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Residuals-Based Deep Least Square Support Vector Machine with
Redundancy Test Based Model Selection to Predict Time Series

Yanhua Yu� and Jie Li

Abstract: In this paper, we propose a novel Residuals-Based Deep Least Squares Support Vector Machine (RBD-

LSSVM). In the RBD-LSSVM, multiple LSSVMs are sequentially connected. The second LSSVM uses the fitting

residuals of the first LSSVM as input time series, and the third LSSVM trains the residuals of the second, and so

on. The original time series is the input of the first LSSVM. Additionally, to obtain the best hyper-parameters for the

RBD-LSSVM, we propose a model validation method based on redundancy test using Omni-Directional Correlation

Function (ODCF). This method is based on the fact when a model is appropriate for a given time series, there should

be no information or correlation in the residuals. We propose the use of ODCF as a statistic to detect nonlinear

correlation between two random variables. Thus, we can select hyper-parameters without encountering overfitting,

which cannot be avoided by only cross validation using the validation set. We conducted experiments on two time

series: annual sunspot number series and monthly Total Column Ozone (TCO) series in New Delhi. Analysis of

the prediction results and comparisons with recent and past studies demonstrate the promising performance of the

proposed RBD-LSSVM approach with redundancy test based model selection method for modeling and predicting

nonlinear time series.

Key words: time series prediction; information redundancy; residuals-based deep Least Squares Support Vector

Machine (LSSVM); Omni-Directional Correlation Function (ODCF)

1 Introduction

As one of data mining technologies, time series
prediction has been widely used in many applications,
such as financial market prediction, electrical utility
load forecasting, weather and environmental state
prediction, and communication network traffic volume
prediction. Models such as the well-known auto-
regressive moving average, Auto-Regressive Integrated
Moving Average (ARIMA), and seasonal ARIMA can
only be applied for linear time series[1, 2]. However,
many time series in the real world are typically
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nonlinear. In this case, more advanced time series
prediction algorithms, such as neural network[3–5]

and Support Vector Machine (SVM)[6–11], need to be
applied.

Recently, some researches have ensembled several
models to enhance the accuracy of time series
prediction[5, 7]. In Ref. [5], Han and Xu ensembled two
models to predict the time series. Finally, they added
the predicted values of the two models to obtain the
final predicted value of the ensemble model. Tang et
al. proposed another ensemble model of multiple Least
Squares Support Vector Machines (LSSVMs)[7]. The
algorithm creates multiple LSSVMs predictive models
via a method of iterative error correction, and the
predicted values of each LSSVM are added. They
conducted experiments on two benchmark chaos
series with known Lorenz equation and Mackey-Glass
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equation and obtained good performance. However, this
ensemble model is not appropriate for some other time
series, such as annual sunspot series. When the original
sunspot series is modeled by the first LSSVM model,
the residuals cannot be modeled by another LSSVM,
and the Mean Squared Error (MSE) of the first residuals
on the test set is still large. This is because although
there are multiple models in the ensemble model, each
constituent model is trained separately by minimizing
the MSE of the validation set. However, the best model
in every step may not be the best for the ensemble model
as a whole.

To solve this problem, we propose a novel model of
deep SVM, called Residuals-Based Deep Least Squares
Support Vector Machine (RBD-LSSVM). The RBD-
LSSVM is composed of multiple LSSVMs, and the
LSSVMs are sequentially connected. Like the models
in the ensemble model in Ref. [7], the first LSSVM is
employed to model the original time series, while the
second LSSVM is used to model the residual of the first
LSSVM, and so on. In the deep SVM, we train the
combined model as a whole; thus, the RBD-LSSVM
can avoid the problem of underfitting, which occurs in
Ref. [7].

