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Application Specified Soft-Error Failure Rate Analysis Using
Sequential Equivalence Checking Techniques

Tun Li�, Qinhan Yu, Hai Wan, and Sikun Li

Abstract: Soft errors have become a critical challenge as a result of technology scaling. Existing circuit-hardening

techniques are commonly associated with prohibitive overhead of performance, area, and power. However,

evaluating the influence of soft errors in Flip-Flops (FFs) on the failure of circuit is a difficult verification problem.

Here, we proposed a novel flip-flop soft-error failure rate analysis methodology using a formal method with respect

to application behaviors. Approach and optimization techniques to implement the proposed methodology based on

the given formula using Sequential Equivalence Checking (SEC) are introduced. The proposed method combines

the advantage of formal technique-based approaches in completeness and the advantage of application behaviors

in accuracy to differentiate vulnerability of components. As a result, the FFs in a circuit are sorted by their failure

rates, and designers can use this information to perform optimal hardening of selected sequential components

against soft errors. Experimental results of an implementation of a SpaceWire end node and the largest ISCAS’89

benchmark sequential circuits indicate the feasibility and potential scalability of our approach. A case study on an

instruction decoder of a practical 32-bit microprocessor demonstrates the applicability of our method.
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1 Introduction

As technology scales and node capacitances decrease,
Single Event Upsets (SEUs) induced by particle strikes
from environmental radiation are increased. Other
sources of transient faults are process variations or
aging effects, which cause malfunctions under certain
conditions. Often such faults manifest as soft errors at
the functional level[1, 2]. In either case, the soft error
is observed as an upset in one or more state bits. If a
soft error goes undetected and finally alters the desired
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primary output value, then it may result in a failure.
Although several fault tolerance techniques to harden

the circuits are available at the production level[3] or
the design level[3–5], they impose substantial overheads,
especially a power overhead, and should therefore
be applied judiciously. For applications with stringent
cost constraints, applying protection techniques to the
most vulnerable components in a circuit, i.e., selective
protection is a cost-effective reliability solution.

For selective protection, reliability evaluation is
critical to find out the most vulnerable components
in a given circuit. In a sequential circuit, an SEU
which occurs in a Flip-Flop (FF) may either directly
propagate to primary outputs and cause failure at the
same cycle, or propagate to FFs repeatedly until it
manifests as an error at some primary outputs and
causes failure several clock cycles later, or it is logically
masked on its way to primary outputs at some clock
cycle. Therefore, tools that can pin-point components
of a circuit that need protection would be useful to
ensure reliability.
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Some methods, namely, logical masking, temporal
masking, and electrical masking, may determine
whether an SEU will propagate to become a soft error.
An SEU is logically masked because off-path gate
inputs prevent a logical transition of the output of
that gate. An SEU is electrically masked because the
strength of the resulting pulse is reduced to become
reliably latched. An SEU is temporally masked because
the erroneous pulse misses the latching edge when
arriving at a latch. In this study, we focus on how logical
masking could be utilized to selectively protect FFs in a
circuit.

Our work focuses on the failure rate of circuit
components when soft error occurs. In this paper,
we proposed a novel methodology to automatically
assess the failure probability of FFs with respect to
SEU faults while considering application behaviors.
A novel failure rate measurement called Vulnerable
State Set (VSS) is first defined to evaluate the
contribution of each FF, and then the method
to compute FF failure rate based on VSS is
introduced. Finally, implementation and optimization
methods for the proposed method using Sequential
Equivalence Checking (SEC) techniques are presented
and evaluated.

The significant contributions of this paper are in the
following:
� A novel failure rate measurement called VSS,

which is based on the states of circuit to measure the
FF failure rate;
� A novel methodology that combines circuit states

and application behaviors to practically and accurately
assess the soft error failure rate of FFs;
� An automatic SEC-based soft error failure rate

analysis technique with minimal requirements on users.
Our failure rate analysis can be applied to any type

of circuits. We demonstrate our approach on a third-
party Verilog implementation of a SpaceWire network
end node and the largest ISCAS’89 benchmark. The
experimental results demonstrate that our approach is
feasible and effective even if most of the FFs, especially
all the FFs, in a circuit were vulnerable. We also applied
our methodology to a practical processor design to
demonstrate the effectiveness of our methodology in
selective circuit hardening.

Related work is discussed in Section 2. Section
3 introduces the motivation of our methodology and
some preliminaries. The algorithms based on SEC to
compute FF failure rate and optimization techniques

are presented in Section 4. Section 5 provides two
examples and interesting results of FF failure rate
variation with application behavior. In Section 6, the
algorithms are evaluated and compared on benchmark
circuits. Section 7 presents a case study of our
methodology on the instruction decoder of a 32-bit
embedded processor. Conclusions are provided in
Section 8.

2 Related Work

To evaluate the influence of a soft error on the circuit
behavior, simulation, emulation, or formal methods
can be applied. In all the approaches, a soft error is
first injected into the circuit in various design models,
and then various circuit analysis techniques are applied
to evaluate the failure rate. Relying on fault injection
and simulation techniques[6–9], and simulation- or
emulation-based approaches can enable us to handle
large systems, but can only cover a small portion of
the states and the input space of a circuit, which cannot
guarantee that a given erroneous behavior would never
occur under the given fault model.

