
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/10 pp630–644
DOI: 10 .26599 /TST.2018 .9010098
Volume 24, Number 5, October 2019

VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in
Cloud Data Centers

Dian Shen, Junzhou Luo, Fang Dong�, and Junxue Zhang

Abstract: Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines

(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to

the performance of these applications and network utilization of data centers. Previous studies have addressed this

issue by scheduling network flows with coflow semantics or optimizing VM placement with traffic considerations.

However, coflow scheduling and VM placement have been conducted orthogonally. In fact, these two mechanisms

are mutually dependent, and optimizing these two complementary degrees of freedom independently turns out to

be suboptimal. In this paper, we present VirtCO, a practical framework that jointly schedules coflows and places

VMs ahead of VM launch to optimize the overall performance of data center applications. We model the joint coflow

scheduling and VM placement optimization problem, and propose effective heuristics for solving it. We further

implement VirtCO with OpenStack and deploy it in a testbed environment. Extensive evaluation of real-world traces

shows that compared with state-of-the-art solutions, VirtCO greatly reduces the average coflow completion time

by up to 36.5%. This new framework is also compatible with and readily deployable within existing data center

architectures.

Key words: cloud computing; data center; coflow scheduling; Virtual Machine (VM) placement

1 Introduction

Modern virtualization-based cloud data centers, such as
Amazon EC2[1], have become hosting platforms for a
wide spectrum of big data applications[2, 3], including
online data mining and social network analysis. Owing
to their distributed nature, many of these emerging
cloud applications introduce intensive network traffic
between hosting Virtual Machines (VMs). Network
transfer time may consume as much as 30%–50% of
an application’s execution time[4, 5]; thus, optimizing the

�Dian Shen, Junzhou Luo, and Fang Dong are with the
School of Computer Science and Engineering, Southeast
University, Nanjing 211189, China. E-mail: fdianshen, jluo,
fdongg@seu.edu.cn.
� Junxue Zhang is with the SING Group, Hong Kong University

of Science and Technology, Hong Kong 999077, China.
E-mail: jzhangcs@ust.hk.
�To whom correspondence should be addressed.

Manuscript received: 2018-04-02; accepted: 2018-05-01

network transfer between VMs is necessary not only to
reduce the completion time of encapsulated applications
but also to release space to accommodate requests from
additional tenants.

Conventionally, data center administrators try to
address this issue by scheduling network flows. To
this end, coflow[6] is introduced to capture the traffic
characteristics of emerging cloud applications, such as
Mapreduce[7], Spark[8], and Pregel[9]. In the coflow
semantic, a collection of parallel flows must be
transferred between groups of servers, and applications
complete the network transfer only after all flows
have finished. Thus, optimizing the Coflow Completion
Time (CCT), i.e., the time when all corresponding
flows have finished, is critical for the performance
of applications. Recent studies[6, 10, 11] have proposed
effective algorithms for scheduling coflows to reduce
the average CCT.

However, existing methods seldom consider the

Dian Shen et al.: VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 631

server aspect and assume that the servers are Physical
Machines (PMs). In fact, in the multi-tenant cloud
environment, the resources are delivered in the form of
VMs. The flexibility of VM placement allows further
mitigation of the traffic traversing the data center
fabric and reduction of the network transfer time of
applications. Traffic-aware VM placement[12–14], for
instance, places VMs with large mutual communication
in the same PM.

Unfortunately, coflow scheduling and VM placement
are traditionally conducted orthogonally. Existing
solutions for coflow scheduling are unaware of VM
placement and previous VM placement mechanisms
are coflow-agnostic such that they do not account for
collective behaviors of flows belonging to a coflow
(Table 1). Nevertheless, the effects of these two Degrees
Of Freedom (DOFs) are clearly coupled and optimizing
on any one dimension alone is extremely restrictive
(see Section 2 for a motivating example). According
to our experimental results, applying the state-of-the-
art coflow scheduling and traffic-aware VM placement
independently could lead to a performance loss of up to
36:5% in terms of the average CCT.

Therefore, in this study, we aim to solve a joint
coflow scheduling and VM placement problem, with the
objective to further improve network efficiency in data
centers. Although the joint optimization is intuitively
beneficial, combining two mechanisms seamlessly
in cloud data centers poses practical challenges in
implementation and deployment.