Furthermore, we propose an approach to select the
optimal RBD-LSSVM model; this approach involves
using the Omni-Directional Correlation Function
(ODCF) to test for information redundancy. The
approach is based on the fact that inherent correlations
exist between the observations in a time series, which
is totally different from general regression problems
where the samples are assumed to be independent
of each other. If a model is appropriate for the
time series, it should extract all information from
the series. Thus, there should be no redundant
information in the residuals. To check for information
redundancy, we propose the use of the ODCF
statistic, which was proposed by Zhu and Zhang[12]

and Zhang et al.[13] to check validity of identified
neural network in modeling of nonlinear systems. The
ODCF can be categorized into Omni-Directional Auto-
Correlation Function (ODACF) and Omni-Directional
Cross Correlation Function (ODCCF). The ODACF
can be used to check if there is correlation (linear
or nonlinear) in the residuals, while the ODCCF can
be used to check if there is correlation between the
residuals and original time series. In Ref. [10], we
proposed using the ODCF to select hyper-parameters

for a single SVM. When the RBD-LSSVM is used to
model a time series, simply using cross validation with
the validation set may not prevent overfitting. However,
the information redundancy test based approach can
prevent overfitting.

This paper is organized as follows. Section 2
introduces the RBD-LSSVM and information
redundancy test based model selection method and
ODCF statistic. In Section 3, the shortcomings of the
current ensemble models are analyzed, and the RBD-
LSSVM is described. The optimal model selection
procedure and methods based on the ODCF are also
presented. Section 4 describes experiments conducted
on two benchmark time series: annual sunspot number
and monthly Total Column Ozone (TCO) in New Delhi.
Finally, the conclusions are presented in Section 5.

2 Materials and Methods

2.1 Introduction to LSSVM

SVM is a machine learning approach based on
structural risk minimization and Vapnik-Chervonenkis
dimension, proposed by Vapnik[14] and Deng and
Tian[15]. The LSSVM is a kind of SVM developed by
Suykens et al.[16] The LSSVM can be employed for both
classification and regression.

The goal of regression is to estimate a function
f .x/ based on a finite number set of noisy samples
.xi ; yi /; i D 1; 2; : : : ; n, with m-dimensional input
xi 2 Rm and output yi 2 R. The function f .x/ that
best characterizes the data-generating process has the
following form:

yi D f .xi /C ei (1)

Here, f .x/ is the target function, and ei represents
additive zero mean noise with variance �2. Equation
(2) generally defines the function f .x/ for linear and
nonlinear regression applications:

f .x/ D .w � �.x//C b (2)

where w is the coefficient vector, and b 2 R is the bias.
This equation means f .x/ can be viewed as linear in the
feature space after input x in the input space is mapped
to the higher-dimensional feature space via function
�.�/. To obtain the optimal function f .x/, SVMs not
only try to minimize empirical loss on training set, but
also try to reduce model complexity by minimizing
jjwjj2. Based on this principle, SVM regression is
formulated as follows:
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min
w2Rn; b2R; �2Rn

R.w; b; �/ D
1

2
jjwjj2 C

C

2

nX
iD1

�2i ;

s.t. w � �.xi /C bDyi � �i ; i D 1; 2; : : : ; n (3)

Here, C (>0) is the penalty parameter determining the
tradeoff between the empirical loss and complexity. The
Lagrangian function for this problem is

L.w;b; �; ˛/ D
1

2
jjwjj2 C

C

2

nX
iD1

�2i C

nX
iD1

˛i .yi � �i � .w � �.xi // � b/ (4)

where ˛ D Œ˛1; ˛2; : : : ; ˛n�T is the Lagrange multiplier
vector. We can obtain conditions for optimality by
partial-differentiating (4) with w; b; �i , and ˛i as
follows:

@L
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D 0) w D
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iD1
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D 0) w D
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iD1

˛i D 0;
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(5)

The solution of Eq. (5) is as follows:"
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where e D Œ1; 1; : : : ; 1�T;Q is the matrix with element
Kij D �.xi /�.xj /; i D 1; 2; : : : ; n, I is the unit
matrix, and y D Œy1; y2; : : : ; yn�. After obtaining ˛
and b from the above equation, we can obtain the target
function f .x/:

f .x/ D

nX
iD1

˛i .�.xi / � �.x//C b (7)

However, �.x/ is not easily determined; therefore,
kernel function K.xi ; yi / D �.xi /�.xj / is introduced
and f .x/ is expressed as Eq. (8),

f .x/ D

nX
iD1

˛iK.xi ; x/C b (8)

Typical kernel functions include linear kernel,
polynomial kernel, and Gaussian radial basis function.
In this paper, we use the Gaussian radial basis function:

