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Anchor Self-Localization Algorithm Based on UWB Ranging
and Inertial Measurements

Qin Shi, Sihao Zhao, Xiaowei Cui�, Mingquan Lu, and Mengdi Jia

Abstract: Localization systems utilizing Ultra-WideBand (UWB) have been widely used in dense urban and indoor

environments. A moving UWB tag can be located by ranging to fixed UWB anchors whose positions are surveyed

in advance. However, manually surveying the anchors is typically a dull and time-consuming process and prone

to artificial errors. In this paper, we present an accurate and easy-to-use method for UWB anchor self-localization,

using the UWB ranging measurements and readings from a low-cost Inertial Measurement Unit (IMU). The locations

of the anchors are automatically estimated by freely moving the tag in the environment. The method is inspired by

the Simultaneous Localization And Mapping (SLAM) technique used by the robotics community. A tightly-coupled

Error-State Kalman Filter (ESKF) is utilized to fuse UWB and inertial measurements, producing UWB anchor

position estimates and six Degrees of Freedom (6DoF) tag pose estimates. Simulated experiments demonstrate

that our proposed method enables accurate self-localization for UWB anchors and smooth tracking of the tag.

Key words: anchor self-localization; error-state Kalman filter; sensor fusion; simultaneous localization and mapping

1 Introduction

Indoor location awareness is key to a number of
applications. Many indoor localization technologies
have been developed in recent years for research
and commercialization[1]. Among these technologies,
the relatively new Ultra-WideBand (UWB) method
has gained extensive attention due to its high-ranging
accuracy[2]. Short-pulse radio waveforms are utilized
in UWB, leading to an accurate determination of
transceiving timestamps of the UWB signal between
a transmitter and a corresponding receiver. Emerging
applications of UWB localization systems have been
presented in Refs. [3–7]. In a typical localization
scenario using the UWB characteristic, a transmitter
(namely a tag) is to be located, and several receivers
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(namely anchors) are rigidly fixed at static known
locations receiving the radio wave signals. The location
of the tag can then be obtained by processing
measurements such as Time Of Flight (TOF)[4], Time
Of Arrival (TOA)[8], Time Difference Of Arrival
(TDOA)[9, 10], etc.[1] A UWB localization accuracy to
the order of decimeters is achieved[11].

However, in UWB localization systems, the position
of the UWB anchors is assumed to be pre-calibrated
and known. Pre-calibration by manually surveying the
anchors is always a part of the deployment of an
UWB localization system. Nevertheless, surveying the
anchors requires additional equipment, such as a laser
rangefinder, and is typically a grueling, time-consuming
process that is prone to artificial errors. Furthermore,
the pre-calibration process cannot be conducted in areas
unreachable or dangerous for mankind, such as narrow
spaces or high-radiation areas. Therefore, an anchor
self-localization method is desirable to automate the
process that determines the physical location of the
anchors, thus reducing time and labor costs.

For UWB systems, the direct ranges from anchors
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to a tag can be measured. By setting the tag at
known positions, the anchor self-localization problem
becomes an inverted localization problem and the
positions of the anchors can be determined by solving
multilateration equations. However, this still presents
challenges for unreachable or dangerous areas when
setting the tag. Additionally, obtaining the tag positions
is typically a chicken and egg problem, as the
UWB localization system is not available. Inspired
by the cooperative sensor localization algorithms
in Wireless Sensor Networks (WSN)[12], the UWB
anchor self-localization problem can be addressed
with the underlying assumption that communication
between UWB anchor pairs is available. However,
this significantly complicates the UWB transmission
scheme design and raises power costs.

An accurate anchor self-localization solution was
presented in Ref. [13]. Firstly, a tag at the known
location was rigidly attached to each anchor, thus
obtaining its pairwise relative position as a constraint to
a maximum-likelihood optimization problem. Gaussian
noise modeled TOA measurements were utilized in
formulating this optimization problem, the solution
to which allowed for the estimation of the initial
anchor positions. Secondly, a data set was collected
by freely moving a single tag in the measurement
volume, and the initial position estimations of the tag
were optimized using the previous estimated initial
anchor positions. Finally, a complete parameter vector,
including the tag and the anchor positions, was
estimated on the same data set. This optimization began
from the initial estimation results derived in the first
two steps. To handle the UWB measurement outliers,
this calibration solution was enhanced in Ref. [14]
by modeling the UWB measurements using heavy-
tailed asymmetric distribution. However, due to the
nature of UWB, the calibration accuracy of this solution
degrades in multipath propagation and Non-Line-Of-
Sight (NLOS) situations. Further, the initialization steps
are complicated, considering the numbers of tags that
need to be attached and detached.

