value of edge X (for diffusion ˚ ) can
be estimated as the expression:

PS D P
�
Ns0.sjx/x0

�
=P.Ns0x0/ (6)

Proof To calculate PS, we need to find a situation
where XDfalse and ˚Dfalse shows up at first, but where
changing x0 ! x would produce ˚Dtrue. This situation
corresponds to s0 Ns0 ^ x0, i.e., XDfalse and ˚Dfalse both
occur. Then, we change x0 ! x, and cause ˚Dfalse !
˚Dtrue. So we get

PS D P.˚x D true j X D false; ˚Dfalse/ D

P.Ns0sxx
0
jNs0s0x0/ D

P.Ns0sxx
0
^ Ns0s0x0/=P.Ns0s0x0/ D

P.Ns0sxs
0x0/=P.Ns0s0x0/ D

P.Ns0sxx
0/=P.Ns0x0/: (x0 causes s0)

According to the definition of intervention[14], P.yx/
equals P.yjx/ in the causal model of propagation history,
because each participant edge X is not affected by any
other cause. Consequently, we could get

PS D P
�
Ns0x0.sjx/

�
=P.Ns0x0/: �
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