K.xi ; xj / D exp
�
�
.xi � xj /

2

2�2

�
(9)

2.2 Information redundancy test based on ODCF

Thus far, most of the methods check the performance
of the LSSVM using only the MSE on the validation
set. For example, the cross validation approach, which
is applied in most applications, only uses the MSE
on the validation set; this method may not prevent
overfitting when applied in the RBD-LSSVM. In this
paper, we propose using the ODCF statistic to select
the best model based on information redundancy test.
In Ref. [10], we proposed this method to select the
best model for a single SVM. Next, we briefly describe
the information redundancy test principle and ODCF
statistic used in the RBD-LSSVM.

There is a significant difference between time
series prediction and other regression problems: The
observations in a time series have inherent correlations
with each other, while in other regression problem, the
samples are assumed to be independent of each other.
Based on this characteristic, for time series prediction,
an Auto-Regression (AR) model can be constructed to
predict the succeeding data using the previous data.
Therefore, a model is valid if the residuals are reduced
to contain no redundant information. Information
redundancy means autocorrelation in the residual or
correlation between residual and delayed outputs.
This concept is similar to the nonlinear dynamical
system identification, where model validation is an
important procedure[12, 13]. Model validation is based
on the principle that if the model structure is correct,
the residuals should form an independent random
sequence and should be unpredictable from all past
inputs, outputs, and residuals. Since time series is
a kind of dynamical system without input, we use
this principle in time series prediction. Furthermore,
for nonlinear system identification, Zhu and Zhang[12],
Zhang et al.[13], Ljung[17], and Mao and Billings[18]

have developed validation procedures to check the
quality of identified neural network based on a
correlation test. In the present study, we use the ODCF
developed by them, which is simple and convenient,
compared to other statistics such as the Brock-Dechert-
Scheinkman statistic[19], which can only be used to
check for nonlinear autocorrelation. Next, we briefly
describe how to use the ODCF to test for information
redundancy. As a dynamical system without input
information, a time series model can be expressed by
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the following equation:

y.t/ D f .yt�1/C e.t/ D

f .y.t � 1/; : : : ; y.t � ty//C e.t/ (10)

where y.t/ denotes the outputs of the dynamical
system, f .�/ is a nonlinear function, and e.t/ denotes
an additive noise such as measurement error with
zero mean and certain variance. A model Of .�/ can be
obtained by training, which is used to approximate
the relationship between the data sequences observed
from system. The one-step-ahead predicted outputs and
residuals can be expressed as

Oy.t/ D Of .yt�1/ (11)

".t/ D y.t/ � Oy.t/ (12)
The model is valid if residuals are reduced to a

random noise expressed as ".t/! e.t/. However, the
model is invalid if the residuals contain predictable
redundant information, which can be expressed as
follows:
".t/D Og.yt�1; et�1/C e.t/D

Og.: : : ; y.t � p/; : : : /C e.t/D

Og.: : : ; f .y.t�p�1//C ".t � p/; : : : /C e.t/

(13)

From this equation, we can see that if residuals contain
redundant information, there will be a correlation
between the residuals and delay as well as between
the residuals and the original time series. Therefore,
these two correlations should be tested. To test these
correlations, which may be nonlinear, we use the
ODCF, which is easy to compute and is appropriate to
test both linear and nonlinear correlations[12, 13]. The
ODCF can be categorized into ODCCF and ODACF.
The latter can be viewed as a special case of the former
when the two series are identical. Next, the computation
equations for ODCCF are listed. Assume a.t/ and b.t/
are two time series. Let

˛.t/ D ja0.t/j D ja.t/ �
1

n

nX
tD1

a.t/j;

ˇ.t/ D jb0.t/j D jb.t/ �
1

n

X
tD1

b.t/j;

˛0.t/ D ˛.t/ �
1

n

nX
tD1

˛.t/;

ˇ0.t/ D ˇ.t/ �
1

n

NX
tD1

ˇ.t/

(14)

