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Deep Learning Based 2D Human Pose Estimation: A Survey

Qi Dang, Jiangin Yin*, Bin Wang, and Wenging Zheng

Abstract: Human pose estimation has received significant attention recently due to its various applications in

the real world. As the performance of the state-of-the-art human pose estimation methods can be improved

by deep learning, this paper presents a comprehensive survey of deep learning based human pose estimation

methods and analyzes the methodologies employed. We summarize and discuss recent works with a methodology-

based taxonomy. Single-person and multi-person pipelines are first reviewed separately. Then, the deep learning

techniques applied in these pipelines are compared and analyzed. The datasets and metrics used in this task are

also discussed and compared. The aim of this survey is to make every step in the estimation pipelines interpretable

and to provide readers a readily comprehensible explanation. Moreover, the unsolved problems and challenges for

future research are discussed.
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1 Introduction

Human pose estimation is widely used in human-
computer interactions, gaming, virtual reality, video
surveillance, sports analysis, and medical assistance,
making it a highly popular research topic in the field
of computer vision' . Human pose estimation aims to
automatically locate the human body parts from images
or videos. In a simple case, as shown in Fig. 1a, where
only one person is in the image or the position of the
person is given, a single-person algorithm should be
performed to locate the human parts, such as the top
of the head, the center of the neck, the left/right elbows,
and the left/right shoulders'®8!. In more general cases,
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as shown in Fig. 1b, where the number and the position
of persons in an image are unknown, the multi-person
pose estimation algorithms are performed®3°!. All the
human parts in an image should be detected and the
keypoints of the same person, even in a crowded scene,
should be associated.

To solve the problem of human pose estimation,
a number of approaches have been proposed in the
literature. Hand-crafted features have been used in
early works. These hand-crafted features, such as HOG
(Histogram of Oriented Gradient)!'®'% (Fig. 2) and
Edgelet!!), are insufficient in determining the accurate
locations of body parts. By contrast, deep learning
based methods are capable of extracting more sufficient
features from meta data. Such methods have yielded
excellent results and outperformed non-deep state-of-
the-art methods!'®!>! with a big margin. Although
the utilization of deep learning in pose estimation
field is relatively new, numerous outstanding works on
this topic have been conducted. However, to the best
of our knowledge, no previous survey has reviewed
existing works on deep learning for human pose
estimation. Hence, the objective of the current paper is
to provide a comprehensive overview of state-of-the-art
deep learning based two-dimensional (2D) human pose
estimation methodologies and provide further research



664 Tsinghua Science and Technology, December 2019, 24(6): 663-676

(b)

Fig.1 Examples of pose estimation results. (a) Single person
pose estimation results from Ref. [5]. (b) Multi-person pose
estimation results from Ref. [3].

Fig.2 Example of HOG features for keypoints detection!".,

trends for readers. We hope that readers can gain
inspiration from our paper.

The tree-structured taxonomy that our survey follows
is illustrated in Fig. 3. For the current paper, we have
chosen methodology-based taxonomy. All human pose
estimation methodologies are first classified into two
categories: single-person pose estimation approaches
and multi-person pose estimation approaches. On the
one hand, the single-person approaches detect the pose
of a certain person in an image. Due to the given
position information, the objective of single-person
approaches is to find the keypoint position in that area,
so it is essential to solve a regression problem, in which

, Direct regression
/ Single Person Pipeline \

/‘ Heatmap based

2D Pose Estimation <

\\\ / Top-down Approach

\

Multi-Person Pipeline

Bottom-up Approach
Fig. 3 Taxonomy of this review.

the amount of keypoints is implicitly given. On the
other hand, the objective of multi-person approaches is
to solve an unconstrained problem, because the number
and position of persons are unknown.