Formal techniques are introduced into reliability
evaluation due to their advantage in completeness.
For the formal method-based approaches[10–13], a soft-
error model is interleaved with the original design
model. Then a formal verification method such as
model checking and theorem proving are applied to
prove that a system failure would be avoided when a
soft-error occurs.

Although formal methods can guarantee the
completeness of failure rate evaluation, they cannot
be applied to large-scale designs. Furthermore, the
completeness is only related to the given properties
under verification. If some circuit components are
not considered by the given properties, the analysis
will not be complete. Finally, a drawback to a prior
formal method-based work is that the output is binary,
indicating only whether a flip to some bit is capable
of violating an assertion, and does not provide the
probability of it doing so. In this study, we combine
SEC with probabilistic analysis by Markov Chain
(MC) analysis to investigate the probability of output
inequivalence.

Fault-free simulation approaches, such as
Architectural Vulnerability Factor (AVF) method[14],
estimate the probability of a bit flip in various functional
blocks according to the fraction of time it holds data
and instructions that will affect program behavior.
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Requiring detailed models of processor logic and
data structures, AVF method is limited in specific
applications. There is almost no related work on AVF
estimation for designs that are not processor cores.

Our SEC-based failure rate analysis is similar to Ref.
[15]. However, their work aims to evaluate the overall
robustness of circuit and detecting bugs in fault-tolerant
structures, while our work intends to evaluate the failure
rate of individual FF. Furthermore, we combine circuit
states and application behaviors to direct the failure rate
analysis, which will serve as a more practical guide to
selective protection.

Recently, some studies[16–18] have concentrated on
Soft Error Rate (SER) analysis considering device
and technology influences, which works on layout
and transistor level. However, our method deals with
influence factors on the logic level. Li and Draper[19]

proposed a joint SER analysis technique for Single-
Event Transients (SETs) in combinational logic and
Multiple-Cell Upsets (MCUs) in sequential elements.
In Ref. [20], the authors proposed a method to
accelerate the SER analysis process proposed in Ref.
[19]. We consider SEU in sequential elements and
consider the application running on the circuits in
conducting SER analysis.

Furthermore, existing robustness evaluation
techniques assume that the failure rate of circuit
components will not change with regard to various
applications. Based on our observation, the failure
rate changes for different inputs. Under certain
circumstances, a soft error presented in an FF will be
masked by special inputs[21]. Therefore, considering
the application behaviors, we can obtain applicable and
precise failure rate evaluation results, which will result
in efficient selective protection.

3 Preliminaries

In Ref. [21], we found that under certain circumstances,
a soft-error presented in an FF will be masked by special
inputs. The observations motivated our work.

Before introducing further work, we take the
ISCAS’89 benchmark circuit s27 (Fig. 1) as an
example. We assume that its Primary Input (PI) a
is 0. If a flip occurs in FF y1 when the Present
State (PS) of the circuit is “011”, i.e., y1y2y3 D 011,
then the Primary Output (PO) o would be 1 instead
of the correct value 0. Thus, the PS of s27 “011”
is a vulnerable state of y1. The set of all vulnerable

Fig. 1 An example — s27.

states of an FF y forms the VSS of y, denoted by
VSS.yi /, where i D 1; 2; 3. In s27, only when its
PS is either “001” or “101” can a flip in y1 not
affect the outputs regardless of the input values of the
circuit. Thus, VSS.y1/ D fy1y2y3jX00;X11;X10g,
where the state bit with “X” can be both 0
and 1. Similarly, VSS.y2/ D fy1y2y3j0XXg and
VSS.y3/ D fy1y2y3jXXXg. Then, jVSS.y1/j D
6; jVSS.y2/j D 4, and jVSS.y3/j D 8. According to
this example, different FFs have different VSSs. Then,
whether the VSS of an FF can be used to distinguish
the vulnerability of the FF is the main objective of this
study.

Here we first provide some basic definitions to
understand our method.

Definition 1 Robust State Set (RSS): For an FF y
in a circuit C , with the given fault model F , state s is
called a Robust State (RS) of y if an arbitrary injection
of a fault into y according to F cannot change the
output behavior of C with any inputs presented when
the current state of C is s. The set of all RS of y is
called robust state set of y, denoted by RSS.y/.

Definition 2 VSS: For an FF y in a circuit C , with
the given fault model F , state s is called a Vulnerable
State (VS) of y, if at least one input can change the
output behavior of C after injecting a fault into y

according to F when the current state of C is s. The
set of all the VS of y is called vulnerable state set of y,
denoted by VSS.y/.

For any FF y, its current state s exclusively belongs
to either RSS.y/ or VSS.y/.

Definition 3 FF soft-error Failure Rate (FFR): For
an FF y in a circuit C , with the given fault model F ,
the probability that a soft error in y produces erroneous
output is called soft-error failure rate of y, denoted by
FFR.y/, and 0 6 FFR.y/ 6 1.

Definition 4 Vulnerable State Vulnerability Factor
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(VSVF): For an FF y in a circuit C , with the given
fault model F and a VS si (si 2 VSS.y/ and i D
1; 2; : : : ; jVSS.y/j), when C is at state si and a fault
is injected into y according to F , the probability that
produces erroneous outputs is called vulnerable state
vulnerability factor of si , denoted by VSVFi .y/.