Then four correlation coefficient functions can be
calculated as follows:

r˛ˇ .�/ D

nX
tD�C1

.˛0.t � �/ˇ0.t//vuut nX
tD1

.˛0.t//2
nX
tD1

.ˇ0.t//2

(15)

r˛b.�/ D

nX
tD�C1

.˛0.t � �/b0.t//vuut nX
tD1

.˛0.t//2
nX
tD1

.b0.t//2

(16)

rab.�/ D

nX
tD�C1

.a0.t � �/b0.t//vuut nX
tD1

.a0.t//2
nX
tD1

.b0.t//2

(17)

raˇ .�/ D

nX
tD�C1

.a0.t � �/ˇ0.t//vuut nX
tD1

.a0.t//2
nX
tD1

.ˇ0.t//2

(18)

where � denotes time delay. By combining the above
four coefficients, the ODCCF, denoted by �ab.�/, can
be acquired as follows. If

jmax.r˛ˇ .�/; r˛b.�/; rab.�/; raˇ .�//j >

jmin.r˛ˇ .�/; r˛b.�/; rab.�/; raˇ .�//j;

then

�ab.�/ D max.r˛ˇ .�/; r˛b.�/; rab.�/; raˇ .�// (19)

else

�ab.�/ D min.r˛ˇ .�/; r˛b.�/; rab.�/; raˇ .�// (20)

When a.t/ D b.t/; �ab.�/ is referred to as ODACF.
According to the central limit theorem, when the model
is valid, the following two equations hold.8<:�"".�/ D 1; � D 0;

�"".�/ � N.0;
1

n
/; otherwise

(21)8<:�y".�/ ¤ 0; � D 0;

�y".�/ � N.0;
1

n
/; otherwise

(22)

where N.0; 1=n/ denotes a normal distribution with
zero mean and variance of 1=n. Therefore, a statistical
hypothesis test is employed to check the following three
conditions:
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(1) if �"".�/ follows N.0; 1=n/, where � ¤ 0I
(2) if �y".�/ follows N.0; 1=n/, where � ¤ 0I
(3) if �y".�/ ¤ 0, where � ¤ 0.
If one or more than one of the above three conditions

are not satisfied, there is information redundancy in the
residuals, which indicates the model is not valid.

3 RBD-LSSVM and Model Selection Based
on ODCF

3.1 Phase space reconstruction for original time
series

Given a set of time series data fx.t1/; x.t2/; : : : ;
x.ti /; : : : ; x.tn/g, to obtain the underlying model for
the given time series, a transformation is performed as
follows:
X DŒx1; x2; : : : ; xl �

T
D266664

x.t1/ x.t1C� / � � � x.t1C.m�1/� /

x.t2/ x.t2C� / � � � x.t2C.m�1/� /
:::

:::
: : :

:::

x.tl/ x.tlC� / � � � x.tlC.m�1/� /

377775 (23)

Y D

266664
x.t1Cm� /

x.t2Cm� /
:::

x.tlCm� /

377775 D
266664
y1

y2
:::

yl

377775 (24)

Here, the parameter m is embedding dimension, and
� is delay. l is the number of samples in training set,
and l D n �m� . Our task is to find the function f .�/
between input X and output Y. In the process, the delay
� and embedding dimension m are parameters to be
determined.

3.2 RBD-LSSVM

Ensemble learning is an effective method to enhance
prediction accuracy[20]. Recently, several scholars have
proposed some ensemble methods to predict classical
nonlinear time series[5, 7]. In Ref. [5], Han and Xu
ensembled ARIMA and Echo State Network (ESN) to
predict time series. First, they used ARIMA to capture
the linear features, and then built a regularized ESN
to capture the dynamic nonlinear features. Finally, the
predicted values of the two models were added to obtain
the final predicted value of the ensemble model. In
Ref. [7], Tang et al. proposed another ensemble model
composed of multiple LSSVMs. In the algorithm,
multiple LSSVM predictive models were created via

a method of iterative error correction, and prediction
performance was significantly improved. They first
used one LSSVM to model the original time series
and obtained the prediction residuals of the training
set. Then, the second LSSVM was employed to
model the residuals of the first LSSVM, and new
residuals were computed. Then, the residuals of the
second LSSVM would train the third LSSVM, and so
on. Finally, the predicted values of each LSSVM in
the ensemble model were added to obtain the final
predicted value. They conducted experiments on two
benchmark chaos series with Lorenz and Mackey-Glass
deterministic differential equations and realized good
performance. However, this ensemble model is not
appropriate for some other time series, such as the
annual sunspot time series. When the original sunspot
time series is modeled by the first LSSVM model, the
residuals cannot be modeled by another LSSVM, and
there is still a big error on validation set. This is because
although there are multiple models in the ensemble
model, each constituent model is separately trained by
minimizing the MSE of the validation set. However, the
best model in one step may not be the best one for the
whole model.