A single-person pipeline is classified into two
types depending on the way they predict keypoints:
direct regression-based approaches and heatmap-based
approaches. The former utilize the output feature maps
to regress keypoints directly, whereas the latter generate
heatmaps (the pixel value in heatmap indicates the
keypoint existence probability in that position) first
and predict keypoints based on the heatmaps. Multi-
person approaches can be classified into two categories
according to their methodology: top-down approaches
and bottom-up approaches. Top-down approaches are
roughly divided into two steps: human detection and
single-person keypoint estimation. Bottom-up methods
have similar steps with a reversed order: the first step is
to locate all the keypoints in an image and the second
step is to group these keypoints according to the person
they belong to.

There have been other surveys related to pose
estimation. For example, Guo et al.l'® reviewed the
deep learning methods and took pose estimation as
part of it, but they focused on the applications of deep
learning for computer vision and just summarized the
pose estimation methods briefly. Poppel!”! reviewed
early methods for vision-based human motion analysis.
Liu et al.'® investigated body parts parsing based
methods for human pose estimation, but most of
the methods they reviewed are based on hand-
crafted features. Zhang et al.'”! and Gong et al."
also surveyed human pose estimation methods, but
their surveys did not focus on deep learning based
approaches. The pose estimation methods for particular
human part, such as hand and head, have been reviewed
in Refs. [21,22]. Asadi-Aghbolaghi et al.l*}! surveyed
deep learning based approaches for action and gesture
recognition in image sequences, and discussed deep
learning techniques applied to action and gesture
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recognition.

However,
focused on introducing or summarizing the traditional
methodologies of human pose estimation and did not
fully discuss nor analyze the deep learning based
methods. In the current paper, the comparisons among
different deep learning based methods are presented.
The structures and tricks applied in these methods
are discussed and analyzed. The goal of this paper
is to analyze the key procedures of various proposed
approaches and make readers understand how deep
learning can be exploited in human pose estimation
tasks.

most of the previous surveys have

2 Single-Person Pipeline

Single-person approaches estimate human pose in an
image or a video under the condition that the position of
the human is given. Generally, the position and rough
scale of a person or the bounding box of a person are
provided before estimation. Early works model human
parts as a stickman (Fig. 4), but recent works model it
as key joints because such joints are connected naturally
and have more accurate positions. The objective of
deep learning based single-person approaches is to
locate keypoints of human parts. There are two typical
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frameworks for single-person pipeline: (1) The first
one directly regresses keypoints from the features, and
we call it direct regression based framework (Fig. 5a).
(2) The other generates heatmaps first and inferences
keypoint location via heatmaps. We call this heatmap-
based framework (Fig. 5b).

2.1 Direct regression based framework

Several works are based on direct regression
framework. Toshev and Szegedy!®! proposed a cascaded
DNN regressor to predict human keypoints directly.
However, it is difficult to learn mapping directly from
feature maps without other procedures. Carreira et
al.>>! used a self-correcting model. By feeding back
error predictions, the predicted keypoint locations
are refined progressively. Sun et al.[>! proposed a
structure-aware approach called “compositional pose
regression”. Unlike other related works, this approach
re-parameterizes pose representation using bones
instead of joints, which is more primitive, stable, and
easier to learn. Long-range interactions between bones
are encoded by a compositional loss function. Luvizon
et al.l?”] proposed Soft-argmax to convert heatmaps to
coordinates in a fully differentiable fashion. A keypoint
error distance based loss function and a context-based
structure are utilized in their end-to-end trainable

Fig. 4 Example of stickman annotations>*l,
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Fig. 5 Framework of the pipeline for single-person pose estimation. (a) Heatmap-based framework: There are two steps,
generating heatmaps and regressing keypoints. (b) One step framework: There is just one step, human keypoints are regressed

directly.
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network, enabling it to achieve comparable results to
the state-of-the-art heatmap-based framework.

2.2 Heatmap-based framework

As shown in Fig. 6, numerous works have employed
the heatmap-based framework. Some works exploited
human priors in their models. For example, Chen
and Yuille!® used the graphical model with pairwise
relations learned by DCNN (parts type and pairwise
parts relationships). In another study, Chen et al.[’]
incorporated the priors of human bodies by employing
the training strategy of conditional Generative
Adversarial Networks (GANs)!281.

