
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 06/14 pp56–67
DOI: 10 .26599 /TST.2018 .9010112
Volume 25, Number 1, February 2020

@ The author(s) 2020. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Heterogeneous Parallel Algorithm Design and Performance
Optimization for WENO on the Sunway TaihuLight Supercomputer

Jianqiang Huang, Wentao Han, Xiaoying Wang, and Wenguang Chen�

Abstract: A Weighted Essentially Non-Oscillatory scheme (WENO) is a solution to hyperbolic conservation laws,

suitable for solving high-density fluid interface instability with strong intermittency. These problems have a large

and complex flow structure. To fully utilize the computing power of High Performance Computing (HPC) systems, it

is necessary to develop specific methodologies to optimize the performance of applications based on the particular

system’s architecture. The Sunway TaihuLight supercomputer is currently ranked as the fastest supercomputer

in the world. This article presents a heterogeneous parallel algorithm design and performance optimization of

a high-order WENO on Sunway TaihuLight. We analyzed characteristics of kernel functions, and proposed an

appropriate heterogeneous parallel model. We also figured out the best division strategy for computing tasks,

and implemented the parallel algorithm on Sunway TaihuLight. By using access optimization, data dependency

elimination, and vectorization optimization, our parallel algorithm can achieve up to 172× speedup on one single

node, and additional 58× speedup on 64 nodes, with nearly linear scalability.

Key words: parallel algorithms; Weighted Essentially Non-Oscillatory scheme (WENO); optimization; many-core;

Sunway TaihuLight

1 Introduction

In large-scale, high-performance scientific and
engineering computing applications, such as
Computational Fluid Dynamics (CFD), numerical
weather prediction, seismic data processing, genetic
engineering, and phase-field simulation, numerical

� Jianqiang Huang and Xiaoying Wang are with the State Key
Laboratory of Plateau Ecology and Agriculture, Department of
Computer Technology and Applications, Qinghai University,
Xining 810016, China. E-mail: hjqxaly@163.com; xy.wang@
foxmai.com.
� Jianqiang Huang is also with the Department of Computer

Science and Technology, Tsinghua University, Beijing 100084,
China.
�Wentao Han and Wenguang Chen are with the Department

of Computer Science and Technology, Tsinghua University,
Beijing 100084, China. E-mail: hanwentao@tsinghua.edu.cn;
cwg@tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2018-04-17; revised: 2018-07-07;
accepted: 2018-07-09

solutions to high dimensional differential equations are
major challenges.

Weighted Essentially Non-Oscillatory scheme
(WENO) is a solution to hyperbolic conservation
laws based on essentially non-oscillatory schemes
and suitable for solving high-density fluid interface
instability with strong intermittency. These problems
have a large complex flow structure. Solving nonlinear
hyperbolic conservation laws is one of the most
important research topics in computational fluid
dynamics. The three conservation laws can be
introduced to control the motion of fluid equations,
which are mostly non-linear double. The laws of
constant law, such as the Euler equation and the
magneto-hydrodynamic equation in plasma science,
often need to solve the physical models involved in
such equations in the fields of aerospace, shipbuilding,
and electromagnetic and chemical engineering.
Therefore, it is important to study the most accurate and
efficient methods for solving the nonlinear hyperbolic



Jianqiang Huang et al.: Heterogeneous Parallel Algorithm Design and Performance Optimization for WENO on : : : 57

conservation laws. Harten et al.[1] presented a basic
no-shock format Essentially Non-Oscillatory (ENO),
Liu et al.[2] presented the WENO schemes, while
Jiang and Shu[3] proposed a new smooth measure. One
of WENO’s advantages is that it can achieve high
precision on coarse-grained mesh. However, if we want
to simulate problems from cosmology at an acceptable
resolution, the mesh granularity should be as small
as possible, which greatly increases the amount of
computation.

Large-scale fluid computing based on homogeneous
CPU clusters was a great success in the era of
Terascale[4, 5]. In the era of Petascale, computing
accelerators such as GPUs are employed to provide
more computing capability. The usage of GPUs in
computing has led to achievements requiring the careful
design of mixed code for applications[6, 7].

The workload of WENO requires very heavy
computation in linear algebra. In this article, we design
and implement WENO on the Sunway TaihuLight
system, which is currently the top system in the TOP500
list, and has its own special architecture. Compared with
GPUs, Sunway is different due to its fast on-chip buffer
and limited memory bandwidth, which are the main
challenges for us in this work. Our major contributions
include:
� We profiled the workload and found the hotspot

kernel functions. For each kernel, we analyzed its
characteristics in depth, and optimized it with a
Sunway-specific mechanism.
� We designed and implemented a multi-level

parallel scheme of Message Passing Interface (MPI) +
many-core techniques, and figured out the best division
strategy for tasks.
� The program was further optimized with

an asynchronous Direct Memory Access (DMA)
transmission scheme, Single Instruction Multiple Data
(SIMD) interface, and division equivalent substitution.

The evaluation shows that the kernel functions can
achieve up to 172� speedup on a single node on
Sunway TaihuLight. They also achieve 58� speedup
on 64 nodes, and show good scalability on Sunway
TaihuLight.

2 Background

Many-core accelerators have been used in recent years
to solve computationally intensive tasks, as Fig. 1
reveals for a CPU and GPU heterogeneous system[8–10].
The transformation of this architecture brings a huge

EDRAMShared last level cache

System DRAM

CPU
core

…

CPU

CPU
core

CPU
core

L1

L2 L2

L1

GPU
CU

…

GPU

GPU
CU

GPU
CU

L1 L2 Local

L3

Fig. 1 Integrated CPU/GPU heterogeneous architecture,
which integrates CPUs and GPUs on the same chip, sharing
the physical memory.

transformation to existing high-performance computing
software in many applications, such as earth simulation,
climate simulation, material simulation, and phase field
simulation.