To solve this problem, we propose a novel model,
the RBD-LSSVM, which is composed of multiple
LSSVMs sequentially connected. Like the models in
the ensemble model in Ref. [7], in the proposed model,
the first LSSVM is employed to model the original time
series, the second LSSVM is used to model the residuals
of the first LSSVM, and so on. However, different from
the model in Ref. [7], in the RBD-LSSVM, we train
the multiple LSSVMs as a whole. The structure of the
RBD-LSSVM is illustrated in Fig. 1.

In Fig. 1, x2.1/ denotes the value of the first
dimension of input object x in the second layer; x21
denotes the input vector of the first sample in the
second layer; l1 denotes the number of samples in the
training set of the first layer; m1 denotes the number
of dimensions of the input in the first layer; r2t denotes
the residual at time point t in the second layer; and Oy2t
denotes the forecasted value of target at time point t in
the second layer.

In this network, the first LSSVM models the original
time series and obtains the fitting residuals on the
training set. The second LSSVM models the residuals
of the first LSSVM and obtains the second residuals.
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Fig. 1 RBD-LSSVM with two layers.

The third LSSVM models the residuals of the second
LSSVM and obtains the third residuals as the input
of the fourth LSSVM, and so on. Finally, the last
LSSVM in the RDB-LSSVM models the residuals of
the previous LSSVM. The predicted value of the RBD-
LSSVM is the sum of the predicted values of all the
LSSVMs in the RBD-LSSVM. The proof is given as
follows:

y2.t/ D r1.t/ D y1.t/ � Oy1.t/;

y3.t/ D r2.t/ D y2.t/ � Oy2.t/;
:::

yd .t/ D rd�1.t/ D yd�1.t/ � Oyd�1.t/;

ydC1.t/ D rd .t/ D yd .t/ � Oyd .t/

(25)

where the superscript denotes the number of layers. By
separately adding the quantities in the left and right
sides of the above equations and cancelling those that
appear in both sides, we obtain the following equation:
rd .t/ D y1.t/� . Oy1.t/C Oy2.t/C Oy3.t/C� � �C Oyd .t//

(26)
From Eq. (24), we can estimate the original value at
time point t y1.t/ by adding the predicted values in all
layers of the RBD-LSSVM.

3.3 Model selection based on ODCF and MSE on
validation set

Because of the powerful fitting ability of the RBD-
LSSVM, simply using the minimum MSE on validation
set may not prevent overfitting. The proposed method
is described as follows:

(1) Model the original time series using one-layer
LSSVM. Hyper-parameters are selected through ODCF
test based on a grid search. If there are models validated
by ODCF test, compute the MSE by n-fold cross
validation on the training set.

(2) Model the original time series using two-layer
RBD-LSSVM. Hyper-parameters are selected through

ODCF test based on a grid search on two-layer RBD-
LSSVM. If there are models validated by ODCF test,
compute the MSE of the validation set by n-fold cross
validation.

(3) Continue to model the time series using three-
layer and four-layer RBD-LSSVMs. Hyper-parameters
are selected through ODCF test based on a grid search.
If there are models validated by ODCF test, compute the
MSE of the validation set using n-fold cross validation.

(4) Continue to model the time series using five-layer
RBD-LSSVM, and so on.

Select the RBD-LSSVMs that are validated by ODCF
test and have the least MSE obtained by n-fold cross
validation; if the MSEs of two RBD-LSSVMs with
different layers are similar, select the RBD-LSSVM
with the fewer layers.

4 Experimental Results and Discussion

To evaluate the proposed RBD-LSSVM model,
comprehensive experiments based on two nonlinear
benchmark time series were conducted. The first case
study applied the proposed approach to the annually
recorded sunspot time series, which is a real-world
time series that is commonly used as a benchmark
for evaluating time series prediction approaches. In the
second case study, another real-world time series, the
monthly TCO in New Delhi, measured in Dobson, was
predicted.