Network structure design has always been a theme
of deep learning based approaches. Convolutional Pose
Machines (CPM)™ regress the heatmaps in multiple
stages and use intermediate supervision to avoid the
vanishing gradient. Newell et al.!*”! designed a novel
network structure called “stacked hourglass”. Repeated
bottom-up, top-down processing with intermediate
supervision is proven to be critical for improving
human pose detection performance. Chu et al.*%! built
their baseline model based on stacked hourglass. They
employed a multi-context attention mechanism to make
the model more robust and more accurate. They also
modified the structure of stacked hourglass by coupling
the hourglass residual unit in it.

The relationship between 2D and three-dimensional
(3D) keypoint detection was explored as well. Martinez
et al.l’l proposed using 2D keypoints directly to
predict 3D keypoints with deep neural networks. Their
experiment results revealed that the 2D detection is
one of the main causes of errors in 3D human pose
estimation.
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2.3 Discussion

2.3.1 Which framework is better, direct regression
based framework or heatmap-based
framework?

Earlier works!>3!l and a few recent works!>~?’! have
attempted to regress the coordinates of keypoints
directly. The direct regression of joint positions
is highly non-linear and has difficulty in learning
mapping®?331. Furthermore, it cannot be applied to a
multi-person case (bottom-up approaches or a single-
detection box containing more than one person).
By contrast, the heatmap-based framework regresses
heatmaps first. Heatmaps can be visualized to enhance
human understanding and model more complicated
cases. However, if these particular techniques are
combined>~2"1| direct regression can be more reliable
and has some merits. When direct regression is applied,
the final result can be obtained in an end-to-end
fashion without handling heatmaps. Moreover, it can
be applied to 3D scenarios without too many changes.
Additionally, the precision of predicting results relies
on heatmap resolution, which requires a high memory
consumption?’!. Therefore, no absolute conclusion for
this question can be found, and each framework has
its advantages and disadvantages. The comparison is
shown in Table 1.

3 Multi-Person Pipeline

Compared with the single-person pipeline, the multi-
person pipeline is more difficult because neither the
number nor the position of the person is given.
Keypoint detection and human location are two core
problems in this task. To solve these two problems, two

()

(b)

©)

Fig. 6 An example of heatmap-based single-person pipeline with heatmap. (a) Original image, (b) heatmap generated by

estimator, and (c) detection result.
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Table1 Comparison between direct regression based framework and heatmap-based framework.

Framework Advantage

Disadvantage

Direct regression based

Quick and direct, trained with an end-to-end fashion.
Can be applied to 3D scenarios without much changes.

Difficult to learn mapping.
Cannot be applied to multi-person case.

Easy to be visualized.

H - . .
catmap-based Can be applied to complicated case.

High memory consumption for getting high
resolution heat map.
Hard to be extended to 3D scenarios.

popular pipelines have been proposed: (1) top-down
pipeline and (2) bottom-up pipeline.

3.1 Top-down pipeline

The framework of the top-down pipeline is shown
in Fig. 7. The first step of the top-down approach
is to detect all persons from a given image, after
which single-person approaches are performed in each
detected bounding box. An illustration of the top-
down pipeline is shown in Fig. 8. Aside from person
detection, top-down approaches have more process,
which may employ context information from the whole
image.

Toshev and Szegedy!® proposed the first deep
learning based top-down method using the FLIC
dataset®*, Human pose estimation is regarded as a
key point regression problem in their work. The face-
based body detector is used to first estimate the rough
position of the person, then a multi-stage cascade DNN
based joint coordinate regressor is employed to regress

the joint coordinates directly. Data augmentation was
explored in a previous work®>>l. Radosavovic et al.[?*]
exploited omni-supervised learning, which employed
all the available data, labeled and unlabeled, to train
the model. This work proved that the state-of-the-art
human pose detectors are accurate enough to apply self-
training techniques to challenging real-world data.
Human detection and human box alignment are
studied in Refs. [36,37]. Fang et al.*®! noticed that
single-person pose estimation is sensitive to human
detection. To solve this problem, they employed
Symmetric Spatial Transformer Network (SSTN) with
parallel Single-Person Pose Estimator (SPPE) to
extract a high-quality single-person region. Mask
R-CNNP¥' simultaneously predicts human bounding
box and human keypoints, which makes the detection
faster by sharing the features of ConvNet. Moreover,
Rol alignment enables a more accurate feature map
cropping method. No human skeleton priors are
combined in this work. Adding such skeleton priors

Image Y s |:: eSItci;};ﬁ?olﬁt?or |:: o — Result
s’  detection ~ detected box ~ processing

Fig. 7 Framework of top-down pipeline.