First, network traffic information is required for both
coflow scheduling and VM placement. Although this
prerequisite has been mostly treated as an assumption
in previous works, recent developments in data center
network research have demonstrated the predictability
of network traffic information. In cloud data centers,
many jobs are recurring[3, 16] and have predictable
resource requirements. This condition allows us to
effectively predict their network traffic information
with an accuracy of nearly 90%[17] using existing

Table 1 Summary and comparison of previous approaches
to VirtCO.

Related work Coflow-aware Scheduling VM
placement

Varys[6], Aalo[10],
Rapier[15] Yes Yes No

Traffic-aware VM
management[12, 14] No No Yes

VirtCO Yes Yes Yes

prediction[18] or profiling[3] techniques. By exploiting
this characteristic, we can predetermine where and
when VMs and the traffic between them should be
placed and transferred.

Second, without control over tenant VMs (end-
hosts), the exertion of coordinated scheduling remains
at the mercy of VMs’ networking components, which
are usually noncooperative. Current coflow scheduling
mechanisms prioritize each flow in the end-hosts,
such that cloud providers have no privileged control.
Exploring how providers can regain authority over flow
scheduling outside VMs is necessary. Thus, we target
coflow scheduling for VMs at the hypervisor-level.

To address these challenges, we design and
implement VirtCO, which jointly schedules coflows
and places VMs with practical considerations. We first
formulate the problem as a joint coflow scheduling
and VM placement optimization problem to minimize
the average CCT. Accordingly, we propose efficient
heuristics to approximate a solution to this problem.
Addressing the practical challenges, we implement
the coflow scheduling in the virtual Switch (vSwitch)
running on each hypervisor, without having control
over the VMs or requiring modifications in network
hardware. Thus, VM placement and coflow scheduling
can be combined seamlessly in the same layer. We
deploy VirtCO on an 18-server testbed in our data center
with more than 200 VMs. Evaluations with traces of
real-world applications show that compared to state-of-
the-art methods, VirtCO can reduce the average CCT
by 36:5%. Furthermore, the computation overhead of
VirtCO is less than 3% of CPU occupation.

The main contributions of this study are the
following:
� It explores the problem of joint coflow scheduling

and VM placement with several key observations and
practical challenges (Section 2).
� It proposes VirtCO, a novel practical solution

for jointly scheduling coflows and placing VMs.
Algorithms for joint optimization are then developed
(Section 3).
� It formulates the joint coflow scheduling and

VM management problem and computes the best VM
placement and bandwidth allocation scheme by solving
a Linear Programming (LP) problem (Section 4).
� It implements an OpenStack-based prototype

system that is readily deployable within current
data center architectures. Then extensive evaluations
are conducted in a testbed with real-world traces
(Section 5).

632 Tsinghua Science and Technology, October 2019, 24(5): 630–644

2 A Motivating Example

In this section, we illustrate the need for the joint design
of VM placement and coflow scheduling through a
motivating example in Fig. 1. As shown in Fig. 1a, two
coflows exist: C1 and C2. C1 has 3 flows transferred
from VM1 to VM2, from VM2 to VM3, and from VM3

to VM1 with sizes of 5, 1, and 2 units, respectively. C2
has 2 flows transferred from VM2 to VM3, and from
VM3 to VM2 with sizes of 1 and 2 units, respectively.
For VMs, we use a slot to represent one unit of static
resource (CPU/memory/disk)[14]; the size of each VM
in the example is 1 slot. The data center fabric is
depicted as several PMs connected by a non-blocking
switch[6], and each PM has 2 slots. The bandwidth of
each PM is 1 unit/second. We approximate the intra-
PM communication to be transient to facilitate our
analysis. This approximation brings very slight and
negligible bias because it is much faster than that
between separate PMs. We measure the average CCT
in different scenarios.

We consider the case in Fig. 1b, in which VMs are
randomly placed, and no VMs are co-resident. In this
case, the Smallest Effective Bottleneck First (SEBF)[6]

method generates the optimal coflow scheduling such
that the coflow with smallest bottleneck time is
scheduled with the highest priority. The bottleneck flow
of C1 is 5 units and that of C2 is 2 units. Thus, C2 is

scheduled before C1. In this case, the average CCT is
4.5 s.