Note that in all case studies, no separate validation set
was used. N -fold cross validation was used. The model
validated by ODCF test and with the lowest validation
error was selected as the best model and was used to
predict test data.

For numerical assessment of the prediction accuracy,
the following error criteria were used.
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(1) Normalized Mean Squared Error (NMSE)

NMSE D
1

ı2n
.

nX
iD1

.yi � Oyi /
2/;

ı2 D
1

n � 1
.

nX
iD1

.yi � y/
2/;

y D

nX
iD1

yi

n

(27)

(2) Root Mean Squared Error (RMSE)

RMSE D

vuut1

n
.

nX
iD1

.yi � Oyi /2/ (28)

(3) Pearson correlation coefficient

rXY D
Cov.X; Y /
p
DX
p
DY
D

nX
iD1

.xi � x/.yi � y/vuut nX
iD1

.xi � x/
2

vuut nX
iD1

.yi � y/
2

(29)

4.1 Annual sunspot number

Annual sunspot number is a nonlinear time series
that has long served as a benchmark to assess
statistical and prediction methods. To make our
method comparable with those of other works[21–24],
the dataset from 1700 to 1979 was used and was
divided into two parts. The data points for years
1700–1955 were used to train the models, and those
for years 1956–1979 formed the test set. In the
experiment, Matlab2016.a and Matlab-based LSSVM
toolbox LSSVMlabv1 8 R2009b R2011alssvm were
employed. To enhance the training efficiency, time
delay was set as � D 1. Therefore the three hyper-
parameters to be selected were the penalty parameter
C in Eq. (4), kernel parameter �2 in Eq. (9), and
embedding dimension m in Eq. (23). We selected the
optimal model based on a grid search. In the end, the
best model was a four-layer RBD-LSSVM, with hyper-
parameter values as shown in Table 1.

The MSE computation on validation set and
information redundancy test based on ODCF were
combined to select the best RBD-LSSVM.

(1) First, we modeled the original time series using
one-layer LSSVM. Considering that the training set was
not large, we used a confidence interval of 2.8 times

Table 1 Hyper-parameter values for the four-layer RBD-
LSSVM validated using ODCF test.

Layer �2 C m MSE
1st layer 18 244 6
2nd layer 11 310 14
3rd layer 11 1 4
4th layer 241 1–394 001 4 0.3–0.55

standard deviation. No one-layer RBD-LSSVM was
validated by ODCF test.

(2) We modeled the original time series using a two-
layer RBD-LSSVM. Some models were validated by
ODCF test. For the first layer m D 6; �2 D 21; C D

51, and for the second layer, m D 14; �2 D 61; C D

51 – 2301. The models were validated by ODCF test,
and 10-fold cross validation MSEs were between 150
and 350.

(3) We modeled the original time series using a three-
layer RBD-LSSVM. Some models were validated by
ODCF test. For the first layer, m D 6; �2 D 21; C D

251; for the second layer, m D 14; �2 D 21; C D

401; and for the third layer, m D 14; �2 D 61; C D
1201 – 2201. The models were validated by ODCF
test, and 10-fold cross validation MSE were between
4:5–5:5:

(4) We modeled the original time series using a four-
layer RBD-LSSV as listed in Table 1.

(5) We modeled the original time series using a five-
layer RBD-LSSVM. Models were validated by ODCF
test with nearly the same value of MSE on the validation
set. Therefore, a four-layer RBD-LSSVM is correct.

According to the model selection guidelines in
Section 3.3, we selected the four-layer RBD-LSSVM
in Table 1. For a certain value of �2, as the value of
C increased, the model became more complex. This
means the model will be changed from underfitting
to overfitting. Based on this analysis, we selected
C D 197 001, which is the median of range from 1 to
394 001, as is shown in Table 1. The target and predicted
outputs for test series of this RBD-LSSVM model is
illustrated in Fig. 2.

Considering that only NMSE is used to evaluate
the prediction result in Refs. [4, 10, 21–24], we only
used NMSE in this experiment. A comparison based
on the NMSE with several approaches is presented
in Table 2. As shown, the proposed RDB-LSSVM
outperforms the other models.
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Fig. 2 Predicted and target test series of annual sunspot
number for years 1956–1979.