In this paper, we present an accurate and easy-to-use
UWB anchor self-localization method by introducing
an additional low-cost Inertial Measurement Unit
(IMU) consisting of a 3-axis rate gyroscope and a 3-
axis accelerometer. By additionally attaching an IMU
to the tag, an accurate position estimate can be obtained
in a short period of time after system startup, which
we use as a constraint to derive a reliable initial

estimate of the anchor positions. Furthermore, the IMU
measurements are incorporated into the UWB self-
localization algorithm as constraints and are capable of
improving system robustness in signal multipath and
NLOS situations. The anchor self-localization method
is based on the tightly coupled fusion of the raw IMU
measurements and UWB ranging measurements, which
permits simultaneous localization of the tag and self-
localization of the anchors. We do not require a known
displacement trajectory of the tag or any related action
to obtain a priori, but instead let the tag move freely
in the environment, thereby enabling an automatic
deployment of a UWB localization system.

In the remainder of this paper, we first give a detailed
formulation of our UWB anchor self-localization
problem in Section 2, followed by the formulation of
the sensor models in Section 3. We then solve the
UWB anchor self-localization problem using UWB and
inertial measurements in Section 4. Finally, we provide
the experimental results and conclusion in Sections 5
and 6, respectively.

2 Problem Formulation

In this section, we will address the UWB anchor self-
localization problem with a detailed formulation. We
start by introducing a typical application.

Considering localization for construction teams
in underground construction tasks, UWB anchors
embedded in mobile stands can be incrementally placed
as the construction areas become larger. It is convenient
to use the anchor self-localization method for a quick
and accurate determination of the current anchor
positions, by freely moving an IMU mounted UWB tag
in the new construction area. Figure 1 illustrates this

Fig. 1 A typical anchor self-localization scenario: when
UWB anchors are newly deployed, they are self-localized
by freely moving an IMU mounted UWB tag in the
measurement volume.
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typical application scenario. Here we note that the IMU
is rigidly connected to the UWB tag with known relative
positions. This setup shares a common clock, which
enables timestamped UWB and inertial measurements
and thus simplifies processing.

Several coordinate frames are introduced: the body
frame which is fixed with the IMU sensor is denoted
as .�/b , the tangent frame whose origin is fixed on
the earth is denoted as .�/t , the Earth-Centered Inertial
(ECI) frame is an inertial frame denoted as .�/i , and the
Earth-Centered Earth-fixed Frame (ECEF) is denoted
as .�/e . In this work, the tangent frame is selected
as the reference computational frame. Notations that
are employed throughout the work are as follows. The
three-dimensional vector r expressed in a reference
frame k is written as rk or alternatively as rk

AB , with
A and B as start and end points, respectively. The
instantaneous angular velocity of frame j with respect
to frame i expressed in a reference frame k is written
as !!!k

ij . Rk
i is the rotation matrix, representing rotation

from frame i to frame k. The corresponding quaternion
is written as qk

i in S3, which relates a 3-sphere S3 to
rotations of R3. A comprehensive overview of rotation
representation is given in Ref. [15]. The matrix Œ!!!��

represents the skew symmetric form of vector !!!.
The aim of our work is to develop a self-localization

method that estimates the positions of the anchors
expressed in the tangent frame:

xU WD

h
pT

1 � � � pT
M

iT
2 R3M (1)

where p1; : : : ; pM are the corresponding positions of
anchors a1; : : : ; aM , M is the total number of anchors.
The dimension of the state to be estimated is then
3M . We have omitted the superscript t of position and
velocity for simple representation in this paper.

Considering that we have no predetermined
knowledge of the tag position, the self-localization
problem becomes a Simultaneous Localization And
Mapping (SLAM) problem, which has been widely
researched in the robotics community[16–19]. SLAM
is the algorithm by which a robot can simultaneously
build a consistent map of the environment and estimate
its location within this same map. A seminal solution to
the SLAM problem utilizes an Extended Kalman Filter
(EKF)[20, 21]. Based on the idea of the SLAM scheme,
the map in our self-localization problem refers to the
positions of anchors. In this way, our self-localization
algorithm aims to simultaneously recover the positions
of all unknown anchors xU , and estimate the state of
the tag (namely a robot) xN .