In general, with climate and weather models
requiring more computing resources and more
complicated physics[11], there is still a gap between the
growing demand and increasing supply of multicore
acceleration. In order to fill that gap between the need
for, and supply of, computing resources for certain
applications[12], we have extensively reconstructed
and optimized the WENO model in our work.
Sunway is a supercomputer system consisting of
Management Processing Elements (MPEs) and clusters
of Computing Processing Elements (CPEs)[13]. The
WENO application requires more computing resources;
traditional hardware, such as a GPU, can be used to
speed up numerical calculations, while the Sunway
machine has strong computing power and can provide
additional computing resources for WENO.

In some cases, the high-order solution is very
complex, and the evolution time of these structures is
so long that it is impractical to use a low-order method
to obtain an acceptable resolution. Such problems often
involve special non-oscillating high-end schemes. A
very simple example, first used in Ref. [14], shows the
evolution of the two-dimensional periodic vorticity of
the compressible Euler equation.

The WENO method is quite general for solving high
order numerical methods of convection, especially the
hyperbolic conservation law. The WENO method is to
obtain a higher order approximation by using the final
approximation as a low order approximation candidate
template for a nonlinear convex combination. The
stability and non-oscillation of the WENO process are
mainly dependent on the linearity of the linear weight.

The main advantage of this approach is that
it can achieve any high-order formal accuracy in
smooth areas, non-oscillation, and abrupt intermittent



58 Tsinghua Science and Technology, February 2020, 25(1): 56–67

transition. In several typical linear weights, the
WENO program that this approach did numerical
simulations, including WENO interpolation, WENO
reconstruction, WENO approximation of the first and
second derivative, and WENO integration.

The WENO method is widely used in various fields.
Some examples include dynamical response of a stellar
atmosphere to pressure perturbations[14], shock vortex
interactions and other gas dynamics problems[15, 16],
incompressible own problems[17], Hamilton-Jacobi
equations[18], magneto-hydrodynamics[19], underwater
blast-wave focusing[20], composite schemes and
shallow water equations[21], real gas computations[22],
wave propagation using Fey’s method of transport[23],
etc.

The mathematical model of the hyperbolic
conservation law equation is as follows:
� The linear convection equation is

ut C aux D 0 (1)

This model is the simplest partial differential
equation, which is used to test the numerical methods.
� The inviscid Burgers equation is

ut C

�
u2

2

�
x

D 0 (2)

For a scalar equation of one dimension, the model
is a simple equation of hyperbolic conservation laws,
because the model solution of the Cauchy problem can
continuously produce shock; for this reason it is often
used for discontinuous solution design, analysis, and
simulation of capture method.
� One dimensional Euler system is

ut C f .u/x D 0 (3)

where u and f .u/ are the conserved variable and flux.

u D

264 ��v
E

375 ; f .u/ D
264 �v

�v2 C p

v.E C p/

375 ;
where v; p, �, andE are velocity, pressure, density, and
total energy, and four satisfy the equation of state.

p D . � 1/

�
E �

�v2

2

�
(4)

In Computational Fluid Dynamics, the study of the
numerical method of Euler equations has important
theoretical significance and application value.

This paper develops a rapid and accurate simulation
of hypersonic turbulence with a high order compact
format parallel algorithm. Good parallel efficiency can
be achieved using a high-order compact format and
partitioned parallel computing strategies, and using the
C and Fortran programming languages on the Sunway
TaihuLight parallel platform to transplant and optimize
WENO.

3 Sunway TaihuLight System

The Sunway TaihuLight System has a theoretical peak
performance of 125.4 Pflop/s with 10 649 600 cores and
1.31 PB of primary memory[13].

3.1 Sunway TaihuLight system architecture

The processor chip is composed of 4 Core Groups
(CGs), connected via an NoC, see Fig. 2.

3.2 Comparing the Sunway TaihuLight system
with other large-scale systems.

Table 1 provides a brief comparison between the
Sunway TaihuLight and four other top systems of the

Fig. 2 CPU architecture of Sunway TaihuLight. Each of which includes an MPE and 64 Computing Processing Elements
(CPEs) arranged in an 8��� 8 grid. The processor connects to other outside devices through a System Interface (SI)[13]. The CPE
is composed of an 8��� 8 mesh of 64-bit RISC cores, supporting only user mode, with a 256-bit vector instructions, 16 KB L1
instruction cache, and 64 KB Scratch Pad Memory (SPM).



Jianqiang Huang et al.: Heterogeneous Parallel Algorithm Design and Performance Optimization for WENO on : : : 59

Table 1 Comparing the Sunway TaihuLight system with
other large-scale systems.

System Architecture Peak
performance Linpack

Sunway
TaihuLight

One 260-core
Sunway CPU
(4 MPEs and
256 CPEs )

125 Pflops 93 Pflops

Tianhe-2

Two 12-core
Intel CPUs and
three 57-core

Intel (Xeon Phi
Coprocessors)

100 Pflops 61 Pflops

Titan

One 16-core
AMD CPU

and one
K20x NVIDIA

GPU (2688
CUDA cores)

27 Pflops 18 Pflops

Sequoia
One 16-core

PowerPC CPU
20 Pflops 17 Pflops

K computer
One 8-core

SPARC64 CPU
11 Pflops 10 Pflops

TOP500[24] list in June, 2016. Compared with the
previous top system, Tianhe-2, the TaihuLight system
has double the peak performance, and almost triple
the sustainable Linpack performance. The MPE-CPE
hybrid architecture of the new Sunway system is also
largely different from previous heterogeneous systems.
While the MPE is similar to a CPU core, and the
CPE cluster is similar to a many-core accelerator,
both the CPU and accelerator are now fused onto one
chip with a unified memory space, which is different
from both the homogeneous clusters with only multi-
core CPUs, such as Sequoia and K computer, and
the heterogeneous clusters with both CPUs and PCIe-
connected accelerators, such as Tianhe-2 and Titan.

4 Mapping WENO to the Sunway
TaihuLight Supercomputer: Our General
Methodology

4.1 General workflow of WENO

In fluid dynamics and engineering calculation, the
design of hyperbolic conservation law equation is more
than important, it is often in the solution area that some
physical quantities have a great gradient transform or
a discontinuous issue, such as water jumping issue.
WENO, which serves as the Computational Fluid
Dynamics, the computation workflow of WENO can be

divided into two phases: computing area division and
communication domain division. In computing area, as
shown in Fig. 3.

