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Skill Learning for Human-Robot Interaction Using Wearable Device

Bin Fang�, Xiang Wei, Fuchun Sun, Haiming Huang, Yuanlong Yu, and Huaping Liu

Abstract: With the accelerated aging of the global population and escalating labor costs, more service robots

are needed to help people perform complex tasks. As such, human-robot interaction is a particularly important

research topic. To effectively transfer human behavior skills to a robot, in this study, we conveyed skill-learning

functions via our proposed wearable device. The robotic teleoperation system utilizes interactive demonstration

via the wearable device by directly controlling the speed of the motors. We present a rotation-invariant dynamical-

movement-primitive method for learning interaction skills. We also conducted robotic teleoperation demonstrations

and designed imitation learning experiments. The experimental human-robot interaction results confirm the

effectiveness of the proposed method.
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1 Introduction

In recent years, with the accelerated aging of the global
population and escalating labor costs, the demand for
service robots has also increased. These robots can
help elderly and disabled people to perform daily
tasks, such as wiping a table, massaging a limb,
organizing household items, and delivering items, to
name a few. To perform these various daily-life tasks,
the robot must master a range of operating skills and
intelligently combine skill units. A robot that provides
daily services must also perform tasks in a complex
dynamic environment, which is a more difficult setting
than that of the industrial robot.

Learning by demonstration has proved to be an
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efficient way for robots to learn new tasks. Using a
mapping approach, the robot needs no reprogramming
to observe a person’s behavior. Thus, this is the
most intuitive method for capturing human movement
trajectories and mapping them to the robot. However,
human and robotic arms have different mechanical
structures. Accordingly, the kinematic model of a
robot differs from that of a human. Hence, sensory
information must be mapped onto the movement
space of the devices. A number of kinematic
mapping methods have been proposed, including
position mapping[1], joint angle mapping[2], and pose
mapping[3]. The authors of Ref. [4] proposed a mapping
method that uses locality-preserving projections and
kNN regression, which achieved relatively good results.
Bócsi et al.[5] used a Procrustes analysis algorithm
to resolve linear mappings. An efficient multi-class
heterogeneous domain adaptation method has also been
proposed[6]. However, the calculations of these methods
are typically slow. Furthermore, position control in
robotic movement planning takes a lot of time to
generate the inverse kinematics solution and to perform
continuous-points tracking[7]. We propose a method in
which the robot’s movements are directly controlled by
the robotic articulation speed. In this way, the delay of
the robotic teleoperation system approaches zero.

It is important to recognize that skill learning[8, 9] is
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the key to the whole system. Numerous skill-learning
methods have been proposed in recent years. Metzen
et al.[10] developed hierarchical and transfer learning
methods that enable robots to learn a repertoire of
versatile skills. Their work provides a framework for
robot learning of human behavior. Robot learning
based on human demonstrations employs behavior
segmentation methods. There are also methods that
employ imitation learning[11, 12] and reinforcement
learning[13]. In this study, to learn movement primitives
for robotic interaction, we constructed a model based
on Dynamic Movement Primitives (DMPs), which
provides a generic framework for motor representation
based on nonlinear dynamic systems. DMPs can model
both discrete and rhythmic movements, and have been
successfully applied to a wide range of tasks, including
biped locomotion, drumming, and tennis swings. In
Ref. [14], Ijspeert et al. presented the trajectory
generation method, which uses probabilistic theory
to modify DMPs, which is then called probabilistic
movement primitives. Herzog et al.[15] proposed a new
approach to combine DMPs with Gaussian processes
to enable robots to adapt their roles and cooperation
behavior depending on their individual knowledge.
Here, we present a system in which any recorded
movement trajectory can be represented by a set of
differential equations. Then, a trajectory of human
motion can be expressed with fewer characteristic
variables, thereby realizing the learning of motion
characteristics. Finally, we provide a movement that
has been learned within certain start and end points, and
realize skill learning for human-robot interaction using
a wearable device.

The remainder of this paper is structured as follows.
In Section 2, we describe the design of the proposed
skill learning system, which is based on a teleoperation
system installed on a wearable device. In Section 3, we
propose a skill learning system that employs modified
DMPs. In Section 4, we present our experimental
results for the skill learning work, and we draw our
conclusion in Section 5.