(@ (b)

(d) (e
Fig. 8 An illustration of top down pipeline. (a) Input image, (b) two persons detected by human detector, (c) cropped single
person image, (d) single person pose detection result, and (e) multi-person pose detection result.
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may further boost the accuracy of Mask R-CNN.

Some works!!3%3% focused on keypoint estimation
within the human detection box. For example, Igbal
and Gall*®! considered multi-person pose estimation
as a joint-to-person association problem. The aim of
their method is to solve the occlusion problem. The
redundant person parts in the same detection box are
eliminated by associating the detected keypoints locally.
This work is based on Ref. [9], but performs faster by
importing locally associated mechanisms. Papandreou
et al.'!! proposed a method that predicts joint dense
heatmaps and position offsets simultaneously, after
which these two outputs are aggregated to obtain highly
localized keypoint positions. Chen et al.?°! proposed a
network structure dubbed Cascaded Pyramid Network,
which consists of two parts: GlobalNet and RefineNet.
The former can catch a good feature representation,
whereas the latter is employed to address the “hard”
examples.

Post-processing methods have been proposed in Refs.
[1,36]. A data-driven pose Non-Maximum Suppression
(NMYS) is proposed in Ref. [36] to solve the occlusion
problem and a pose-guided proposal generator is used to
perform data augmentation. However, serious occlusion
or misdetection is still a big challenge for this approach.
Pose rescoring and pose-based NMS method were used
in Ref. [1] to eliminate the false positives while keeping
the true positives.

3.2 Discussion for top-down approaches

3.2.1 Does the human detector matter in top-down
human pose estimation?

The first step of top-down approach is human detection.
The most popular human detectors used in human
pose estimation are based on the Faster R-CNN
structure because it is an off-the-shelf detector with
high performance. Faster R-CNN has many variants
with different base networks (VGG[4O], ResNet*] and
Inception- ResNet!*?l) and different extended structures
(FPN*3)). These variants have different levels of
accuracy, inference time, and computing complexity.
Generally, the more accurate the detection result is, the
more complex the network is assumed to be. Therefore,
a trade-off among accuracy, memory, and time should
be considered.

Some works have compared the performance of
the human pose estimator with different human
detectors!3°!,  The results of most works show that
the accuracy of the human pose estimator increases

with a better human detector. Meanwhile, as seen in
Fig. 9, the result of Ref. [39] shows that the human
pose estimator achieves a big gain from a better human
detector when detector is of low performance. With
the increase of the human detector’s Average Precision
(AP), the AP of the human pose estimator increases
slower. When the human detectors achieve very high
accuracy (ensemble of many high-performance human
detectors), the accuracy of their pose estimation
network could no longer increase. The possible reason
is that the persons who are not detected by the human
detectors are also difficult examples for the human pose
estimator.

In other words, the human detector matters when
its performance is ordinary, but it does not matter
when it has already achieved high performance. The
gain of the pose estimator is very little with higher
human detection AP, especially when a human detector
is already accurate enough.