The algorithm flow of the whole calculation process
is as follows.
� Array initialization for WENO (the array in the

program is called u, u1);
� WENO computing;
� Strcpy (u; u1);
� Array boundary exchange;
� If (t t < end time), goto WENO computing;
� If (IStep D KStep save ) save data to disk.

4.2 MPE and CPE computer mode

There are four calculation modes for MPE and CPE
in the Sunway processor: MPE-CPE synchronization
mode, MPE-CPE asynchronous mode, MPE-CPE
collaborative model, and MPE-CPE dynamic parallel
model. In all four modes, the program is entered by
the MPE, then called to accelerate from the CPEs.
As shown in Fig. 4, the MPE-CPE asynchronization
mode will be used in this paper, for the reason that
MPE completes other computing, communication, or
I/O operations while accelerating calculations from
the CPE, thus improving the parallel efficiency of the

Fig. 3 WENO algorithm flow chart.

Fig. 4 MPE-CPE asynchronization mode.



60 Tsinghua Science and Technology, February 2020, 25(1): 56–67

master-slave collaboration.

4.3 Porting and optimizing

(1) Algorithmic overview
The basic concepts behind the algorithm are as shown

in Eq. (1)
� If the high accuracy approaches ux , it is necessary

to use multiple base points;
� If the function in the base point is interrupted, it

can cause oscillations;
� The interrupt cannot exist everywhere;
� Divide the base points into multiple groups

(templates), and each template calculates the
approximations of j dot derivatives independently, get
multiple differences;
� Weight is given according to the smoothness of

each template;
� Multiple difference results are weighted average.

The smoother the template, the greater the weight. If
there is a gap in a template, the weight tends to 0. If
both are smooth, then combine them into higher order
formats.

Figure 5 shows use of the base points fj � 3; j �
2; j � 1; j; j C 1; j C 2; j C 3g, divided into 4 groups
(templates), having four base points per template.
Construct a weighted expression of WENO flux. Due
to the presence of high nonlinear gravity clustering in
the universe, shock waves may occur in CFD. Thus, the
discretization of the flux for solving the control equation
is based on the seventh order finite difference[25, 26].

Fig. 5 Seven base points are divided into four groups. In
7th-order WENO scheme, we only used the maximum of 7-
point values around, which means we need additional ghost
cells to do the splitting for the original “ghost cells”. Though
the number of ghost-cell layers grows and the amount of
end-to-end communication increases, it is still worthy that
we successfully remove the global communications for the
massive parallelization, and the experiments reveal though
local flux splitting is fairly diffusive when applied to first-
and second-order discretization, but for the 7th-order even
high-order WENO discretization we adopt, the dissipation
and dispersion errors of the local one are acceptable and it
has very small numerical viscosity.

As an example, keeping the values for Y and Z

constants (X , Y , and Z represent three dimensions,
respectively. When the derivative operation is carried
out in the direction of X dimension, Y , and Z are
treated as constants.):

@f .u/

@x

ˇ̌̌̌
xDxj

�
1

�x
.fjC 1

2
� fj� 1

2
/ (5)

The 7th order finite difference WENO scheme has the
flux given by
fjC 1

2
D w1f

.1/

jC 1
2

Cw2f
.2/

jC 1
2

Cw3f
.3/

jC 1
2

Cw4f
.4/

jC 1
2

(6)

where f .i/

jC 1
2

are fluxes on three different stencils given

by
f

.1/

jC 1
2

D c1f .uj�3/C c2f .uj�2/C c3f .uj�1/C

c4f .uj / (7)

f
.2/

jC 1
2

D c5f .uj�2/C c6f .uj�1/C c7f .uj /C

c8f .ujC1/ (8)

f
.3/

jC 1
2

D c9f .uj�1/C c10f .uj /C c11f .ujC1/C

c12f .ujC2/ (9)

f
.4/

jC 1
2

D c13f .uj /C c14f .ujC1/C c15f .ujC2/C

c16f .ujC3/ (10)

We use more complex cubic decomposition
patterns, exploring traffic for a range of patterns
(one-decomposition and two-decomposition) of use.
Although the process of cubic decomposition brings
a more complex communication mode than one-
dimensional[27] or two-dimensional decomposition,
the number of ghost cells generated by the cube
decomposition (Fig. 6) is smallest when the size of the
sub-domain is the same. The best parallel granularity
of one- or two-dimensional decomposition is limited
side long and cubic decomposition is more flexible. In
summary, the cubic decomposition method has the best
scalability.
� For one-dimensional data decomposition, with

spatial direction X , Nx , Ny , and Nz represent the
length, width, and height of the object, respectively,
and Ny � Nz represents the area of the cross section,
communication size per subdomain is Commone:

Commone D 2NyNz :

� For two-dimensional data decomposition, with
spatial directions X and Y divided by T and P ,
communication size per subdomain is Commtwo:

Commtwo D 2
Ny

P
Nz C 2

Nx

T
Nz :



Jianqiang Huang et al.: Heterogeneous Parallel Algorithm Design and Performance Optimization for WENO on : : : 61

Fig. 6 3D blocking. MPI allows users to submit a data type
for the data in discontinuous memory for communication,
the communication mode should be six steps: (1) process
(x, y, z) sends the custom-type updated local cells to process
.x+1, y, z/ and at the same time receives the left side ghost
cells from process .x–1, y, z/; (2) process .x, y, z/ sends cells to
process .x–1, y, z/ and receives the right side ghost cells from
process .x+1, y, z/; (3) process .x, y, z/ sends the custom-type
updated local cells to process .x, y+1, z/ and at the same time
receives the left side ghost cells from process .x, y–1, z/; (4)
process .x, y, z/ sends cells to process .x, y, z–1/ and receives
the right side ghost cells from process (x, y, z+1); (5) process
(x, y, z) sends the custom-type updated local cells to process
(x, y, z+1) and at the same time receives the left side ghost
cells from process .x; y; z–1/; and (6) process .x, y, z/ sends
cells to process (x, y, z–1) and receives the right side ghost
cells from process (x, y, z+1). (For each subdomain, dmx

and dmy represent the length and width of the subdomain,
respectively).