A widely accepted view is that fault-inducing particle
strikes are randomly and uniformly distributed[14].
Consequently, the probability of soft error occurrence
of any FF is also uniformly distributed. Therefore, for
any FF y, FFR.y/ is the product of the ratio that y is
operated at suspicious intervals and the probability (say
R.y/) that produces erroneous output behaviors when
an SEU occurs in y during these intervals:

FFR.y/ D
Total Suspicious Time.y/
Total Runtime of Circuit

�R.y/ (1)

For FF y, an SEU can only suspiciously affect the
circuit outputs if it occurs in y when the present state
of the circuit is in VSS.y/. That is, the suspicious
intervals of y are the durations of all its vulnerable
states, and therefore, R.y/ is VSVFi .y/. We suppose
that the circuit has n reachable states and that D.si /
denotes the total working time of state si during the
runtime of the circuit. Then Eq. (1) can be refined as
follows:

FFR.y/ D

jVSS.y/jP
iD1

D.si / � VSVFi .y/

nP
jD1

D.sj /

(2)

Suppose T .si / denotes the time working at state si
during the runtime of circuit and c is the clock cycle
duration time. Then, Eq. (2) is transformed to

FFR.y/ D

jVSS.y/jP
iD1

c � T .si / � VSVFi .y/

nP
jD1

c � T .sj /

D

jVSS.y/jX
iD1

T .si / � VSVFi .y/
nP

jD1

T .sj /

D

jVSS.y/jX
iD1

.fi � VSVFi .y// (3)

where
T .si /
nP

jD1

T .sj /

is exactly the visiting probability of

state si , which is denoted by fi . In the Finite State
Machine (FSM) of a sequential circuit, the state visiting
probability varies with the workloads of the circuit.

For a design in which good workload estimation is
available, the visit probability of each state can be
analyzed through various methods, including Markov
Chain (MC) theory[22, 23]. Based on Eq. (3) and the
preceding analysis, the soft-error vulnerability of an
SEU is determined by its vulnerable state set and the
input distribution of the circuit.

As all the visiting probabilities of all the circuit
states compose the state distribution vector V D

.f1; f2; : : : ; fn/, the FFR.y/ is correlated to VSS.y/,
VSVFi .y/, and the steady-state probability distribution
of the circuit.

4 Implementation and Optimization

According to Eq. (3), by separately computing the
VSS.y/, VSVFi .y/, and the steady-state probability
distribution of each FF y, we finally obtain the
FFR.y/. The implementation is based on SEC
techniques and transient fault model.

The fault model assumes that a faulty FF behaves
non-deterministically in one time step, without losing
generality, usually at the first time step. The fault is
injected by flipping the current value of the selected FF
in one time step, i.e., from 1 to 0, or from 0 to 1.

4.1 Computing VSS(y)

The VSS.y/ is computed using a classic SEC technique
called Partial Backward Justification (PBJ)[24]. Similar
to Automatic Test Pattern Generation (ATPG)-based
equivalence checking techniques, PBJ computes
whether some input sequences exist in which the
two circuits under verification produce different
outputs. However, contrary to ATPG, PBJ is performed
by a sequence of symbolic pre-image computations
using an unrolled miter as computation model.

Here we briefly provide some related definitions
adopted from Ref. [24].

Definition 5 Signal pair: (a1; a2) is called a signal
pair if a1 and a2 are internal signals from different
circuits, e.g., a1 is from C1 and a2 is from C2, or vice
versa.

Definition 6 Equivalent pair: (a1; a2) is an
equivalent (signal) pair if the binary values of signal a1
and a2 in response to any input vector are identical.

Definition 7 Merge operation: If (a1; a2) is an
equivalent pair, replacing a1 by a2 is called a merge
operation, and the signal a2 is called a merge point.

Definition 8 Discrepancy function: An input vector
v is a distinguishing vector for a signal pair (a1; a2)
if the application of v can produce (0, 1) or (1,
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0) at a1 and a2. The characteristic function of the
set of distinguishing vectors is called the discrepancy
function.

A miter of two circuits under verification is usually
formed by joining the corresponding PI pairs of the two
circuits and by connecting each corresponding PO pair
by an XOR gate. Then the outputs of these XOR gates
are generally connected to an OR gate. In this context,
for the convenience and efficiency of computing the
VSS, the outputs of the XOR gates are directly taken
as the POs of the miter as shown in Fig. 2. Through
the construction of miter, equivalence checking of two
circuits can be reduced to verify whether the outputs of
the miter are all constant 0.

We consider an arbitrary sequential circuit C and its
faulty circuit C 0 with SEU injected. Figure 3 shows
the computation model of our approach based on the
unrolled miter circuit of C and C 0. In the following,
for a component x in C , its corresponding component
in C 0 is denoted by x0. The same label is used for a
component and its output signal. In the unrolled miter,
each signal has a corresponding copy in each time step
which is denoted by using the time-step index as its
subscript. For example, y00 represents the copy of y0 at
time step 0. In the computation model, for an arbitrary

Fig. 2 Miter of original and faulty circuits to compute
VSS(y).