A variety of literature estimates the state of the
tag using inertial and UWB measurements with UWB
anchor positions known, in which case the state xN is
typically defined as Refs. [22–24]:

xN WD

h
pt T vt T qt

b

T
iT
2 R6

� S3 (2)

where pt is the position of the tag in the tangent frame,
vt is the tag velocity, the superscipt t indicates tag,
qt

b
is the body orientation which is observable due to

the benefit of IMU. In our work, following the above-
mentioned literature, we additionally render the IMU
biases observable and derive the state as

xN WD

h
pt T vt T qt

b

T xa
T xg

T
iT
2R6

� S3
� R6

(3)
where xa; xg are inertial biases explained in Section 3.1.

Thus, our goal is the estimation of the full state vector
consisting of the positions of anchors xU and the state
of the tag xN :

xS WD

h
xT

N xT
U

iT
2 R6

� S3
� R6C3M (4)

The raw IMU and UWB measurements are inputs
into our method. Instead of the loosely-coupled
method, in which the measurements are preprocessed
as independent quantities like position or orientation,
we advocate the direct use of the raw measurements
for a tightly-coupled fusion. This permits maximal
exploitation of sensing cues, thus leading to a robust
system. For instance, when there are not enough UWB
measurements to obtain a triangulation result in a
loosely-coupled method, the UWB information will
be ignored. A tightly-coupled method will directly
use every raw measurement without information loss.
Furthermore, the tightly-coupled method is capable
of suppressing the outliers, especially the UWB
measurement outliers that are due to multipath effects
or NLOS situations. These benefits illustrate the
motivation for adding an IMU as an aid.

Our fusion strategy relies on the Error-State Kalman
Filter (ESKF)[25], which has been successfully used
in estimation and data fusion problems. To derive the
ESKF, we provide a detailed state model of the inertial
and UWB sensors in the next section.

3 Sensor Modeling

In this section, we model the IMU and UWB
measurements and formulate the error-state equations
of the kinematics of the system.

3.1 IMU kinematics

IMU has been utilized as a valuable sensor in many
applications. An IMU commonly measures the sensor’s
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specific force f b and angular rate!!!b
ib

with respect to an
inertial frame, such as an ECI frame, which is resolved
in the body-fixed frame, using a 3-axis accelerometer
and a 3-axis gyroscope. The sensor’s specific force f b

is a combination of earth gravity field vector gt
1 and the

sensor’s acceleration ˛̨̨ t
tb

:

f b
D Rb

t .˛̨̨
t
tb � gt

1/ (5)
where gt

1 D Ng
t
� !!!t

ie � .!!!
t
ie � r/, !!!t

ie denotes the
Earth’s rotation vector with respect to the i-frame, r
is the geocentric position vector, Ngt is the gravitational
vector, and!!!t

ie�.!!!
t
ie�r/ is the centripetal acceleration

due to the Earth’s rotation around its axis.
The raw measurements from the accelerometer and

gyroscope, namely N̨̨̨ and N!!!:
N̨̨̨ D f b

C xa C va (6)
N!!! D !!!b

ib C xg C vg (7)

where N̨̨̨ and N!!! are affected by acceleration bias xa,
gyroscope bias xg , and addictive noise. The addictive
noise in acceleration and gyroscope measurements is
assumed to be Gaussian white noise, va � N .0;���2

va
/,

vg � N .0;���2
vg
/. The acceleration bias xa is modeled as

Brownian motion, whose derivative is first order Gauss-
Markov process:

Pxa D Faxa C!!!a (8)
where !!!a is the driving Gaussian white noise, !!!a �

N .0;���2
!!!a

). Fa corresponds to the correlation time of
3-axis acceleration bias:

Fa D

264� 1
Tax

0 0

0 �
1

Tay
0

0 0 �
1

Taz

375 (9)

The gyroscope bias xg is simply modeled as random
walk, whose derivative is Gaussian white noise, !!!g �

N .0;���2
!!!g
/.