3.2.2 NMS

NMS is a common method to suppress redundant
detections. This technique can be applied in both
stages of the top-down human pose estimation
approaches. For human detections, there are two
NMS methods: standard NMS and soft-NMS!“4, The
soft-NMS decreases the score of detecting boxes,
which are suppressed in the standard NMS. The
soft-NMS performs better in Ref. [39] while having
the same computational complexity as the standard
NMS, making it a simple method to improve
human detection. Part-based NMS!!1:36.3%:45-481 cap be
performed to eliminate the reductant skeleton instance
in the same detection box. The method proposed in Ref.
[46] merges the parts across both time and space by
substituting the medoids with centroids in the standard
NMS!'!!, However, this method is only designed for the
match stick models. A past study!*”! proposed an OKS-
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Fig. 9 Relationship of human detection mAP and keypoints
mAP in Ref. [39]. The data of this chart is from the slides
presented by author.
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based NMS, which considers the similarity of keypoints
among human instances. The parametric pose NMS
proposed in Ref. [36] is data-driven, which means that
all the parameters are learned from the data instead of
being set manually. This method is much faster than that
proposed in Ref. [46], but it has more complexity than
the NMS method in Ref. [39].

3.3 Bottom-up multi-person pipeline

In contrast to the top-down approaches, the bottom-up
approaches have reversed procedures, as shown in Fig.
10. All the body parts (keypoints) are detected in the
first stage, then they are associated to human instances
in the second stage. An illustration is given in Fig. 11.
As can be seen, the inference time for the bottom-up
methods is likely to be faster because it does not need
to detect the pose for each person separately.

Pishchulin et al.”’) proposed the first deep learning
based bottom-up pose estimation approach. Their
formulation process performs the estimation task by
solving a minimum-cost multi-cut problem, which
models part candidates as vertices and relations
between part candidates as edges.

Insafutdinov et al.!”! improved Ref. [9] in three
aspects: (1) The network they used is deeper than
the one in Ref. [9], which generates more effective
body parts proposals. (2) The novel image-conditioned
pairwise terms make it possible to assemble the part
proposals into a variable number of human instances.
(3) The optimization strategy is changed, which leads

Keypoints

Image 4
& detection

to both better accuracy and faster speed. Although
significant improvements have been achieved compared
with the previous version!®!, deepercut!?! is still slow
when it comes to solving the minimum cost, multi-
cut problem. The method proposed in Ref. [49]
further improved the method proposed in Ref. [2]
by simplifying the body-part relationship graph and
offloading a substantial share of computation onto a
feed-forward network.

Cao et al.’! proposed an effective method, which
uses non-parametric representation called Part Affinity
Fields (PAFs). After the heatmaps and PAFs are
generated, a greedy algorithm is exploited to generate
the person instance. Zhu et al.®® have conducted
several modifications of Ref. [3] to achieve better
results. The modifications include a deeper base
network and reductant PAFs, which help connect these
child connections to a broken parent link.

Meanwhile, associative embedding, a method for
supervising convolutional neural networks for the task
of detection and grouping, is proposed in Ref. [51]. This
approach simultaneously predicts part heatmaps and
tagging heatmaps. The values in tagging heatmaps are
similar for the same person while they are dissimilar
for different persons.

3.4 Discussion for the bottom-up pipeline

3.4.1 How are heatmaps generated for the bottom-
up pipeline?

The positions of keypoints are the first thing to consider

Keypoints Post
grouping

processing Result

Fig. 10 Framework of bottom-up pipeline.

(a)

Fig. 11 An illustration of bottom-up pipeline. (a) Input image, (b) keypoints of all the person, and (c) all detected keypoints are

connected to form human instance.
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in human pose estimation because their locations
significantly affect the performance of algorithms.
There are three ways to generate ground truth heatmaps
in current works. The first one is to set the heatmaps
with the 2D Gaussian activation at each key point
location'®!. The second way is to set the value of pixel
to one in all the position within the circle, whose
center is the keypoint and the radius is R (a hyper
parameter), while other positions are set to zero!!*>!,
When this type of heatmap is employed, position off-
set maps are predicted to locate the keypoints more
accurately. The third way is to generate one-hot
binary mask, where only a single pixel is labeled
as the foreground. The softmax loss is used when
one-hot heatmaps are employed as they encourage a
single point to be detected®”!. The max activations
of heatmaps (or the heatmaps performed with the
Gaussian filter) have been selected as keypoints in some
works®#. Another study'! also used heatmaps to vote
for the final positions of keypoints.