Fig. 3 Computation model to compute VSS(y).

FF y, its faulty circuit C 0 is a copy of C and the fault is
injected by defining the value of y0 at the fault cycle f
as: y0

f
DŠyf . The fault injection point is y00. si and s0i

denote the Present State (PS) of C and C 0 at time step
i , respectively, while they are also the Next State (NS)
of C and C 0 at time step i � 1. s0

id
denotes the PS set

which is on the fault propagation paths in C 0, and sid
is the PS set in C corresponding to s0

id
. si=sid denotes

the difference of set si and sid . Likewise, o0
id

denotes
the set of POs, which are on the fault propagation paths
in C 0. oid is the corresponding PO set of o0

id
in C .

Other POs in C and C 0 are omitted. As the model is
constructed individually for each FF in C , the flow of
our approach needs to run n times for a circuit with n
FFs, and one for each FF.

Based on the above computation model, the
algorithm for computing VSS.y/ is shown in Fig. 4.
The algorithm consists of the following phases:

(1) The miter M of C and C 0 is constructed
and unrolled incrementally. The fault is modeled by
replacing y00 with y0. The set V is initialized to be
empty.

(2) At a newly unrolled time step d , M is first
simplified and optimized for consequent computation
by detecting and merging all the internal signal pairs,
PS pairs and PO pairs which are not on the fault
propagation paths.

(3) The equivalence of each PO pair at time step
d is checked. If not, PBJ is used to compute the
necessary State Requirement Set (SRS) to differentiate
each nonequivalent pair that should be satisfied by the
PS of C at time step 0. For a nonequivalent PO pair,
each state in its SRS is a vulnerable state of y. Thus, we
add the SRS to set V . According to the definition, we
obtain VSS.y/ � R, where R is the reachable state set
of the circuit. After checking one PO pair, if V D R, the
flow for the current FF terminates with VSS.y/ D R.
Otherwise, the algorithm computes the SRS for the rest
of the nonequivalent PO pairs. After checking all the
PO pairs in time step d , the set V contains all the
vulnerable states of y distributed from time step 0 to d .

(4) If V � R, some vulnerable states of y exist,
which may not have been found. These will be
propagated through the NS signals at time step d and
cause erroneous outputs in later time steps. Thus, we
assume that at least one nonequivalent NS pair exists,
and PBJ is used to compute the SRS to differentiate each
nonequivalent NS pair that should be satisfied by the PS
of C at time step 0. If SRS � V , then the algorithm
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Fig. 4 Algorithm flow for computing VSS(y).

terminates with VSS.y/ D R. Otherwise, the miter is
unrolled to time step d C 1 and the computations from
phase (2) to (4) are repeated.

We can prove that to find all the vulnerable states of
y, the miter is unrolled to time stepDC1 at most, where
D is the diameter of the miter. When the algorithm
terminates, the set V is VSS.y/.

The diameter of some circuits could be infinite
due to unreachable states. However, in the context of
this study, a reasonable assumption is made that the
circuit under consideration is functionally correct and
no unreachable states are in it. Therefore, we can safely
obtain D of the given circuit. In any case, to consider
the infinite circuit diameter, we can settle an upper limit
for unrolling by setting the largest cycle in the “Reach
the largest cycle?” step in Fig. 4.

The PBJ process for an arbitrary signal pair (yd ; y0d )
is as follows:

(1) (yd ; y0d ) is first assumed to be not equivalent.
(2) A local cut set is selected, denoted by �d , in the

fan-ins of yd and y0
d

at time step d . The signals in �d
include PIs, merged points or other internal signals at
time step d .

(3) We suppose that Discd
�d
.yd ; y

0
d
/, which can

be obtained by pre-image computation, denotes the
discrepancy function of pair .yd ; y0d / at time step d ,
i.e., the characteristic function of the set of value

combinations at the cut set �d , which can differentiate
pair .yd ; y0d /. If it is not a zero function, i.e., .yd ; y0d /
cannot be proven equivalent, then the cut set is
expanded towards the PIs and PS of time step d . If
.yd ; y

0
d
/ cannot be proven equivalent until �d contains

only PI and PS variables at time step d , then we
obtain the PS requirement function of time step d to
differentiate .yd ; y0d /, denoted by SRSd .yd ; y0d /, by
existentially quantifying all the PIs in Discd�d

.yd ; y
0
d
/.

Similarly, the PS requirement function at time step
d � 1, will be derived by first computing the pre-image
of SRSd .yd ; y0d / followed by existentially quantifying
all the PIs.

(4) Analogously, a number of time steps have to be
explored backwardly to time step 0 until the following
three stopping criteria of PBJ are met at time step i :
� Justified criterion: Reset state is contained in

SRS i .yi ; y
0
i /.

� Unjustified criterion: SRSi .yi ; y0i / is empty.
� Fixed-point criterion: SRSi .yi ; y0i / does not contain

the reset state, but is contained in the union of the
state requirements derived so far, i.e., SRSi .yi ; y0i / �SiC1
kDd SRSk.yk; y0k/.
(5) If the unjustified criterion or the fixed-point

criterion is met, then the target pair .yd ; y0d / is an
equivalent pair. Otherwise, it is a nonequivalent pair
and its SRS at time step 0 to differentiate .yd ; y0d / is
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SRS0.y0; y00/, which can be derived from SRSi .yi ; y0i /
analogously.