Then, we consider the situation in Fig. 1c. In
this case, the coflows are scheduled with the
SEBF algorithm. The traffic-aware VM placement is
conducted independently. As VM1 and VM2 have
the greatest mutual communication (5 units), they are
placed in the same PM to localize the traffic. In this
case, the average CCT is 3 s.

However, traffic-aware VM placement does
not generate the optimal overall performance for
applications, in terms of the average CCT. As shown
in Fig. 1d, placing VM2 and VM3 together generates
the optimal average CCT of 2.5 s, an improvement of
1:2�. Nevertheless, neither current VM placement nor
coflow scheduling mechanisms alone could effectively
generate the case in Fig. 1d.

From this example, we observe that coflow
scheduling and VM placement are mutually dependent,
and optimizing these two complementary DOFs
orthogonally turns out to be suboptimal. Suboptimal
VM placement and scheduling introduce unnecessarily
prolonged overall execution time for applications,
thereby impairing tenant satisfaction and system
utilization. Having joint control over both aspects
provides an opportunity to utilize the data center
network efficiently.

VM2, VM3 are co-resident

Average CCT: (0+5)/2=2.5 s

DC fabric

C1

2
C2

2 slots

VM1

VM2

VM3

VM1

VM2

VM3

VM1

VM2

VM3

C2 ends C1 ends

C2 ends C1 ends

C2 ends C1 ends

7

5

42

0

VM1

VM2

VM3

5

To VM1

To VM2

To VM3

1 1

To VM1

To VM2

To VM3

2

2

To VM1

To VM2

To VM3

DC fabric

DC fabric

PM1 PM2 PM3

PM1 PM2 PM3

PM1 PM2 PM3

VM1 VM2 VM3

VM1 VM2

VM3

VM1

VM2

VM3

SEBF

No VMs are co-resident

Average CCT: (2+7)/2=4.5 s

SEBF

VM1, VM2 are co-resident

Average CCT: (2+4)/2=3 s

Time (s)

Time (s)

Time (s)

(a) Coflows in VMs

(b) SEBF only, without VM coresidence

(c) Traffic-aware VM placement + SEBF

(d) The optimal case

Fig. 1 A motivating example. Two color-coded coflows (C1 and C2) reside in 3 VMs. The size of each VM is 1 slot, and each PM
has 2 slots. C1 has 3 flows: VM1 !!! VM2 DDD 5, VM2 !!! VM3 DDD 1, and VM3 !!! VM1 DDD 2. C2 has 2 flows: VM2 !!! VM3 DDD 1 and
VM3 !!! VM2 DDD 2. (b)–(d) show the VM placement and scheduling on egress ports. (b) indicates the baseline in which no VMs
are co-resident, and the coflow with the largest bottleneck (C2) is scheduled first. (c) shows the result when VMs with the largest
mutual communication (VM1!!! VM2 DDD 5) are placed together. The coflow scheduling (C2 first) is conducted independently. (d)
demonstrates the optimal case.

Dian Shen et al.: VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 633

3 Design and Implementation of VirtCO

3.1 Design overview

Motivated by the potential gains of cooperative coflow
scheduling and VM placement, we design VirtCO to
jointly optimize these two aspects. Inspired by Refs.
[6, 15], VirtCO works in a centralized manner. This
approach is coherent with many recent centralized
data center designs[19]. Given applications and their
associated coflow information, such as flow sizes and
sources/destinations (typically in the form of a traffic
matrix), VirtCO determines when to start coflows, at
what rate to serve them, and where to place the VMs
to optimize the average CCT of all coflows. VirtCO has
several advantageous features by design.

First, it bridges the gap between two mutually
dependent problems despite their orthogonal treatment.
Instead of scheduling network flows in an unknown
(assumed to be fixed) environment, VirtCO enables
the cloud provider to conduct intelligent coordinated
scheduling with a panoramic view of its infrastructure.
The cloud provider, being coflow-aware, has a better
understanding of applications and can optimize their
overall performance.