Table 2 Performance comparison for sunspot number series
prediction from 1956 to 1979.

Method NMSE (%)
RBD-LSSVM 6.5

Local LSSVM[4] 7.8
ODCF-SVM[10] 13.5

Neural network[21] 15.1
Benchmark[22] 15.4
Benchmark[23] 35.0

The NMSE metric indicates the overall deviation of
the predicted from actual data. To give the distribution
of prediction errors, Pearson correlation coefficient was
calculated. A correlation of r D 0:967 indicates that
the predicted and actual data have the same distribution
and trend.

4.2 Monthly total column zone in New Delhi

Here, we discuss the TCO observed in New Delhi
(latitude 28.65°N, longitude 77.22°E Dobson), which
is a real-world highly-complex time series. Wang et al.
have predicted this time series in Ref. [9]. We used the
same training set and test set as in Ref. [9]. A total of
522 data points from July 1957 to Dec. 2000 were used
to train the model, and 48 data points from Jan. 2001 to
Dec. 2004 formed the test set. Data were downloaded
from world ozone ultraviolet radiation data center with
website http://woudc.org/data/explore.php?lang=en.

Its Auto-Correlation Function (ACF) was computed
and is depicted in Fig. 3.

From Fig. 3, it can be seen that a seasonality of
12 exists in the original TCO series fxig. Taking a
difference of lag-12 with equation yi D xiC12 � xi , the
ACF of the resulting time series yi is shown in Fig. 4.

Fig. 3 ACF for original monthly TCO in New Delhi.

Fig. 4 ACF for seasonally differenced monthly TCO in New
Delhi.

Figure 4 shows that the seasonality has been
eliminated. We use RBD-LSSVM to model the
seasonally differenced time series yi .

After the similar process with sunspot time series, a
four-layer RBD-LSSVM was selected. For this time
series, 2.85 times standard deviation was used to test
if ODCCF �y�.�/ and ODACF ���.�/ follow normal
distribution with zero means and 1=n variance when
� ¤ 0. Furthermore, 3 times standard deviation was
used to test if ODCCF �y�.�/was not zero when � ¤ 0.
The RBD-LSSVM validated by ODCF test is listed in
Table 3.

Table 3 shows a series of models by ODCF test. We
selected C D 541, which is the median of the range 31–

Table 3 Hyper-parameter values for the four-layer RBD-
LSSVM validated using ODCF test.

Layer �2 C m

1st layer 3041 6501 49
2nd layer 1 121 6
3rd layer 1 361 2
4th layer 81 31–1051 17
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1051 as the value of penalty parameter of the fourth
layer of the best RBD-LSSVM. The target and predicted
test data of monthly TCO are shown in Fig. 5.

The training and test NMSEs and comparisons
provided in Table 4 indicate that the proposed RDB-
LSSVM had far better predictions compared to the
approaches used in Refs. [7, 9].

5 Conclusion

Time series prediction has been widely used in many
areas. SVM and neural networks are two promising
methods to predict nonlinear time series. To solve the
problems existing in the current ensemble methods
based on neural networks or SVM, we propose a
novel method, the RBD-LSSVM. Furthermore, to
prevent the possibility of overfitting, we propose the
use of information redundancy test based on ODCF
and MSE on validation set. We present the structure
and principles of the RBD-LSSVM, as well as the
procedures and methods on how to comprehensively
use ODCF and MSE on validation set to select the best
hyper-parameters of the RBD-LSSVM. Experiments
conducted on two typical nonlinear time series—annual

Fig. 5 Target and predicted test series for TCO in New Delhi
(48 one-step-ahead predictions).

Table 4 Performance comparison for total ozone column in
New Delhi.

Method RMSE
Pearson

correlation
coefficient

NMSE

RBD-LSSVM 7.14 0.87 0.2429
Iterative error correction based

on direct search in Ref. [7] 8.42 0.80 0.3810

�-SVM in Ref. [9] 10.3 0.68 0.5054

sunspot number and monthly TCO in New Delhi,
demonstrate the advantage of the proposed approach.
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