2 System Description

The skill learning system we developed for human-
robot interaction utilizes a wearable device. This system
consists of two subsystems: a robotic teleoperation
system and an imitation learning system, as shown in
Fig. 1.

Fig. 1 Proposed skill learning system for human-robot
interaction.

2.1 Description of wearable device

The design of the wearable device used for
motion capturing is based on Inertial and Magnetic
Measurement Units (IMMUs), comprising three-axis
micro-machined gyroscopes, three-axis accelerometers,
and three-axis magnetometers. In all, there are eighteen
IMMUs in the device, which cover all segments
of the arm, palm, and fingers. Each string deploys
three IMMUs, for a total application of six strings,
five of which are used to capture the motions of the
five fingers, and the other to capture the motions of
the palm, upper arm, and forearm. The battery and
microcontroller unit are attached to the wrist. Figure 2
shows the wearable device.

Given the 3D angular velocity, we can estimate the
acceleration and magnetic field of a single Inertial
Measurement Unit (IMU) and the orientations of the
IMMUs by the Quadratic Extended Kalman Filter
(QEKF). Then, given the kinematics of the arm-hand,
we integrate the constraints to determine their relative
orientations. Details regarding the wearable device are
presented in Ref. [16].

2.2 Robotic teleoperation system

The Baxter robot that we teleoperated by a human
equipped with a wearable device is anthropomorphic.
The proposed robotic teleoperation system consists of

Fig. 2 Wearable device.
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three parts, as described in the following.
(1) Data collection
The motion data of the human arm is collected via

the wearable device and rends to the computer. Then
a node is created in the Robot Operating System (ROS)
to send continuous information of the device. Hence the
position and attitude of the 18 sensors on the device are
collected.

(2) Mapping from wearable device to the robot
In this subsection, we address the problem of

mapping from the wearable device to the Baxter robot.
This robot has Seven Degrees Of Freedom (7-DOF) and
seven force-torque modules that can rotate around their
axes. However, although the arm of the human body
also has 7-DOF, the kinematic structure of the robot arm
differs from that of human beings. For this reason, it
is important to construct a map between the movement
information of the wearable device and that of the
robot arm. Figure 3 shows the structure of the mapping
system. The data collected by the wearable device uses
the Earth coordinate system, but the movement of the
robotic arm uses its own base coordinate system. We
utilize a joint-to-joint mapping method[17] for the upper
arm. Table 1 shows our proposed mapping structure,
which converts the collected data from the device to the
7-DOF robotic system.

Fig. 3 Teleoperation scheme of 7-DOF robotic system.

Table 1 Mapping commands of 7-DOF robotic
teleoperation system.

Human
arm

Baxter robotic arm
Robotic

joint
Data glove

Upper-arm
1 Yaw
2 Yaw
3 Yaw

Fore-arm
4 Yaw of upper and fore arm relative angle
5 Roll of fore and upper arm relative angle

Palm
6 Pitch of palm and fore arm relative angle
7 Roll of palm and fore arm relative angle

(3) Robotic control
The traditional robotic control system uses the

position mode. Although this control method is simple,
it has a slow response and other shortcomings. For
example, when the target point is determined, the robot
can run only at the fixed safe speed to the target point by
solving the inverse kinematics, which makes its actions
slow and somewhat rigid. We propose a novel method
in which we control the speed of each articulated motor
of the robot. We use a Proportional-Integral-Derivative
(PID) controller[18] to improve the performance of the
control system.

u.k/ D Kperr.k/CKI
kX

jD0

err.j /C

KD.err.k/ � err.k � 1//C u.0/ (1)

where k 2 N, u.k/ is the output value at the k-th
sampling, Kp is the scale coefficient, KI is the integral
coefficient, KD is the differential coefficient, err.k/ is
the input deviation at the k-th sampling, and u.0/ is the
initial value.

Finally, we adjust the speed via speed feedback. In
this way, our teleoperation system minimizes the delay
by human imitation.