Along the algorithm flow, the following stop criteria
is checked to indicate if another time step expansion is
needed:
� When V is equal to the reachable state set R

of C , the flow can be stopped. We conclude that
y is vulnerable and VSS.y/ D R, because R is the
maximum of a VSS.
�When every NS pair at time step d is an equivalent

pair, the flow can be stopped because it indicates that
the error cannot continuously propagate to the next time
step.
�When M has been unrolled d D D C 1 time steps

(D denotes the diameter ofM ), the flow can be stopped.
We conclude that VSS.y/ D V and y is vulnerable if
VSS.y/ is not empty. Otherwise, y is robust.

The complete VSS of y can be obtained when d >

D, which can be formally described as Theorem 1 if
we consider our approach in the State Transition Graph
(STG) of M .

Theorem 1 If a state s is a vulnerable state of
FF y, and its corresponding state in M is s0, an edge
exists, which outputs 1 in a trace with length 6 D C 1

beginning from s0 in the STG of M .
To model the randomicity of SEU in time domain,

the initial state of M is not constrained. In other words,
the initial state of C can be an arbitrary reachable state.
Thus, all the situations in which a fault may occur
in FF are considered in the same computation model.
This ability is the advantage of formal techniques
out of fault-injection-based simulation, which has to
enumerate each situation individually.

4.2 Computing VSVFi(y)

We modify the computation model shown in Fig. 2 and
use MC analysis to compute VSVFi .y/. The new circuit
is shown in Fig. 5 and denoted by Mmodified. Logic C is

Fig. 5 Circuit model for computing VSVFi(y).

used to collect the information on the correct behavior
of the circuit, such as inputs PI vector (PI), the correct
PS vector (PS), the correct PO vector (PO), and the
correct next state vector (NS). On the other hand, circuit
C 0 has inputs PI vector (PI0, where PI0 � PI), possibly
erroneous PS lines (PS0), possibly erroneous PO vector
(PO0), and possibly erroneous NS vector (NS0).

Here, we only show one pair of PO of the two
logics as inputs of the XOR gate. In fact, if C

has multiple POs, each pair of PO is connected
to one XOR gate, and the outputs of these XOR
gates become inputs of an OR gate, the output
of which is denoted by �. We can define the NS
vectors of C and C 0 as: NS D ı D .ı1; ı2; : : : ; ın/
and NS0 D ı0 D .ı01; ı

0
2; : : : ; ı0n/, where n is the

number of state variable. We can also define the
PO vectors of C and C 0 as PO D O D .o1; o2;

: : : ; od / and PO0 D O 0 D .o01; o
0
2; : : : ; o

0
d
/, where

d is the number of outputs. Then, we obtain � D

.o1
L
o01/ _ .o2

L
o02/ _ � � � _ .od

L
o0
d
/, which

represents possible errors in the output lines. In other
words, � D 1 means that at the present state an error
exists in the corresponding element of the output vector
PO0 of the circuit C 0, when compared with the output
vector PO of the circuit C . Finally, the next state vector
of the model for computing VSVFi .y/ is NS modified

D

.ı1; ı2; : : : ; ın; ı
0
1; ı

0
2; : : : ; ı

0
n/. Consequently, we

define � as the state bit for erroneous outputs, and the
state with � D 1 as output erroneous state, denoted
by s� .

An SEU in FF y when at its vulnerable state means
flipping the value of y and keeping the values of other
FFs. Furthermore, as the SEU in y does not begin to
be propagated when SEU occurs, � still takes a value
0 at that time. Therefore, according to Definition 2,
each vulnerable state of C has a corresponding state in
Mmodified, and vice verse.

For example, we suppose that circuit is at state “001”,
which is the vulnerable state of FF y, and an SEU
occurs in y, where y is the left most state bit. Then,
the corresponding state in Mmodified is “001 101 0”.

After constructing Mmodified, we can obtain its STG
of it. Figure 6 shows an example circuit, its STG and
that of Mmodified, where the “0” or “1” labeled on each
out-going edge is the input values that cause the state
transition. As the inputs of Mmodified and C are the
same, for the given input probability distribution, we
can easily build the MC for Mmodified.

As the STG of Mmodified contains state transitions
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Fig. 6 (a) An example circuit, (b) STG of the example, and
(c) STG of the Mmodified of the example.

starting from s� states, the probability of these outgoing
edge may be greater than 0. For example, in Fig. 6,
the states with erroneous output are 001, 011, 101, and
111; from any one of them, other reachable states can be
reached. However, in the original circuit, the circuit fails
to work whenever an error occurs at primary outputs.
Therefore, in the original circuit, the probability of out-
going edges from s� states is always 0.