� For three-dimensional data decomposition, with
spatial directions X , Y , and Z divided by T , P , and
H , communication size per subdomain is Commthree:

Commthree D 2
Ny

P

Nz

H
C 2

Nx

T

Ny

P
C 2

Nx

T

Nz

H
:

Therefore we choose the cubic decomposition
method to divide a 3D grid data and distribute these
sub-domains and their ghost cells among the processors
using MPI. Figure 6 reveals that in one sub-domain
there are six-block ghost cells that require exchanging
in every iterative step. To perform the computation,
each block is loaded into the on-chip memory, and
kernel computation is performed on grid elements that
have all of their required stencil elements within the
boundaries[28].

In order to ensure stable operation in non-smooth
areas, we use flux splitting. Global splitting brings
global communication, which results in large-scale
parallelization of performance loss. Therefore, we
chose to use local Lax-Friedrichs flux splitting to reduce
global traffic.

(2) Major challenges and our solutions
In the Sunway system, we have an MPE and a group

of 64 CPEs. Consequently, we are faced with the first
challenge that the direct mapping from the OpenMP to

OpenACC will not provide suitable parallelism for the
CPE cluster.

Table 2 provides a brief comparison between the
Sunway and Intel i7. The architecture of the Sunway
processor is very different from that of Intel processor.
There is a large gap between the memory and L3
cache, so we can optimize different programs according
to the structure of Sunway processor. Therefore we
require making full use of the 64 CPEs to strengthen the
performance of the program. The CPE is currently only
available in user mode, and interrupts are not supported
from the kernel. From the core design it aims to achieve
the aggregation of computing power.

The second challenge is that there are two paths
of communication between the MPE and CPEs. One
path is the G-load mode: the MPE and CPE share
8 GB of memory space, which can contain data that
can be accessed directly from the CPE. The second
path is the DMA approach, by which the transfer of
data between MPE and CPE is performed by DMA
(get or put). Regarding CPE internal communication for
register communication, the CPE cluster is composed
of an 8�8 mesh, therefore the register communication
is limited to CPEs in the same row or the same column.
Otherwise, the data exchange can be accomplished by
two methods: CPE can broadcast to the same row or
the same column through the put function, and also
instruct the CPE to send data, or cyclic delivery can be
used if a larger amount of data is transferred. This latter
approach will take up a lot of registers, however, so we
need to make some tradeoffs in the use of CPE registers,
otherwise it will be counterproductive.

Therefore, in most cases, we require a buffering
scheme that loads the proper data into the SPM.

For the first challenge to CPE cluster parallelism,
we will adjust the calculation sequence and loop
structure to aggregate sufficient computation and enable
the correct number of parallel threads. For the data
buffering and memory bandwidth constraints[29] (see
Fig. 7), we improve the code to minimize the put
intermediate variables into a limited on-chip buffer.

Table 2 Comparing the Sunway with Intel CPU.
Parameter Intel i7 4770R Sunway

Frequency 3.2 GHz 1.45 GHz
Memory 32 GB 8 GB
L1 cache 32 KB 32 KB
L2 cache 256 KB 256 KB
L3 cache 20 MB No
Vector component 256 bit 256 bit



62 Tsinghua Science and Technology, February 2020, 25(1): 56–67

Fig. 7 Memory bandwidth benchmark of using different
number of CPEs in a CPE cluster with chunk size of
256 bytes.

5 Optimization of WENO upon the Special
Architecture of Sunway

In this section, we will describe the method to put the
parallel aspect of the computing tasks onto the CPEs for
execution, and simultaneously put the sequential part
onto MPEs. Since the sequential portion is relatively
small in WENO, the performance of the program can
be greatly improved due to the calculation done by the
CPEs.

5.1 LDM and DMA optimization

First, we port WENO onto MPE for execution, calculate
the running time of each core function, and get the
hotspot function (see Table 3), as shown in Algorithm 1.

The 64-bit CPEs of Sunway can directly access the
memory, but direct access to memory will be slow, and
the memory of the MPE that the 64-bit CPEs access will
be congested, greatly increasing access latency. Every
CPE has its own private Local Data Memory (LDM)
programmable memory, and we attempt to reduce the
frequency of CPE accessing MPE memory by using
the LDM. The startup of the CPE loads some of the
constant data through the establishment of a structure,
into the LDM of each CPE. This data can be reused at a
later time, thus reducing the frequency of memory space
access and improving application performance.

Since WENO computing requires multiple iterations,
and each cycle needs to call the CPE, we use DMA
to exchange data between MPEs and CPEs, which has
no impact on the report data being processed at the

Table 3 Time of Hotspot Function per iteration.
Hotspot Time (s)

WENO7 0.300 532 102 5
Copy 1.558 184 623�10�2

Exchange boundary 7.248 878 479�10�3

Algorithm 1 Maunally timing using MPI Wtime()
1: t .1/ D MPI Wtime./
2: call WENO7.u; u1; nx ; ny ; nz ; hx ;LAP; dt/I
3: t .2/ D MPI Wtime./I
4: if my id:eq:0 then
5: print*, “WENO7 time for this step is”, t .2/ � t .1/I
6: end if
7: t .3/ D MPI Wtime./I
8: for each k 2 Œ1; nz � do
9: for each j 2 Œ1; ny � do

10: for each i 2 Œ1; nx � do
11: u.i; j; k/ D u1.i; j; k/
12: end for
13: end for
14: end for
15: t .4/ = MPI Wtime();
16: if my id:eq:0 then
17: print*, “u copy to u1 time for this step is”, t .4/ � t .3/;
18: end if
19: t .5/ D MPI Wtime./I
20: call exchange boundary x standard(u, Iperiodic(1));
21: call exchange boundary y standard(u, Iperiodic(2));
22: call exchange boundary z standard(u, Iperiodic(3));
23: t(6) = MPI Wtime();
24: if my id.eq.0 then
25: print*, “exchange boundary step time”, t .6/ � t .5/I
26: end if

same time. The computation and communication can
thereby overlap, leading to higher performance of the
application.