3 Skill Learning Method

Trajectory planning is one of the primary problems in
the fine operation of a manipulator. Trajectory planning
based on movement primitives requires complex
calculations and accurate modeling. In this section, we
combine human-teaching trajectory information with
DMPs and propose a trajectory learning control method
based on DMPs.

3.1 Dynamic movement primitives

Complex motion can be considered as consisting
of original-action building blocks executed either
in sequence or in parallel. DMPs are mathematical
formal expressions of these primitive movements. The
difference between a DMP and the previously proposed
building block is that each DMP represents a non-
linear dynamic system. The basic idea is that you
combine a dynamic system that has good rules and
stable behavior, and addes another system to it to make
it follow some trajectories. DMPs can be divided into
two types: discrete and rhythmic. Here we use discrete
DMPs. They must be expressed using a convenient and
stable dynamic system and one that has a non-linear
control term. Here, we use one of the simplest dynamic
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systems, the damping spring model, in which a damped
spring vibrator is used as a skeleton to fit any trajectory.
The damping spring oscillator model is as follows:

m
d2x
dt2
D �kx � c

dx
dt

(2)

where m is the mass, k is spring stiffness, and c is
viscous damping coefficient.

To simplify the system, this formula is rewritten as
follows:

� Ry D ˛z.ˇz.g � y/ � Py/ (3)

where y is the state of our system, � is a time constant,
Py is the velocity of the joint trajectory, Ry is the
acceleration, g is the final arrival point of the trajectory,
and ˛z and ˇz are gain terms.

Then, we add a forced item f to restrain the repair of
our trajectory, as follows:

� Ry D ˛z.ˇz.g � y/ � Py/C f (4)

After transformation, we can build the conversion
system.

� Pz D˛z.ˇz.g � y/ � z/C f;

z D � Py
(5)

The key to the DMP framework is the use of an
additional nonlinear system to define the change in the
forcing function over time. Here, we import a canonical
system, as follows:

Px D �˛xx (6)

The forcing function is defined as a canonical system
function, which is similar to a radial basis function.

f .t/ D

PN
iD1 	i .x/wiPN
iD1 	i .t/

(7)

By importing the normative power system, the forced
function is as follows:

f .x/ D

PN
iD1 	i .x/wiPN
iD1 	i .x/

x.g � y0/ (8)

where wi is the weight of each kernel function, and
	i .x/ D exp.� 1

2�2
i

.x � �i /
2/, where �i and �i are

the width and center point of the basis function,
respectively.

In the process of fitting the whole trajectory, a scale
attribute is provided. The initial value of x is 1, and
becomes 0 as the time extends to infinity. This means
that the forced term converges at a point close to the
target point.

The robot is teleoperated using the data glove, and
a set of motion primitive trajectory learning samples
is built. It can directly obtain the position, velocity,
and acceleration sequence of each demonstration

.ydemo.t/; Pydemo.t/; Rydemo.t//. Then we obtain the initial
kinetic equation solution:

ftarget D �
2
Rydemo � ˛z.ˇz.yg � ydemo/ � � Pydemo/ (9)

where yg is the final arrival point of demonstration
trajectory.

Finally, we perform a local linear regression to the
loss function:

Ji D

PX
tD1

	i .t/.ftarget.t/ � !i�.t//
2 (10)

where �.t/ D x.t/.g � y0/.
By optimizing the loss function with locally weighted

regression, we obtain the following:

wi D
sT�iftarget

sT�is
(11)

where s D

0BBB@
� .1/

� .2/

� � �

� .P /

1CCCA, �i D

0BBB@
 i .1/ 0

 i .2/

� � �

0  i .P /

1CCCA,

and ftarget D

26664
ftarget.1/

ftarget .2/

� � �

ftarget.P /

37775.

This process can be used with different weights for
multiple cores to fit any one track. If a 20-core function
is used to represent a trajectory, then the trajectory can
be uniquely represented by a 20-dimensional vector.

3.2 Imitation learning system

With the proposed teleoperation system, we designed
an imitation learning system based on the DMP. Firstly,
we use the teleoperation method of learning. In this
approach, the robotic learning action has human action
characteristics, unlike other teaching methods. As such,
it is a good way to avoid rigidness of the actions, thus
making the behavior of the robot more consistent with
human behavior norms.