Pxg D !!!g (10)
Therefore, we can write the IMU kinematics

equations combined with dynamic bias models as
Ppt
D vt ;

Pvt
D Rt

b f b
C gt

� 2Œ!!!t
ie�
�vt ;

PRt

b D Rt
b.Œ!!!

b
ib�
�
� Œ!!!b

ie�
�/;

Pxa D Faxa C!!!a;

Pxg D !!!g (11)
To arrive at the error-state covariance propagation

equation, we adapt the formulation from Ref. [26],
in which the error term of the over-parameterized
9-dimensional rotation matrix is defined as a small
perturbation around the estimated rotation matrix:

Rt
b D .I3 C Œ����

�/ OR
t

b (12)

where ��� is a 3-dimensional vector representing the
small-angle rotations to rotate from the tangent frame
to align with the estimated tangent frame with respect
to the tangent frame and I3 is 3 � 3 identity matrix.

Therefore the error-state of the tag is derived:

•xN D

h
•pt T

•vt T
���T •xa

T •xg
T
iT
2 R15 (13)

The continuous-time linearized dynamics of error-
state take the form as

•PxN .t/ D F.t/•xN .t/C G.t/w.t/ (14)

where w WD
h
vT

a vT
g !!!T

a !!!T
g

iT
is the collection of

uncorrelated Gaussian white noise processes, and

F D

2666664
0 I3 0 0 0
0 �2

�
!!!t

ie

��
�
�
f t
��

�Rt
b 0

0 0 �
�
!!!t

ie

�� 0 �Rt
b

0 0 0 Fa 0
0 0 0 0 0

3777775 (15)

G D

2666664
0 0 0 0
�Rt

b 0 0 0
0 �Rt

b 0 0
0 0 I3 0
0 0 0 I3

3777775 (16)

For practical system implementation, we use the
discrete-time dynamics of error-state:

•xkC1
N D ˚̊̊ kC1

k
•xk

N C wk (17)

where the index k denotes the k-th IMU measurement,
and wk is zero-mean white noise process with
covariance Q WD diag.���2

va
; ���2

vg
; ���2

!!!a
; ���2

!!!g
/, whose

diagonal elements are covariances of va; vg ;!!!a; and
!!!g . We use the Euler numerical integration method over
the time interval •t between two IMU measurements
to approximate the discrete-time error-state transition
matrix as

˚̊̊ kC1
k
D exp.F.tk/•t/ �I15 C F.tk/•t (18)

And the discrete-time magnitude of the white noise
sequence is derived as

Qk
� G.tk/QG.tk/T•t (19)

Thus, we obtain the covariance propagation equation as

PkC1
N D ˚̊̊ kC1

k
Pk

N ˚̊̊
kC1
k

T
C Qk (20)

3.2 UWB ranging measurement

There are various existing ranging schemes making
use of UWB technology, such as TOF, TOA, and
TDOA. Among these techniques, TOF was preferred
in our work due to the fact that it is capable of



732 Tsinghua Science and Technology, December 2019, 24(6): 728–737

eliminating the need for anchor clock synchronization.
Thus, unlike the work presented in Ref. [14], which
determines both the anchor positions and clock offsets,
we only need to localize the anchor positions during the
deployment of UWB setup. For the UWB setup, the
tag ranges with m D 1; : : : ;M anchors in a round-
robin scheme. A very precise clock is implemented in
the UWB modules, thus an accurate transmission and
reception time of the UWB signal was recorded. A
double-sided Two Way Ranging (TWR) method[27] is
used to measure the TOF. Figure 2 shows the core
of a double-sided TWR exchange. The vertical lines
represent time measurements by an anchor and tag,
with their clocks independent and unsynchronized. It
starts with a normal TWR exchange made up of a
poll message and a response message. Upon receiving
the response message, the tag sends a final message
back to the anchor. The reply delays Da and Db are
pre-defined constants; the round-trip times Ra and Rb

are calculated by the measured message timestamps.
Hence, the time of flight Tf is derived as

Tf D
RaRb �DaDb

Ra CDa CRb CDb

(21)

Once the TOF Tf is measured, the ranging
measurement rm between the tag and an anchor m is
calculated and modeled as

rm
D Tf � c D kpm � pt

k C vr (22)

where pm is the position of the anchor m in the tangent
frame, c the speed of radio wave, assumed to be equal to
light speed, and vr the ranging noise with a zero mean
Gaussian distribution, vr � N .0; �2

vr
/.