Another benefit of VirtCO is that it enables
implementation of uniform scheduling throughout the
data center, thereby ensuring fairness. Traditional flow
priorities set inside VMs can become a “race to the
top” in the cloud environment such that multiple co-
resident VMs of different tenants may assume that
their traffic is the most important and should receive
the highest priority. Additionally, network components
of different versions within VMs may not share the
network fairly. VirtCO enforces fairness by regaining
control over the network outside the VMs without

hardware modification.
Finally, VirtCO is designed with consideration

of scalability. The vSwitch on each hypervisor is
only responsible for scheduling the VMs under
its supervision. Network control is enforced at the
granularity of coflows and hypervisors, rather than
flows and VMs. According to our experiments, the
extra CPU overhead on each hypervisor is less than
3%. Calculating joint placement and scheduling in the
controller takes seconds. As we predetermine when
VMs launch, the decision computation time is much
shorter than the VM spawning time, which usually takes
minutes. Distributing the controller’s decision to tens of
hypervisors takes approximately 4–5 ms, and to 10 000
(emulated) hypervisors takes less than 0.7 s.

3.2 Implementation

We implement VirtCO based on OpenStack[20] and
integrate it with customized modules to schedule
coflows in the hypervisor layer. VirtCO consists of a
coflow traffic matrix estimation module that obtains
the coflow traffic matrix, an error-tolerance scheduling
module that reserve a fraction of resources, a controller
that efficiently determines scheduling as requests arrive.
The controller then communicates with distributed edge
modules on each hypervisor to enforce scheduling. The
architecture and implementation of VirtCO are depicted
in Fig. 2.

Coflow traffic matrix estimation. As the
predictability of data center jobs has been
confirmed[3, 16], coflow information can be obtained
by existing prediction[18] or profiling[3, 17] methods.
VirtCO supports these existing methods and provides
an interface with which users can specify their traffic
matrix as scheduling hints when launching VMs.
With this coflow traffic matrix information, VirtCO

User space
Kernel

KVM

Modified device

TAP TAP

OpenVSwitch

Eth 0

Host

VM

User space
Kernel

Coflow
Apps

Modified device

VM

Linux traffic control

VirtIOVirtIO

Tunnel communication

...

Edge module Eth1

Hypervisor

VM VM VM

Br-int Edge moduleEth1

Hypervisor

VM VM VM

Br-int

Host Host

Eth0 Eth0

Enforce scheduling

VirtCO controller

Management

network

Communication

network

Coflow
schedule

VM
management

Coflow
Apps

Edge module

 Other hosts

OpenStack Nova

VM management

Controller

Spawning VMs

Enforce

scheduling
Coflow scheduling

Ryu controller

Spawning VMs

Traffic matrix
estimation

Error tolerance

(a) VirtCO overview (b) Implementation of edge module (c) Implementation of the controller

Fig. 2 Architecture and implementation of VirtCO.

634 Tsinghua Science and Technology, October 2019, 24(5): 630–644

predetermines joint scheduling when launching VMs.
Error tolerance. A key issue in traffic matrix

estimation is that current methods inevitably
cannot predict coflow information 100% correctly.
Previous research[18] reported a 5%–10% error rate.
CODA[17] identifies coflows with approximately 90%
accuracy. Robust to inaccuracies, the error-tolerance
module is designed to mitigate the impact of error
estimation. According to our experimental analysis,
underestimation can be worse than overestimation
because it could lead to the “straggler” issue[17],
which severely degrades the performance of coflow
applications. Thus, we take the approach toward
overestimation for all flow information. Each estimated
coflow is attached to an overestimation factor ˇ�,
and the overestimated traffic E�.C / for coflow C is
E�.C / D E.C/ � .1 C ˇ�/, where E.C/ is provided
by users or the traffic matrix estimation module. ˇ�

is inherently a tradeoff between utilization and error
tolerance. Although a complex model can be used to
compute ˇ�, VirtCO uses the flow-size distribution
in the data center as an indicator, and lets ˇ� be the
fraction of low-priority flows or flows without explicit
completion time requirements, such as data backup
flows. This simple approximation of ˇ� indicates that
the overprovisioned resource can be used alternatively
by other flows in a work-conserving manner.