As shown in Algorithm 2, regarding inter-
subdomain communication, MPI calls are invoked
by MPEs. Packing and unpacking are performed by
CPEs via DMA. Edge and corner data are transferred
together with face data using enlarged buffers[30]. After
three rounds of communication between face-adjacent
subdomains in x; y, and z directions, face, edge,
and corner data arrive to their destinations shown
as follows. (1) Round 1: Face data from the control
region are packed into send buffers and sent to adjacent
subdomain. During communication, face data in the
second direction are packed into send buffer. After
receipt, edge/corner data are copied to send buffer,
where face data are already filled. (2) Round 2:
During communication, face data in the third direction
are packed into send buffer. (3) Round 3: Data are
transferred in the third direction.

The programming language environment supports C ,
C++ (for MPE only), Fortran, MPI;OpenMP;Pthread,
and OpenACC for parallel programming. A parallel
math kernel library that runs on one core group and an



Jianqiang Huang et al.: Heterogeneous Parallel Algorithm Design and Performance Optimization for WENO on : : : 63

Algorithm 2 WENO executes code on MPEs and CPEs
1: t(1) = MPI Wtime();
2: s param%nx D nx ;
3: s param%ny D ny ;
4: s param%nz D nz ;
5: s param%LAP = LAP;
6: s param%in = loc(u(:, :, :));
7: call athread spawn(slave c WENO7, s param);
8: call athread join();
9: t(2) = MPI Wtime() ;

10: void c WENO7 (slave param t hparam) f
11: DMA SET NS(&dma get, DMA GET, &reply);
12: DMA SET NS(&dma put, DMA GET, &reply);
13: DMA NEW(dma get, sizeof(slave param t));
14: doublev4 hx , dt;
15: nx D sparam:nx ;
16: ny D sparam:ny I

17: nz D sparam:nz I g

Athread interface (similar to Pthread) are also provided
to help with programming the CPEs. Our code is written
in Fortran for MPE and in C for CPE. It adopts the
Athread interface to spawn and fork threads on the
CPEs and to conduct DMA operations, and the -O3
compiler option is used.

5.2 Remove redundant data

The array u1 is a copy of u, and after using CPEs to
accelerate the WENO function, the process takes up
more than 40% and needs optimization. Here, we delete
the memory access and copy process of array u1. u1 is
a copy of u, which means that you only need to visit u
when you calculate it. There is no need to repeat visiting
u1 because you can write back to u directly. Therefore
u1 is redundant and can be deleted.

5.3 Data refactoring

Due to the limitation of the size of the slave core’s
LDM space, not all of the data required from the core
calculation can be transmitted to the LDM, resulting
in a failure to provide enough data to keep the slave
core in a task saturated state. Starting a DMA requires
300 cycles, and the transmitted data must be 32 bytes in
size, in aligned and contiguous blocks of memory. As
much data as possible need to be transmitted at once
in order to reduce the number of DMA start ups. In this
paper, some data structures in WENO are reconstructed,
so that the data needing to be transferred is continuous
and aligned and the speed of data exchange between
the master and slave cores can be accelerated. This
refactoring is as shown in Algorithm 3.

Algorithm 3 Data refactoring
1: doubledmŒ4 � 1024�I
2: DMA SET SIZE.dma get; nx � 8/I

3: DMA SET SIZE.dma put; nx � 8/I

4: int i; j; kI
5: for i D t id ; i < ny � nz ; iC D 64 do
6: j D i I

7: k D i � ny I

8: DMA GP.dma get; inC j �nxCk�ny �nz ; lmd; nx �

8;COUNT/I
9: dma wait.reply;COUNT/I

10: DMA GP.dma put; outC j � .nx C 2� LAP/; lmd; nx �

8;COUNT/I
11: dma wait.reply;COUNT/I
12: end for

5.4 SIMD optimization

The vector length of the Sunway processor is 256 bit,
which can load up to 4 double types at a time. The
most common occurrence in WENO is location, but
it is all three dimensions, and in order to leverage the
advantages of SIMD, an additional dimension should
be introduced. In this way, programming on four
dimensions of the structure can accelerate the loading
of the SIMD, but the amount of data is also increased
accordingly. This has little impact on the MPE, but
since the LDM is only 64 KB, this method of changing
the data structure is not appropriate. Therefore, we
only perform SIMD optimization for most calls in
the WENO program. Since too many for loops in the
program are dependent, original cycles are combined
into one loop for SIMD optimization. Theoretically,
this optimization can make a four-fold improvement
in the performance of the entire program. After
removing the copy of the array, WENO becomes the
bottleneck, and the bandwidth is only 3.9 GB/s, which
is limited in calculation and meets the requirements and
conditions for quantization using the SIMD extension
(see Algorithm 4) to the quantization acceleration core
computing cycle. As shown in Fig. 8, each CPE reads
four rows of data at one time and passes the array
structure from Array Of Struct (AOS) to Struct Of Array
(SOA) by the simd vshff function. Therefore we can use
the SIMD instruction to calculate four rows at a time,
and then the simd vshff function can be converted to the
AOS structure[31].