In our method, the signal �, which indicates output
errors, is at the right most bit of the state encoding.
Therefore, all the states with error outputs are encoded
with “1” at the right most bit. In other words, the
states with error outputs are encoded as odd numbers.
Consequently, to precisely model the behavior of soft
errors, we can fill the lines of even numbers in the MC
matrix with “0”. For the sample circuit in Fig. 6, the
corresponding matrix of Mmodified is as follows:

P D

26666664
p00 p01 � � � p06 p07

p10 p11 � � � p16 p17
:::

:::
: : :

:::
:::

p60 p61 � � � p66 p67

p70 p71 � � � p76 p77

37777775 D

26666664
p00 p01 � � � p06 p07

0 0 � � � 0 0
:::

:::
: : :

:::
:::

p60 p61 � � � p66 p67

0 0 � � � 0 0

37777775 (4)

Theoretically, for any FF y and any of its VS si ,
VSVFi .y/ is the sum of all transition probabilities
which start from si and reach any state sj with error
outputs in h steps in MC Mmodified, that is

VSVFi .y/ D
1X
hD1

X
sjD1

p
.h/
ij (5)

According to Eq. (5), to precisely compute
VSVFi .y/, it must satisfy h!1. However, since
the earlier the FF injected with soft error causes error
outputs, the more vulnerable it is[25]. Consequently, the
larger the state transition step h is, the less influence
it has on the precision of VSVFi .y/. In our method,
the longest transition steps can be defined by designers
(such as k). Then Eq. (5) is refined as follows:

VSVFi .y/ D
kX
hD1

X
sjD1

p
.h/
ij (6)

By analyzing the characteristic of computation of
VSVFi .y/, we can further reduce the state space of
Mmodified, and so does the size of the corresponding MC
matrix. According to the above computation process of
VSVFi .y/, we found that for each state, the process
focuses only on the n step transition probabilities from
it to the s� states. However, in the computation model,
we also consider the transition probabilities that start
from s� states to other states, which brings a large
portion of useless storage cost into the computation.
Furthermore, in the computation model, the states that
cannot reach any s� states, and the robust state that
cannot be reached from any states have no effect on
the computation of VSVFi .y/. Consequently, all these
states can be deleted from the STG of Mmodified to
reduce the size of the MC matrix.

Therefore, the optimization can be conducted in
following steps:

(1) All the outgoing edges of s� states are deleted.
(2) All s� states that cannot be reached from any

states without error outputs are deleted.
(3) All the rest s� states are merged into one state,

denoted by sm, and all the edges from any state without
error outputs are redirected to sm.

(4) All the states that cannot reach sm and the robust
states that cannot be reached from any states are deleted.
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Figure 7a shows the results of applying the first three
optimization steps to Mmodified shown in Fig. 6, which
can reduce the number of states from 8 to 5. Figure 7b
shows the final result after finding that states “110” and
“000” cannot reach sm and then be deleted, which can
finally reduce the number of states to 3. Through these
optimizations, the storage and computation for the MC
matrix can be dramatically reduced.

Therefore, after optimizing the STG ofMmodified, Eq.
(6) is transformed to

Pk
hD1

P
sjD1

p
.h/
im . That is, the

state transition probabilities for any state that reaches
sm in h steps will occupy the .j � 1/-th column of

Fig. 7 (a) STG after optimization by the first 3 steps, and
(b) final STG after application of last optimization step.

the corresponding MC matrix. Therefore, for any FF,
a corresponding VSVFi .y/ exists in column .j �1/ for
any transition steps from 1 to h.

4.3 Computing steady-state probabilities

To compute steady-state probabilities, we directly apply
the methods and optimization techniques proposed in
Refs. [22, 23]. For the given initial distribution of
circuit, which is input vector probability distribution,
we can easily compute the steady-state probabilities by
using MC techniques.

4.4 Putting everything together

As shown in Fig. 8, the proposed method is integrated
into one flowchart. The method can be divided into 4
stages. After computing VSS, VSVF, and runtime state
distribution, we sort the resulting FFR of each FF. The
sorting result is used to select FF to be protected.

The complexity of computing VSS isO.C 2�jFF j/,
where jFF j is the number of FFs in a circuit, while C
is the upper bound of unrolling the miter, which could
be a value k set by users or the diameter D of a circuit.
However, the relation k 6 D exists. Therefore, we take
the complexity of computing VSS as O.D2 � jFF j/.
We find the complexity of stage 2, which is computing
runtime state distribution, and of stage 3, which is
computing VSVF. Equation (6) determines the
complexity of stage 3, which is O.k2/, where k 6 D.
Therefore, we take O.D2/ as the complexity of stage
3. The algorithm used in stage 2 is from Refs. [22, 23],
which also uses MC for computation. Therefore, the

Fig. 8 Whole algorithm.
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complexity of stage 2 is alsoO.D2/ too. In summary, we
find that the complexity of our method isO.D2�jFF j/.

5 Examples

In this section, two circuits are used to demonstrate the
proposed soft-error failure rate analysis methodology.
The interesting phenomena of FF failure rate with
special application behaviors are also presented.

The first example is circuit s27 in ISCAS’89
benchmarks. For the given initial distribution of s27
and input vector probability distribution, Fig. 9 shows
the curve of FFR of each FF changing along time steps.
The vertical axis is FFR, and the horizontal axis is the
time step. We can find that FFR of each FF finally
becomes steady since s27 is a circuit with steady-state
probability. In the duration indicated by the two dotted
lines, the order of the FFs’ FFR is y2, y1, and y3.
Thereafter, y2 is still the FF with the largest failure rate.