3.4.2 Comparison of the classical methods and
deep learning methods for point association

The association of detections is an important step in
the bottom-up approaches. Deepcut!®! uses CNN just
to learn the appearance features, using other manually
defined geometric features to fit the logistic model for
pairwise probability estimation. However, Deepercut!?!
changes the manually calculated features to learned
features generated by the deep neural network, which
improves the AP by a large margin. Both of them apply
the logistic model for geometric features in order to
model the pairwise joints affinity. Both PAFs*3% and
associative embedding®®!! are learned simultaneously
with heatmaps in deep learning fashion. They are more
direct when it comes to grouping joints to human
instances. The performance of these two approaches is

better than that reported in Ref. [9]. This is because deep
neural networks have larger capacity and are learned
from data directly, which can capture both the local
features and the global context.

4 Discussion

The pipeline and related approaches have been reviewed
above, but the common features and differences among
works are not discussed in detail. In this section, some
key procedures (listed in Table 2) are discussed to reveal
what matters in both two pipelines.

4.1 How is data augmentation performed?

The performance of deep learning methods highly relies
on the data input. The more data a machine learning
model can gain access, the more effective the model
is. Most previous works utilized data augmentation to
enhance the generalization of neural networks. Simple
but effective data augmentation techniques for human
pose estimation include cropping, rotating, scaling,
and horizontally flipping input images. There are
other promising deep learning methods as well. Using
unlabeled data to train a network is an underdeveloped
direction. Data distillation®!, an omni-supervised
learning method, utilizes unlabeled data for data
augmentation. This work proves that both similar and
dissimilar unlabeled data are useful and effective for
pose estimation.

4.2 What is the common method for data
preprocessing?

Training data in datasets have variant sizes, which
makes it difficult for a network to learn from non-
uniform data. To make the inputs uniform, the images
are always resized during the training process. There
are two important factors for image resizing: ratio and
absolute size. In the human pose estimation task, each

Table 2 A list of key procedures.

Key procedure Approach Single  Top-down Bottom-up
Data augmentation Tréditional: cropping, rotating, 'scal.ing, and horizontally flipping v v v
Using unlabeled data: Data distillation v v
Data preprocessing  Resize without distortion v v v
Hole algorithm, v v v
Upsampling,
. Output stride <=8,
Network design Skip connections,
Big Effective receptive field,
Search automatically
Post-processing Detection NMS v
Skeleton NMS v v
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human detection box is extended to a fixed ratio without
distorting the image, because the data distribution is
kept in this way. A bigger training image can always
produce gain for the network. A possible explanation
for this is that a bigger input has better resolution, which
provides more detailed information for the network.
The ratio of input size also affects the training result.
Normally, the width and height of the resized images are
set to be the same. However, Ref. [39] reported that the
input image with shorter width shows minor decrease
of AP because most of the persons in the dataset have
a shorter width. Bigger input images occupy more
memory in training stage while it can bring better gain.

4.3 Comparison of different network structures

Network design is the fundamental work for

deep learning. There are
40-42,52,53]

numerous  network
structures! proposed for classification task
in recent years. These structures are then transferred
to other tasks, such as object detection, image
segmentation, and human pose estimation. However,
it is inappropriate to apply these networks directly to
human pose estimation because a higher resolution
feature map is required to obtain a more accurate result.
To solve this problem, two structures are designed
to perform the required process. The first one is hole
algorithm (also called atrous convolution or dilation
convolution)®, which enables the layers to increase
the receptive fields effectively while keeping the
output resolution fixed. The second one is upsampling,
which increases the special resolution of the input
feature map. The latter one shows better performance
in segmentation task!?!, but it occupies more GPU
memory. Both these techniques are employed in Refs.
[1,2] to obtain an appropriate feature map size.

The stride of output is another factor to consider
because a small stride usually consumes more storage
with the same depth but outputs higher-resolution
heatmaps. The final output stride is 8 in most of the
previous works. In Ref. [4], stride 8 networks have been
shown to achieve similar results as stride 4 networks.
However, Ref. [4] is for single-person pose estimation,
where the detections are resized before being sent to the
network, so whether a smaller stride is required is still
under exploration.