5.5 Elimination of boundary exchange

After the boundary exchange removed, there was no
dependency between the calculation of each row. After



64 Tsinghua Science and Technology, February 2020, 25(1): 56–67

Algorithm 4 Using the SIMD extension
1: // SIMD Before
2: for k D 1; nz do
3: for j D 1; ny do
4: for i D i begin; i end C 1 do
5: S10 D Œa11 � f .i � 3/ C a12 � f .i � 2/ C a13 �

f .i � 1/C a14� � f .i/I

6: S11 D a21 � f .i � 2/ � a22 � f .i � 1/ C a23 �

f .i/C a24 � f .i C 1/I

7: S12 D a31 � f .i � 1/C a32 � f .i/C a33 � f .i C

1/C a34 � f .i C 2/I

8: S13 D a41 � f .i/C a42 � f .i C 1/C a43 � f .i C

2/C a44 � f .i C 3/I

9: end for
10: end for
11: end for
12: == SIMD After
13: for k D 1; nz do
14: for j D 1; ny do
15: for i D i begin; i end C 1 do
16: f v4Œ4 � i � D simd vshff .t3; t1; 136/I

17: f v4Œ4 � i C 1� D simd vshff .t4; t2; 136/I

18: f v4Œ4 � i C 2� D simd vshff .t3; t1; 221/I

19: f v4Œ4 � i C 3� D simd vshff .t4; t2; 221/I

20: S10 D a11 � f v4Œi � 3� C a12 � f v4Œi � 2� C

a13 � f v4Œi � 1�C a14 � f v4Œi �I

21: S11 D a21 � f v4Œi � 2� � f v4Œi � 1� C a23 �

f v4Œi �C a24 � f v4Œi C 1�I

22: S12 D a31�f v4Œi�1�Ca32�f v4Œi �Cf v4ŒiC

1�C a34 � f v4Œi C 2�I

23: S13 D a41 � f v4Œi �C a42 � f v4Œi C 1�C a43 �

f v4Œi C 2�C a44 � f v4Œi C 3�I

24: end for
25: end for
26: end for

𝐸

𝜌𝜔

𝜌𝑣

𝜌𝑢
𝜌

y

z

x

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝜔
𝐸

y

z

x

𝑥0, 𝑦0, 𝑧0

Fig. 8 AOS to SOA. One 3D array of five-component
structure is changed to five 3D arrays.

the calculation was completed, the calculation of the
cycle in the LDM could be obtained, and the time
locality was increased and the visit was optimized as
a result.

After the above optimization, the boundary exchange
segment calculated at each step becomes the new
performance hotspot. Each time step of the program
must be repeated to the array u, and the time locality

is poor and needs to be optimized. We found that the
boundary of the u value is initialized to 0:0001, and
will not change with each iteration. Thus the boundary
exchange will always be 0:0001, which obviously can
be removed, without having any impact on the original
algorithm, thus improving the optimization. After
the boundary exchange was removed, there was no
dependency between the calculation of each row. After
the calculation was completed, the calculation of the
cycle in the LDM could be obtained, and the time
locality was increased and the visit was optimized as
a result.

6 Evaluation

6.1 Results of the kernels running on CPE clusters

In this section, we analyzed the run time of the various
functions on the Sunway processor and analyzed the
acceleration effect from using the CPEs. Figure 9
shows the acceleration ratio and scale of WENO. We
compared the computational performance of the mixed
version, which uses MPE and 64 CPEs, against that
which uses only one MPE of the computer node. For
computationally intensive kernels, such as the main
part of the WENO function (92.78% of the run-time),
we can achieve 12� to 41� acceleration. In particular,
for the most time-consuming WENO function, we can
achieve acceleration of 41�, making full use of the
structural characteristics of CPEs. Of the rest of the
functions, the boundary swap (2.35% of total run) and

Fig. 9 Speedup of major kernels in WENO that we port
onto the CPE clusters, and their proportions in the total
runtime of the hotspot function. The speedup is comparing
the performance of the kernel running on 4 MPEs and
4 CPEs against the performance of the kernel running on only
4 MPE.



Jianqiang Huang et al.: Heterogeneous Parallel Algorithm Design and Performance Optimization for WENO on : : : 65

the strcpy function (4.87% of total run) are usually
memory-bound, but multithreading of four CPEs can
still provide acceleration from 2� to 12�.

6.2 Performance of the entire WENO models

Parameter descriptions are provided in Table 4.
� The total grid number is nx � ny � nz .
� nx: The number of grids in the I -direction.
� ny : The number of grids in the J -direction.
� nz: The number of grids in the K-direction.
� nx0: The parallel partition block in the i -direction.
� ny0: The parallel partition block in the j -direction.
� nz0: The parallel partition block in the k-direction.
� LAP: The length of the overlapping region of

the parallel processing. Usually in the 7th or 8th
order, LAPD 4. Setting up the convention results in a
decrease in computational efficiency.
� KStep save: Store the computation file every other

KStep save step.
The regional decomposition method is used to

calculate and divide template into nx; ny , and nz in
three directions, for a total of nx0 � ny0 � nz0.

6.3 Scalability test results

Figure 10 shows the machine scalability and Table 5

Table 4 Properties of coarse-grained data in CFD.
Parameter Exp1 Exp2 Exp3
nx 200 250 500
ny 160 200 400
nz 200 250 500
nx0 1 1 1
ny0 2 2 2
nz0 2 2 2
LAP 4 4 4
End time (s) 2.5�100 2.0�100 3.0�10�1

KStep save 1000 1000 300

Fig. 10 Entire WENO that we port onto the CPE clusters
with different optimize configurations.

Table 5 Properties of fine grained data in CFD.
Parameter Exp1 Exp2 Exp3
nx 200 250 500
ny 160 200 400
nz 200 250 500
nx0 4 4 4
ny0 8 8 8
nz0 8 8 8
LAP 4 4 4
End time (s) 2.5�100 2.0�100 3.0�10�1

KStep save 1000 1000 300

shows the scale of WENO. We compared the
computational performance of the mixed version, which
uses 64 nodes (Table 6).

6.4 Performance result analysis

The speedup numbers we achieve for various WENO
and boundary exchange defined by the above metrics,
show that for the performance of the entire model, we
can achieve a speedup of 172�.

7 Related Work

WENO is a solution to hyperbolic conservation laws
in a group of high-precision generalized Godunov
format methods in computational fluid dynamics.
In recent years, we have started to see projects
that refactor WENO for heterogeneous architectures,
such as refactoring WENO on the CPUCGPU

Table 6 Execution time of the entire WENO that we port
onto the CPE clusters with different optimize configurations
(see Fig. 11). Similarly, we demonstrate both the time
(seconds) for running on both MPE and CPE clusters.

Node number MPE CPE Exp1 Exp2 Exp3
1 4 64 1.886 3.603 8.623
16 64 1024 0.149 0.325 0.612
64 256 4096 0.032 0.061 0.156

Fig. 11 Scalability test.