Then we record the movement trajectory of the
robotic arm, based on the teleoperation system.
Combined with DMPs, we can extract and learn the
trajectory-invariant features. This system can learn and
reproduce any movement primitives by setting start
and end points. In addition, the DMP is preprocessed
to achieve rotational invariance, even though it has
the characteristics of convergence to the attractor. We
record the beginning and end points of the instruction.
Then, the system calculates the rotation matrix of the
positions of the reproducing and teaching operations.
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P �Q D jP jjQj cos �

� D arccos.
P �Q

jP jjQj
/

(12)

where P and Q are the orientation vectors for the
starting point and the end point, respectively, and � is
the angle.

Then, we can obtain the rotation matrix:
R.�/ D I C Q! sin � C Q!2.1 � cos �/ (13)

where I is unit matrix, and Q! D

264 0 �!z !y

!z 0 �!x

�!y !x 0

375.

Finally, the motion direction and rotation matrix are
combined to realize rotation invariance of the DMP.
Figure 4 shows a flowchart of the DMP-based skill
learning and generation process.

4 Experiments

Based on our previous work, we designed the following
experiments to test the skill learning performance.
As our experimental platform, we used the standard
Robot Operating System (ROS) platform. The system is
written in the node form, which perfroms the following
roles: a node for wearable device acquisition and
analysis, one for data receiving mapping conversion,
one for trajectory collection and trajectory execution,
and one for trajectory learning generation. We used C++
to implement the main algorithm, and implemented the
operation and execution of the robot in Python. In the
simulation environment, we used a RealSense camera
to achieve human-robot interaction, based on learned
movement primitives.

4.1 Robotic teleoperation demonstration

To test the performance of the teleoperation system,
one of the authors wore the device and we utilized the
Baxter robot. Figure 5 shows our experimental results,

Define the basic function properties: 
Calculate the force function:  

Input: Trajectory of 
training sample

Set the 
parameters:

Start and target: 
Time constant:
Number of basic function: N

0 ,y g
τ

iψ
f

Calculate the weight: iw

Learning process

Set the new start 
and target: 0 ,y g′ ′

Into the force 
function:〓〓〓( , )if x w

Into the dynamic system: 
( ( ) )z zz g y z fτ α β= − − +

Skill generation process

Output: Motion sequence
( ( ) ( ) ( ))y t y t y t , ,

Fig. 4 DMP-based skill learning and generation process

Fig. 5 Teleoperation system.

in which we can see that by utilizing the proposed speed
control mode, the delay of the teleoperation system is
nearly zero and the robotic trajectories are smoother
than those when using the point control mode.

4.2 Imitation learning experiments

We designed an experiment to verify the performance
of the modified DMP. First, we taught the robot a
movement and recorded the trajectory by teleoperation,
as shown in Fig. 6a. In our previous work, we
determined that the robot can reproduce movement
trajectories according to the trajectory characteristics
of the teaching, as shown in Fig. 6b. Figure 7 shows

Fig. 6 Circular movement process based on imitation
learning.

Fig. 7 Analysis of results in which the red curve indicates
the original trajectory corresponding to Fig. 6a and the black
curve indicates the reproduced trajectories corresponding to
Fig. 6b.
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an analysis of the data results in which the red curve
indicates the original trajectory corresponding to Fig. 6a
and the black curve indicates the reproduced trajectories
corresponding to Fig. 6b. In the experiments, we used
20 kernel functions to express the trajectory of each
dimension.

In order to verify the performance of the movement
characteristics learning, we designed another
experiment in which we changed the initial state
to reproduce new trajectories based on the DMP model.
Figure 8a shows the original demonstrated movement.
Figure 8b shows the generated movement using the
learned skill (with the same initial state as that used
in Fig. 8a). Figure 8c shows the generated movement
with a different initial state. Figure 9 shows the motion
trajectories of the three situations. The results confirm
the effectiveness of the proposed imitation learning
method.

4.3 Establishment of skill-primitive library

In imitation learning, the characterization of movement
primitives is the key for gaining robotic skills. Any
complicated task consists of smaller tasks, each of
which can be split into many sub-actions. Therefore, in

Fig. 8 Imitation learning results for different original states.