Moreover, compared to the classification and
detection task, human pose estimation is more
sensitive to the location of keypoints. To this end,
skip connections between shallow layers and deep

layers are used in many works!*3*41. Shallow layers

contain more local information due to their high
resolution, whereas deep layers contain more semantic
information. Skip connections benefit this task by
combining the local and semantic information.

The size of the effective receptive field is also a key
factor in designing a good network. The receptive field
should be big enough to cover the whole body of a
person so all the context information can be included
for human keypoint detection!*4,

In addition, Zhong et al.’>>! proposed a method to
design high-performance network blocks automatically
with Q-learning, which is applied in Ref. [45].

4.4 Bottom up or top down?

As presented above, both the bottom-up and top-down
approaches have been explored using deep learning
methods in recent years. However, which approach
is better than the other has yet to be identified
because multiple aspects are considered in real-world
applications. Accuracy and speed are two crucial factors
for multi-person pose estimation evaluation.

Accuracy: Both the winner®! of the COCO 2017
keypoint and the winner®*! of the AT Challenger Human
Skeletal System Keypoints Challenge employed the
top-down pipeline. However, Ref. [51] reported that the
bottom-up pipeline can achieve similar accuracy while
multiscale results are fused for testing. To consider the
bottom-up pipeline, the scale variety of persons may
bring difficulties for human pose estimation because
the network cannot learn consistent features from the
images. Another fact that should be noted is that
output feature map resolution and network capacity are
constrained by GPU capacity. The average resolution of
a single person in a bottom-up pipeline is lower than
that in the top-down pipeline during the training stage
with the same network and same GPU storage. Hence,
what really constrains the accuracy of the bottom-up
pipeline may be the hardware limit.

Speed: The pose of each person in the top-down
pipeline is estimated one by one, which consumes linear
time with the increase of human number. In contrast,
the image only goes through the network once in the
bottom-up pipeline. It always takes more time when
the image does forward propagation as current networks
are always very deep. However, the grouping time can
be very short if the method is designed properly (In
Ref. [3], the grouping time for 9 persons is 0.58 ms).
Therefore, faster speed is possibly achievable in the
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bottom-up pipeline.

4.5 Are there other tricks for human pose
estimation?

Most of techniques are illustrated above, but there
are still other tricks employed in recent works. For
example, the intermediate supervision used in Refs.
[4, 39, 49] has been proven to be effective in training
a better network because it forces the network to
learn features from shallower layers and prevents the
vanishing gradient.

Multi-task learning improves the model performance
in detection tasks>®! and keypoint detection tasks!?’-6],
because the network can learn more robust feature
representations when the tasks are similar.

Another trick is only for the bottom-up pipelines.
Single-person keypoint detection models are used
to improve the bottom-up pipelines®®! and it has
demonstrated a huge improvement in accuracy although
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it slows down the detection speed.
5 Metrics and Datasets

5.1 Dataset

Human pose estimation has been studied for years.
However, it is difficult to create a universal dataset for
this task because human poses are variant. To solve
the estimation problem step by step, the trends of
both number and complexity of datasets are increasing.
The list of human pose datasets is shown in Table
3 and some samples of these datasets are shown in
Fig. 12. Early datasets>*! contain images with relatively
simple backgrounds. However, deep learning based
methods are not suitable for these datasets because
the number of images is too small for training.
The common datasets used in deep learning based
approaches include MSCOCO!®! MPII?!, LSPI71,
FLICP*¥, PoseTrack!®}, and AI Challenger'®?!, which

Table 3 Human pose estimation datasets.