66 Tsinghua Science and Technology, February 2020, 25(1): 56–67

architecture[31], refactoring the community atmosphere
model[12], phase field simulations of coarsening
dynamics[30], 10 m-core scalable fully-implicit solver
for nonhydrostatic atmospheric dynamics[32], molecular
dynamics simulation[33], sea ice model algorithms[34],
two compute-bound scientific kernels[35], etc., on the
Sunway TaihuLight system.

8 Conclusion

In this paper, we report our contribution to optimizing
the WENO model on the Sunway TaihuLight many-
core supercomputer. Due to the differences between
the Sunway many core processor (4 CGs, each
of which consists of 1 MPE and 64 CPEs) and
traditional multi-core CPUs, and especially the 64 KB
SPM that requires explicit control by the user,
we performed an extensive refactor of WENO to
expose the right level of parallelism to the 64 CPEs
in each CG. We analyzed characteristics of kernel
functions, and proposed an appropriate heterogeneous
parallel model. We also figured out the best division
strategy for computing tasks, and implemented the
parallel algorithm on Sunway TaihuLight. By using
access optimization, data dependency elimination, and
vectorization optimization, our parallel algorithm can
achieve up to 172� speedup on one single node and 58�
speedup on 64 nodes, with nearly linear scalability.

Acknowledgment

This paper was partially supported by the National
High-Tech Research and Development (863) Program of
China (No. 2015AA015306), the Science and Technology
Plan of Beijing Municipality (No. Z161100000216147),
the National Natural Science Foundation of China
(No. 61762074), Youth Foundation Program of Qinghai
University (No. 2016-QGY-5), the National Natural
Science Foundation of Qinghai Province (No. 2019-ZJ-
7034), and National Supercomputer Center in Wuxi,
China.

References

[1] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy,
Uniformly high order accurate essentially non-oscillatory
schemes, III, J. Comput. Phys., vol. 71, no. 2, pp. 231–303,
1987.

[2] X. D. Liu, S. Osher, and T. Chan, Weighted essentially
non-oscillatory schemes, J. Comput. Phys., vol. 115, no.
1, pp. 200–212, 1994.

[3] G. S. Jiang and C. W. Shu, Efficient implementation of
weighted ENO scheme, J. Comput. Phys., vol. 126, no. 1,
pp. 202–228, 1996.

[4] J. C. Huang, H. Lin, T. J. Hsieh, and T. Y. Hsieh, Parallel
preconditioned WENO scheme for three-dimensional flow
simulation of NREL Phase VI Rotor, Comput. Fluids, vol.
45, no. 1, pp. 276–282, 2011.

[5] L. Thais, A. E. Tejada-Martı́nez, T. B. Gatski, and G.
Mompeana, A massively parallel hybrid scheme for direct
numerical simulation of turbulent viscoelastic channel
flow, Comput. Fluids, vol. 43, no. 1, pp. 134–142, 2011.

[6] P. Kestener, F. Château, and R. Teyssier, Accelerating
Euler equations numerical solver on graphics processing
units, in Int. Conf. Algorithms and Architectures for
Parallel Processing ICA3PP, C. H. Hsu, L. T. Yang, J. H.
Park, and S. S. Yeo, eds. Springer, 2010, pp. 281–288.

[7] J. Tölke and M. Krafczyk, TeraFLOP computing on a
desktop PC with GPUs for 3D CFD, Int. J. Comput. Fluid
Dynam., vol. 22, no. 7, pp. 443–456, 2008.

[8] X. J. Yang, X. K. Liao, K. Lu, Q. F. Hu, J. Q. Song, and
J. S. Su, The TianHe-1A supercomputer: Its hardware and
software, J. Comp. Sci. Technol., vol. 26, no. 3, pp. 344–
351, 2011.

[9] X. K. Liao, L. Q. Xiao, C. Q. Yang, and Y. T. Lu,
MilkyWay-2 supercomputer: System and application,
Front. Comput. Sci., vol. 8, no. 3, pp. 345–356, 2014.

[10] F. Zhang, J. D. Zhai, B. S. He, S. H. Zhang, and W. G.
Chen, Understanding co-running behaviors on integrated
CPU/GPU architectures, IEEE Trans. Parall. Distrib. Syst.,
vol. 28, no. 3, pp. 905–918, 2017.

[11] J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin,
A. P. Craig, and R. Jacob, Computational performance
of ultra-high-resolution capability in the community earth
system model, Int. J. High Perform. Comp. Appl., vol. 26,
no. 1, pp. 5–16, 2012.

[12] H. H. Fu, J. F. Liao, W. Xue, L. N. Wang, D. X. Chen,
L. Gu, J. X. Xu, N. Ding, X. L. Wang, C. H. He, et al.,
Refactoring and optimizing the Community Atmosphere
Model (CAM) on the sunway TaihuLight supercomputer,
in Int. Conf. High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, UT, USA, 2016.

[13] H. H. Fu, J. F. Liao, J. Z. Yang, L. N. Wang, Z. Y. Song,
X. M. Huang, C. Yang, W. Xue, F. F. Liu, F. L. Qiao, et
al., The Sunway TaihuLight supercomputer: System and
applications, Sci. China Inform. Sci., vol. 59, no. 7, p.
072001, 2016.

[14] J. Binney, The stellar-dynamical oeuvre, J. Astrophys.
Astron., vol. 17, nos. 3&4, pp. 81–93, 1996.

[15] F. Grasso and S. Pirozzoli, Shock wave-thermal
inhomogeneity interactions: Analysis and numerical
simulations of sound generation, Phys. Fluids, vol. 12, no.
1, pp. 205–219, 2000.

[16] D. A. Jacobsen, J. C. Thibault, and I. Senocak,
An MPI-CUDA implementation for massively parallel
incompressible flow computations on multi-GPU clusters,
in 48th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition, Orlando,
FL, USA, 2010.