The second circuit SBA2[26] is a synchronous bus
arbiter that contains two cells. It has two inputs (Req0
and Req1), four FFs (W0, W1, T0, and T1), and eight
reachable states. Its STG is shown in Fig. 10a, and
the initial state is “0010”. We suppose that the input
vector probability distribution is uniform, and the curve
of FFR of each FF changing along time step is shown
in Fig. 10b. We can find that the FFR of T0 and T1
is always 1, which means that whatever states SBA2 is
in, any soft error that occurs in T0 or T1 will cause the
circuit to fail. The other two FFs’ (W0 andW1)FFR are
changed periodically because SBA2 has no steady-state
probabilities and the state probabilities are periodically
distributed.

Based on Figs. 9 and 10, the following conclusions
are obtained:
� For circuits with steady-state probability and

steady distributed inputs, the FFR of each FF finally
becomes steady.

Fig. 9 FFR curve of each FF in circuit s27.

Fig. 10 (a) STG of circuit SBA2[26], and (b) FFR changing
curve of each FF in circuit SBA2.

� For circuits with unsteady-state probability, some
FFs’ FFR will not be steady and will change periodically.

6 Experimental Results

We have implemented the proposed method for soft-
error failure rate analysis. The tool is implemented in
Java and takes gate-level netlist as inputs, in which
JavaBDD package[27] is used for Boolean function
manipulation. The SEC is based on the techniques
proposed in Ref. [28]. All experiments are conducted
on a workstation equipped with two 4-cores 2.66 GHz
Intel Xeon processors, 16 GB memory, and 12 MB
Cache. All the designs are synthesized to gate-level
netlist using Synopsys Design Compiler 2007 with
ARM SMIC 130 nm Logic013G standard cell library.
We demonstrate our approach on a third party Verilog
implementation of a SpaceWire network end node and
the largest ISCAS’89 benchmarks.

To evaluate the accuracy of our method in selecting
FF for protection, we use Built-In Soft-Error Resilience
(BISER)[5] to harden the selected FFs. The evaluation
metrics for the quality of FF selection is error
coverage. A reliability evaluation tool is built based
on our previous work[29]. The structure of the tool, as
shown in Fig. 11, consists of an automatic simulation
stimulus generator, a fault injector, two simulators,
and a comparator. The fault injector is used to inject
transient faults into the circuit. During each run of the



Tun Li et al.: Application Specified Soft-Error Failure Rate Analysis Using Sequential Equivalence Checking Techniques 113

Fig. 11 Circuit reliability analysis based on fault simulation
used in the experiments.

experiment, 100 000 moments are randomly selected
for fault injection. The same stimuli are applied to two
copies of circuits (with or without SEU) after injecting
one fault. The simulations on two copies of circuits are
run in parallel and the corresponding outputs and state
variables are compared cycle by cycle. Nonequivalence
means that the injected fault is not tolerant by hardening
the selected FFs. Then, the error count is increased by
1, and the states of the circuit with fault are recovered
by those of the golden model. Thereafter, the simulation
continues and new fault is injected at the next moment.

In our study, each experimental circuit is analyzed
twice with the reliability evaluation tool. The first pass
is run on the golden model to determine the error count
that without hardening. The second pass is run on the
hardened circuit to obtain the error count after selective
protection. More precisely, all the moments to inject
fault are identical for the two passes. Finally, the error
coverage is calculated using following formula, where
EODAP means “error outputs detected after protection”
and EODWP means “error outputs detected without

protection”:

Error Coverage D 1 �
EODAP
EODWP

� 100% (7)

The experimental results conducted on the largest
ISCAS’89 benchmarks are shown in Table 1. The
second and third columns show the number of FFs and
the number of robust FFs in each circuit, respectively.
Columns 4 to 7 show the error coverage with four sets of
stimuli for the largest 20%, 40%, 60%, and 80% failure
rate FFs being protected.

We also compared our method with that proposed
in Ref. [21]. The remaining columns of Table 1 show
the error coverage with four sets of stimuli for the
largest 20%, 40%, 60%, and 80% failure rate FFs being
protected and those by the method in Ref. [21].

Table 2 shows the memory and time cost of the
proposed method and those in Ref. [21]. The fourth and
fifth columns show the time and memory cost for failure
rate analysis by the proposed method. We can conclude
that according to the behaviors of applications, the
failure rate analysis of FFs is more accurate with minor
overhead analysis cost.

The SpaceWire network end node design, which
is downloaded from opencore.org[30], is the source
and the sink of packets. It consists of a receiver, a
transmitter, and a state machine FSM for protocol
control. In the experiment, the functions of the receiver
and the transmitter are as follows: the FSM module is
responsible for generating and sending control signals
to the transmitter and the receiver. The transmitter
sends the packets across the link. The receiver buffers
data and detects various errors that might occur
such as disconnection and parity errors. Furthermore,
the receiver reports errors to the FSM module. The
synthesized netlist of this circuit contains 145 FFs.

The vulnerability evaluation resulting from our
approach shows that 110 FFs in the SpaceWire node
design are robust, while the remaining 35 FFs are

Table 1 Experimental results of ISCAS’89 circuits.