Finally, the Jacobians with respect to error terms
•pm and •pt are needed for our self-localization
solution. The Jacobian Jt with respect to •pt at Opt is
straightforwardly obtained as

Fig. 2 A double-sided two-way ranging exchange.

Jt D
@kpm � ptk

@•pt
D �eT (23)

e D
pm � pt

kpm � ptk
(24)

Here, e is the unit vector pointing from the anchor to the
tag. The Jacobian Jm with respect to •pm is

Jm D
@kpm � ptk

@•pm

D eT (25)

4 Anchor Self-Localization Algorithm

In this section, we arrive at the solution to the anchor
self-localization problem. The goal is to simultaneously
estimate the positions of all unknown anchors and track
the state of the tag. To derive a convergent and stable
self-localization result, we need proper initialization.

4.1 Initialization

For proper initialization, the tag begins with a static
state. Without loss of generality, the tangent frame
origin is then set to be the position of the static
tag, and the tangent frame axes coincide with the 3-
dimensional accelerometer axes. We adopt a loosely-
coupled fusion method to make initial guesses of the
positions of anchors. Since the propagated positions of
the tag by IMU measurements suffers little cumulative
error for some time after system startup, accompanied
by the UWB ranging measurements, we can calculate
the initial values of the anchor positions using the
multilateration equations.

Considering anchor m, we obtain the ranging
measurements rm

k
and corresponding IMU propagated

tag position pt
k

at timepoint k. Note that the UWB
message contains the unique identity m of the
communicating anchor. The initial anchor position
pm;0 is then obtained by minimizing the objective
function:

pm;0 D arg min
pm2R3

NX
kD1

krm
k � h.pm; p

t
k/k (26)

where h.pm; pt
k
/ D kpm � pt

k
k. Iterative Least-Squares

(ILS) is utilized to solve this optimization. Note that,
for a reliable initialization result, at least N D 3

UWB ranging measurements are needed while the tag
is moving.

4.2 Tightly-coupled anchor self-localization

After initialization, we proceed with a tightly-coupled
fusion of UWB ranging and inertial measurements
for full state vector estimation. Figure 3 shows the
proposed tightly-coupled fusion algorithm, where the
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Fig. 3 Tightly-coupled fusion algorithm. Low rate UWB
ranging measurements and high rate inertial measurements
are directly used for simultaneous anchor self-localization
and tag state estimation.

high-precision self-localization of anchors and the
tracking of the tag are simultaneously performed. The
low rate UWB ranging measurements and high rate
inertial measurements are directly fed into the sensor
fusion algorithm.

The fusion strategy is based on ESKF, which runs
at the high rate of IMU to make full state predictions
Ox�S by IMU measurements and to propagate the error-
state covariance matrix P. At the arrival of low rate
UWB measurement rm emitting from the m-th anchor,
which renders the errors observable, the filter correction
is performed[28]:

K D PHT.HPHT
C ���2

vr
/�1;

•OxS D K.rm
� h.Ox�S //;

P .I � KH/P

(27)

where h.Ox�S / D h.Opm; Op
t
k/. The Jacobian matrix H

with respect to the error-state •xS is straightforwardly
obtained as

H D
@h

@•xS

ˇ̌̌̌
xS

D

Œ Jt 01�12 01�3.m�1/ Jm 01�3.M�m/ � (28)

By injecting the estimated error-state mean ı OxS into
the prediction, the state estimate is updated using
the appropriate compositions (quaternion products or
sums):

OxS D Ox�S ˚ OıxS (29)

5 Experimental Results

In this section we report on simulation experiments
carried out to evaluate the performance of our proposed
anchor self-localization method.

5.1 Simulation setup

In our simulation, the UWB setup is deployed in a large

space, approximately 20m � 20m � 10m in size.
Five unsynchronized anchors are randomly placed at
unknown locations. The inertial UWB tag has been
mounted on an Unmanned Aerial Vehicle (UAV), which
moves around the measurement volume for 30 seconds
with high dynamics. The trajectory of the UAV follows
a spiral pattern. Figure 4 shows the simulated ground
truth of the anchor positions and the trajectory of the
UAV.