[17] J. Y. Yang, S. C. Yang, Y. N. Chen, and C. A. Hsu,
Implicit weighted ENO schemes for the three-dimensional
incompressible Navier-Stokes equations, J. Comput. Phys.,
vol. 146, no. 1, pp. 464–487, 1998.



Jianqiang Huang et al.: Heterogeneous Parallel Algorithm Design and Performance Optimization for WENO on : : : 67

[18] G. S. Jiang and D. P. Peng, Weighted ENO schemes for
Hamilton-Jacobi equations, SIAM J. Sci. Comput., vol. 21,
no. 6, pp. 2126–2143, 2000.

[19] G. S. Jiang and C. C. Wu, A high-order WENO
finite difference scheme for the equations of ideal
magnetohydrodynamics, J. Comput. Phys., vol. 150, no.
2, pp. 561–594, 1999.

[20] S. M. Liang and H. Chen, Numerical simulation
of underwater blast-wave focusing using a high-order
scheme, AIAA J., vol. 37, no. 8, pp. 1010–1013, 1999.

[21] R. Liska and B. Wendroff, Composite schemes for
conservation laws, SIAM J. Numer. Anal., vol. 35, no. 6,
pp. 2250–2271, 1998.

[22] P. Montarnal and C. W. Shu, Real gas computation using an
energy relaxation method and high-order WENO schemes,
J. Comput. Phys., vol. 148, no. 1, pp. 59–80, 1999.

[23] S. Noelle, The MoT-ICE: A new high-resolution wave-
propagation algorithm for multidimensional systems of
conservation laws based on Fey’s method of transport,
J. Comput. Phys., vol. 164, no. 2, pp. 283–334, 2000.

[24] TOP500 list of the world’s top supercomputers, https://
www.top500.org/lists/2016/06/, 2016.

[25] G. J. Shan and C. S. Wang, Efficient implementation of
weighted ENO schemes, J. Comput. Phys., vol. 126, no. 1,
pp. 202–228, 1996.

[26] D. S. Balsara and C. W. Shu, Monotonicity preserving
weighted essentially non-oscillatory schemes with
increasingly high order of accuracy, J. Comput. Phys., vol.
160, no. 2, pp. 405–452, 2000.

[27] D. A. Jacobsen, J. C. Thibault, and I. Senocak,
An MPI-CUDA implementation for massively parallel
incompressible flow computations on multi-GPU clusters,
in 48th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition, Orlando,
FL, USA, 2010.

[28] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey,
3.5-D blocking optimization for stencil computations on
modern CPUs and GPUs, in Proc. 2010 ACM/IEEE Int.
Conf. High Performance Computing, Networking, Storage

and Analysis, New Orleans, LA, USA, 2010.
[29] H. Lin, X. C. Tang, B. W. Yu, Y. W. Zhuo, W. G. Chen,

J. D. Zhai, W. W. Yin, and W. M. Zheng, Scalable graph
traversal on sunway TaihuLight with ten million cores,
in 2017 IEEE Int. Parallel and Distributed Proc. Symp.
(IPDPS), Orlando, FL, USA, 2017.

[30] J. Zhang, C. B. Zhou, Y. G. Wang, L. L. Ju, Q. Du, X. B.
Chi, D. S. Xu, D. X. Chen, Y. Liu, and Z. Liu, Extreme-
scale phase field simulations of coarsening dynamics on
the sunway TaihuLight supercomputer, in Proc. Int. Conf.
High Performance Computing, Networking, Storage and
Analysis, Salt Lake City, UT, USA, 2016.

[31] C. Meng, L. Wang, Z. Y. Cao, L. L. Feng, and W. S. Zhu,
Large-scale parallelization based on CPU and GPU cluster
for cosmological fluid simulations, in Proc. 25th Int.
Conf. Parallel Computational Fluid Dynamics, Changsha,
China, pp. 207–220, 2014.

[32] C. Yang, W. Xue, H. H. Fu, H. G. You, X. L.
Wang, Y. L. Ao, F. F. Liu, L. Gan, P. Xu, L. N.
Wang, et al., 10M-core scalable fully-implicit solver for
nonhydrostatic atmospheric dynamics, in Proc. Int. Conf.
High Performance Computing, Networking, Storage and
Analysis, Salt Lake City, UT, USA, 2016, pp. 57–68.

[33] W. Q. Dong, L. T. Kang, Z. Quan, K. L. Li, K. Q.
Li, Z. Y. Hao, and X. H. Xie, Implementing molecular
dynamics simulation on Sunway TaihuLight system, in
2016 IEEE 18th Int. Conf. High Performance Computing
and Communications, Sydney, Australia, 2016.

[34] B. Y. Li, B. Li, and D. P. Qian, PFSI.sw: A programming
framework for sea ice model algorithms based on
Sunway many-core processor, in 2017 IEEE 28th Int.
Conf. Application-Specific Systems, Architectures and
Processors (ASAP), Seattle, WA, USA, 2017.

[35] J. Lin, Z. G. Xu, A. Nukada, N. Maruyama, and S.
Matsuoka, Optimizations of two compute-bound scientific
kernels on the SW26010 many-core processor, in 2017
46th Int. Conf. Parallel Processing (ICPP), Bristol, UK,
2017.

Jianqiang Huang is an lecturer at Qinghai
University, China. He is currently a PhD
candidate in the Department of Computer
Science and Technology, Tsinghua
University. His research interests include
high performance computing and graph
computing systems.

Wentao Han received the bachelor and
PhD degrees from Tsinghua University
in 2008 and 2015, respectively. He is
currently a postdoctoral researcher in
the Department of Computer Science
and Technology, Tsinghua University.
His research interests include big data
processing and neuromorphic systems.

Xiaoying Wang is a professor in the
Department of Computer Technology
and Applications, Qinghai University,
China. She received the PhD degree from
Tsinghua University in 2008. Her research
interests include cloud computing and
parallel computing.

Wenguang Chen received the BS and PhD
degrees from Tsinghua University in 1995
and 2000, respectively. He is a professor
and associate head in the Department
of Computer Science and Technology,
Tsinghua University. His research interest
is in parallel and distributed computing and
programming model.