Year Dataset Size Type Num Description
2008 Buffy!?4! 472 frames training Upperbody 6 body parts Data are from TV show. Line segments
276 frames testing are provided to indicate position. Size and
orientation of body parts are also provided.
Only one person is annotated in each image.
2010 LSPB7 1000 images training Full body 14 keypoints Data are from Flicker with sport category
1000 images testing tag. Images are scaled. Only one person is
annotated in each image.
2013 FLICB4 3987 images training Upperbody 10 keypoints Data are from Hollywood movies. The
1016 images testing persons are occluded or severely non-
frontal are deleted.
2014 Parse?! 100 images training Full body 14 keypoints It is a small dataset with extended
205 images testing annotations including facial expression,
gaze direction, and gender.
2014 MPII Human pose®®! 410 activities Full body 16 keypoints Data are from YouTube videos. It covers
2.5x10* images 410 human activities and each image is
provided with activity label.
2014 Poses in the wild® 30 sequences Upperbody 5 keypoints ~ The data are 30 videos sequences generated
900 frames from 3 Hollywood movies.
2014 MSCOCO!°! 115x103 images training ~ Fullbody 17 keypoints Data are from Internet. It contains diverse
5x103 images validation activities.
20103 images test-Dev
20103 images test-Challenge
2017 Al Challenger(®? 210% 103 images training Full body 14 keypoints Data are crawled from Internet. It is the
30x103 images validation largest human pose image dataset currently.
60x103 images testing
2017 PoseTrack!®! 514 videos including 66374 Full body 15 keypoints The videos are from MPII Human Pose

frames

300 videos training
50 videos validation
208 videos testing

dataset. This dataset focusses on 3
aspects: (1) single-frame multi-person
pose estimation. (2) multi-person pose
estimation in videos. (3) multi-person
articulated tracking.
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Fig. 12 Examples of different datasets.

contain more images in more complicated scenes. The
LSP and FLIC datasets are relatively small and only
contain specific categories of activity. The images in
the LSP dataset are from a sports scene. The FLIC
datasets are collected from Hollywood movies. The
latest datasets, such as MSCOCO and AI Challenger,
are bigger in both size and number of categories.

5.2 Metrics

Evaluating the performance of human pose estimation
is difficult, because many factors need to be considered.
An evaluating metric used in early works is the
Percentage of Correctly estimated body Parts (PCP)*4,
which evaluates stick predictions. Another widely used
metric for keypoint detection is PCK!'!! and its variant,
PCKh. In these two metrics, a point is correct if it
falls within the o - max(w, ) pixels of the ground truth
keypoint, where w and /A are the height and width of
the bounding box of the person (head of the person in
PCKh), respectively. Other recent metrics include the

Object Keypoint Similarity (OKS) and AP of OKS!®41,
which not only take scale into consideration, but also
introduce the per-point constant to control falloff.

6 Conclusion

In this survey, we presented a comprehensive review
for deep learning based human pose estimation method.
Although the current human pose estimation methods
have been improved significantly, they can still be
improved for better real-world applications. The speed
of the current algorithms is still slow and cannot meet
the requirements of real-time prediction, so accelerating
the detection speed must be further explored. There
are already some works that investigated network
compression and network accelerating, but they are
not designed for human pose detection, which needs
higher resolution output feature maps compared with
the classification task and detection task. Therefore,
the performance of existing algorithms is still under
verification. Accelerating methods should be further
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explored.

The current dataset is very large, but the pose
distribution is unbalanced, and no study has explored
ways to detect rare poses with an unbalanced
dataset. The possible improvements include doing
data augmentation and designing a special training
procedure. GANs!?8! and the employment of unlabeled
data are two aspects of data augmentation.

Occlusion and self-occlusion still pose challenges for
human pose estimation. Some works combine human
priors and data-driven methods to solve the problem,
but their results are not robust enough. Human priors
are still under improvement before they can fully yield
a satisfying performance.

Our taxonomy is based on methodology which
includes single-person pipeline and multi-person
pipeline. The comparisons are made among different
frameworks and different pipelines. Some key
procedures are discussed which data
augmentation, data preprocessing, network design,
and post-processing. We also summarized dataset and
metrics for deep learning based human pose estimation.
Hopefully, readers can get inspired from our survey and
solve the difficulties we mentioned above.

We hope our survey can motivate new research efforts
to advance the field of research on estimation speed
accelerating, unbalanced and unlabeled data based data
augmentation, and occlusion resisted pose estimation.
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