The 50Hz UWB ranging measurements and 100Hz
accelerometer and gyroscope measurements are then
simulated using the ground truth with noise. As UWB
ranging performs in a round-robin scheme, for each
anchor the ranging measurement rate is 10Hz which is
relatively low. The UWB and IMU noise characteristics
used for simulation are shown as follows: The
standard deviation of the noise in the UWB ranging
measurements is set as �vr

D 0:01m, and the standard
deviations of the white noise processes vg ;!!!g ; va; and
!!!a in the IMU measurements are correspondingly set as
��� vg
D 6 � 10�4 � I3 rad/s, ���!!!g

D 2 � 10�4 � I3 rad=s2,
��� va
D 2�10�3 �I3 m=s2, and ���!!!a

D 8�10�4 �I3 m=s3,
respectively.

The simulated measurements are fed into our method
to simultaneously locate the anchors and track the states
of the UAV. We evaluate the performance of our method
in terms of the accuracy of the anchor self-localization
and UAV state estimation.

5.2 Anchor self-localization results

Figure 5 shows the self-localization results of UWB
anchors. The results are obtained from the last corrected
state of ESKF and aligned with ground truth. We

Fig. 4 Ground truth of positions of anchors and trajectory
of the UAV. The red line is the simulated spiral trajectory and
the blue six-pointed stars are positions of anchors.
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Fig. 5 Self-localization results of UWB anchors. The
estimated anchor positions are depicted in green.

can see that the green dots indicating the results of
our method are approximately superimposed over
the blue indicating the ground truth. This suggests
the effectiveness of our proposed self-localization
method. The localization errors of each anchor are
summarized in Table 1. The Root Mean Square Error
(RMSE) for the anchors is 4.48 cm. The RMSE is
given by

ERMSE D

vuut 1

N

NX
iD1

keik (30)

Figure 6 reflects the change of the anchor self-
localization results over time. Without loss of

Table 1 Anchor self-localization errors. (cm)
x y z

Anchor 1 5.60 2.78 0.17
Anchor 2 3.52 1.51 0.22
Anchor 3 0.09 0.38 0.88
Anchor 4 1.92 5.32 1.00
Anchor 5 2.90 1.92 0.70

Fig. 6 Self-localization results of the 5-th anchor and its
comparison against the ground truth.

(a) Estimated trajectory and the ground truth

(b) Estimated orientation and the ground truth

(c) Estimated speed and ground truth

Fig. 7 UAV state estimates and their comparison against the
ground truth.
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generality, we only show the results of the 5-th
anchor. The results converge quickly and the errors in
three coordinate axes remain low after approximately
5 seconds. Notably, a good initial guess of the
anchor position by our initialization method aids in
convergence.

5.3 Tag state estimation

Our method simultaneously localizes the anchors and
estimates the UAV states. Figure 7 shows the state
estimation results of our method and compares them
against ground truth, wherein Fig. 7a shows the
estimated UAV trajectory, Fig. 7b shows the estimated
UAV orientation expressed by Euler angles, and Fig.
7c shows the estimated UAV speed. It can be seen
that using our method the estimated positions of the
UAV form a smooth trajectory, and that very smooth
orientation and speed estimates are derived. From these
results, we can conclude that our method enables
accurate and smooth state estimates for the tag mounted
UAV at the high output frequency. In support, the
method achieves 5:59 cm RMSE for position and
0:1465ı RMSE for orientation when comparing against
the ground truth.

5.4 Performance under different ranging noise

To analyze the effect of ranging noise level on the
performance of our method, we add varying noise
on the UWB ranging measurements and evaluate the
simulation results.

Figure 8 shows the results of the RMSE for anchor
self-localization and tag positioning with respect to the
ranging noise level. It can be seen that the RMSE grows
approximately linearly as ranging noise increases.

Fig. 8 Performance of our method with respect to UWB
ranging noise.

Though the covariance of the ranging measurements
reached 0.15, a satisfying result can be obtained with
0.0905 m RMSE for anchors and 0.1273 m RMSE for
the tag. This indicates the robustness of our method.

6 Conclusion

In this work, we have presented an accurate and
easy-to-use UWB anchor self-localization method,
using the UWB TOF measurements and inertial
measurements. Inspired by the SLAM technique, our
method simultaneously localizes the UWB anchor and
estimates the state of the moving tag, thus enabling
automatic deployment of UWB setup while freely
moving the tag in the environment. Experiments show
that the method permits accurate and robust UWB
anchor self-localization within a few seconds, and is
capable of drift-free localization of the moving tag.
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