Fig. 9 Motion trajectories of the three situations.

order to perform complex tasks, robots must learn many
skills before they can intelligently select the required
primitive actions. Then we built a small motion-
primitive library of dynamic movement primitives,
some of which are shown in Fig. 10. To determine
the skill generation performance, we extracted the
movement primitives and found the generated and
original trajectories to be the same. The red line in the
figure is the original trajectory, and the blue line is the
generated trajectory after robotic learning.

Thus, in our experiments, the robot learned skills
from the teaching action via the teleoperation system,
and then converted them into their own skills. Using
DMPs, our results confirm that we can express
complex skill actions in multidimensional matrices
of 20 parameters for each dimension, and we can
reproduce the applied skills in any situation, thus
realizing robotic skill learning. The robot can then
use these learned skills in any situation. In addition,
after learning the skills, the robot can store them as
experience.

To evaluate the overall performance, we then built

Fig. 10 Schematic of movement primitive library.
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a set of verification and testing systems based on the
completion of the robot learning system. The nature
of this learning system is the study of movement
primitives, which describe the position of the arm
in a time series. Therefore, we used the Dynamic-
Time-Warping (DTW)[19] algorithm to calculate the
trajectory distance before and after the robotic skill
learning. The function of the DTW algorithm is
to achieve the minimum overall matching distance
between the measured and template eigenvectors, and
then to calculate the distance of the optimal matching
path with respect to the matching state. Finally, we
estimated the degree of similarity between the two
traces by the distance between them.

Since the distance between two movement
trajectories before and after learning cannot be used to
intuitively obtain an expression of their similarity, we
designed the trajectory similarity evaluation method
(as shown in Algorithm 1) for evaluating the similarity
between trajectories.

Using the above process, we can evaluate the learning
results of the motivation primitive obtained through
skill learning, as stored in the motion primitive library.
Table 2 shows the experimental evaluation results.

Algorithm 1 Trajectory similarity evaluation method
input: Template trajectory and test trajectory
output: Similarity

Step 1: We sample the two trajectories by percentage area,
where 50 samples are taken

Step 2: Calculate the relative distance of sampling points
in each region and take the average of all distances

Step 3: Combining with the average of relative distance,
we select the exponential distribution model to
represent the similarity model and finally obtain
the similarity evaluation model: P D exp..�1/ �
dism/

Table 2 Experimental analysis of movement primitive
library.

Movement primitive Distance (cm) Similarity (%)
Write “a” 2.2674 98.65
Write “8” 2.2403 98.76
Draw a triangle 1.4883 98.85
Draw a rectangle 1.4765 98.90
Take something 2.2067 98.72
Draw a circle 2.6711 98.36
Greetings 7.3754 95.69
Knocking 3.4330 97.59
Average 2.8948 98.19

The results show the effectiveness of the proposed
trajectory learning system, which is developed by
the extraction of movement features. After mastering
the primitive library skill, the robot can rebuild the
trajectory according to the requirement. Table 2 shows
that the overall average distance between original
movement and generated movement based on DTW is
2.8948 cm, and the average similarity of the skills can
reach 98.19%. Therefore, the proposed learning system
shows strong learning ability.

4.4 Human-robot interaction demonstration

Lastly, we designed a human-computer interaction
experiment in a simulation environment. First, we used
a face detection algorithm and a RealSense camera to
capture the location of people. Then, the robot made
corresponding interaction actions based on the location
of the person detected by the camera, as shown in Fig.
11.

5 Conclusion

The teleoperation system we presented in this paper
provides an efficient way to transfer human skills
to robots. Using this system, we teleoperated the
robot movement using a wearable device to directly
control the speed of the motors, which effectively
reduces the delay time of teleoperation. The proposed
method also makes robotic skill learning more efficient.
We then proposed an imitation learning system
based on the rotation-invariant dynamical-movement
primitive method. We performed robotic teleoperation
demonstrations and imitation learning experiments, and
built a human-robot interaction system, the results
of which confirm the effectiveness of the proposed
method.

Fig. 11 Human-robot interaction system (each line
represents the “hello” action process when the robot detects
the person’s position).
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