Circuit
Number
of FFs

Number of
robust FFs

Error coverage Error coverage[21]

20% 40% 60% 80% 20% 40% 60% 80%
s4863 104 0 0.261 0.463 0.670 0.868 0.165 0.361 0.560 0.732
s5378 179 23 0.762 0.863 0.972 0.990 0.632 0.754 0.851 0.928
s3384 183 0 0.333 0.459 0.527 0.805 0.229 0.349 0.413 0.648
s9234 211 33 0.296 0.453 0.778 0.981 0.179 0.371 0.690 0.893
s15850 534 0 0.459 0.573 0.778 0.986 0.353 0.568 0.754 0.916
s38584 1426 0 0.422 0.617 0.760 0.959 0.316 0.501 0.659 0.877
s38417 1636 72 0.463 0.645 0.781 0.972 0.362 0.540 0.694 0.901
s35932 1728 0 0.512 0.755 0.919 0.997 0.421 0.635 0.819 0.920
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Table 2 Experimental results of ISCAS’89 circuits.

Circuit
Number
of FFs

Number of
robust FFs

Time (s)
Memory

(MB)
Time (s)[21]

s4863 104 0 202.2 37.319 129
s5378 179 23 338.6 40.205 241
s3384 183 0 679.8 67.801 417
s9234 211 33 1441.9 94.493 614
s15850 534 0 2055.8 137.180 1231
s38584 1426 0 5561.6 371.201 4305
s38417 1636 72 7242.3 402.729 6276
s35932 1728 0 10 023.7 401.815 9164

vulnerable, among which the VSSs of 16 FFs are the
reachable state set of the design, which is the FFs
without immunity. Then various percentages of the FFs
with the largest failure rate are selected for protection.
Four sets of stimuli with various input distribution
are used to evaluate the error coverage after circuit
protection. The experimental results are shown in Fig.
12, where the horizontal axis is the percentage of
FFs to be protected, while the vertical axis indicates
the error coverage for the corresponding protections.
We can observe from the figure that when 11% of
the FFs (16 FFs without immunity) are selected for
protection, the average error coverage of the four sets
of stimuli is approximately 77%. After the protected
FFs are increased to 24% (35 FFs), the error coverage
approaches 100%.

Based on the ARM SMIC 130 nm Logic013G
standard cell library, the extra power and area overhead
introduced for various selective protections using the
BISER technique is also evaluated, as shown in Table
3. The last line shows that without protection, no power
and area overheads are introduced. The second line
shows the extra overheads obtained from full protection
for all the 145 FFs. The third line shows that if all
the 35 vulnerable FFs are protected, then the result is
an extra 14:8% power and 0:36% area penalty. The
fourth line shows when the 16 FFs without immunity

Fig. 12 Error coverage changing curve according to
percentage of protected FFs.

Table 3 Extra power and area overhead for different
degrees of protection.

Degree of protection Power
overhead (%)

Area
overhead (%)

Full protection 58:9 1:39

All vulnerable FFs protection 14:8 0:36

11% vulnerable FFs protection 6:5 0:15

No protection 0 0

are selected for protection, extra 6:5% power penalty
and 0:15% area penalty are introduced. Accordingly,
fault tolerance guided by our approach can cut 56%
power penalty and 58:3% area penalty from the overall
penalty of protecting all the vulnerable FFs if the error
coverage (77%) is acceptable.

7 Case Study

In this case study, we applied our application-specified
failure-rate analysis methodology to evaluate the
instruction decoder of Estar2 for Quantum Geography
Information System (QGIS) application. Estar2 is
a 32-bit embedded microprocessor that contains a
high performance 32-bit microprocessor core. The
instruction decoder circuit of the core is the most
complex component, which consumes the largest area
and power cost of the entire design. The instruction
decoder circuit consists of 369 FFs, 3439 combinational
logic gates, and 485 output signals. As the outputs of
the decoder impose the greatest influence on functions
of the following pipeline, it is the most vulnerable to
soft error. QGIS is an open source digital map software
that can perform various operations on maps.

In the case study, the QGIS source code is first
compiled into an executable “el” file using “arm-elf-
gcc”. Then, the executable elf file is run on an Estar2
instruction set simulator based on SimpleScalar[31], and
the execution trace is recorded. The recoded trace
is analyzed to obtain the input vector probability
distribution, which is one of the inputs of our method.

After analysis, we find that all the FFs in the circuit
are vulnerable to soft error. The time spent to analyze
the failure rate is approximately 5329 seconds. Then, by
full protection, approximately extra 45:4% power and
1:18% area overheads are introduced. Considering the
design constraints that extra power and area overhead
do not exceed 22:7% and 0:59%, respectively, we
select the first 189 FFs with highest failure rate to be
protected. The error coverage approaches 91% after
hardening.
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8 Conclusion

We have presented a novel methodology for performing
soft-error failure rate analysis of arbitrary sequential
circuit designs, which relates the failure rate of
FFs with the behaviors of applications run on it.
The methodology is implemented using sequential
equivalence checking techniques, which has minimal
requirements on designers and is an automatic and
complete evaluation technique. With the optimization
techniques, our method can be applied to large-
scale designs. The experimental results and case study
show the effectiveness of our methods. In the near
future, we will extend our work to deal with soft
error in combinational component and multiple soft-
error analysis, and also mitigate our work to Boolean
SATisfiability problem (SAT)-based techniques.
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