The controller collects the global coflow
information and uses the algorithms proposed in
Section 4 to schedule coflows and VMs. The controller
implementation is depicted in Fig. 2c. At the launch
of a new set of VMs, VirtCO predetermines the VM
locations, rates, and scheduling order for the coflow.
VirtCO calls the API of OpenStack Nova to assign the
locations of corresponding VMs and communicates
with edge modules to enforce scheduling policies.
When the scheduling of a coflow is decided, VirtCO
assigns the VMs to corresponding PMs and updates
the flow tables on corresponding hypervisors. To avoid
starvation, VirtCO sets a threshold to ensure that any
coflow does not starve for an arbitrarily long time.

Edge modules are installed on each hypervisor. An
edge module is fully responsible for scheduling the
aggregate flows of each coflow sent from VMs. The
edge module installed on the hypervisor penetrates
all outgoing packets from all VMs in the granularity
of each coflow, queries the coflow table distributed
by the controller for their priorities, and places these
priorities in the corresponding queue. The edge module

is implemented as an extension of Linux kernel
module in the hypervisor. This module adopts Linux
Traffic Control (TC) to enforce scheduling. As depicted
in Fig. 2b, we use the queuing discipline (qdisc)
mechanism offered by the Linux TC subsystem to rate-
limit coflows with designated priorities. Our system
is flexible and easy to deploy because TC modules
require no kernel modifications and can be inserted
and removed at runtime. The number of rate limiters is
subjected to the number of coflows in each hypervisor,
thereby making this solution scalable in the data center.

Usage scenario. In a multi-tenant cloud environment,
tenants that need better network performance select
VirtCO-marked VMs. When launching VMs, tenants
provide the traffic matrix of their applications as a hint
with which cloud providers can optimize performance.
Otherwise, they allow cloud providers to profile
their VMs’ traffic for performance optimization. Thus,
tenants can expect improved performance and reduced
costs because current billing models charge tenants by
usage time. Consequently, cloud providers can attract
larger number of users to migrate their applications to
the cloud, especially those who have concerns about
cloud network performance. Moreover, by reducing the
occupation time per tenant, cloud providers can utilize
released resources to serve more tenants and benefit
from the improved infrastructure utilization. Cloud
providers can also increase the price per unit time, while
reducing the total cost for a single tenant. Therefore,
VirtCO usage is fully consistent with current cloud
computing business models and leads to a win-win
situation for cloud providers and tenants.

4 Core Algorithms of VirtCO

4.1 Global coflow scheduling and VM placement

We begin by modeling the joint coflow scheduling and
VM placement problem to optimize the average CCT
for all coflows. For the virtualization environment, we
define H and hm as the set of physical hosts and the
m-th physical host within the data center, respectively.
Applications request resources in the form of VMs.
For each application, V and vj denote the set of VMs
and the j -th VM for the application, respectively. The
VM placement is represented by an H � V matrix
denoted by X . xmj denotes whether vj is hosted by hm.
Specifically, xmj D 1 if vj is hosted by hm; otherwise,
xmj D 0.

The coflow information Ci associated with an
application is characterized by traffic matrix Pi , where

Dian Shen et al.: VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 635

pi;j;k denotes the size of flow Ci to be transferred from
vj to vk . In the example depicted in Fig. 1, coflow C1
has the traffic matrix hp1;1;2 D 5, p1;2;3 D 1, p1;3;1 D
2i and coflow C2 has the traffic matrix hp2;2;3 D 1,
p2;3;2 D 2i. All incomplete coflows are included
in the collection C. To illustrate the network resource
constraints, we define B as the residual bandwidth on
PMs. B consists of the egress and ingress bandwidth,
denoted by Bme and Bmin, respectively. Bi denotes the
rate allocated to Ci , which is composed of the egress
and ingress rates allocated to Ci on hm, denoted as emi
and inmi . VM size, denoted as sizej , is represented by
several slots, and the number of available slots in hm is
slotm. Under any placement, ti denotes the CCT of Ci .

To optimize the average CCT, VirtCO leverages the
minimum remaining time-first heuristic to schedule
the coflow in C having minimum remaining CCT
with the highest priority. We describe the main
framework of VirtCO in Algorithm 1. The algorithm
is invoked whenever a new application enters the data
center. Specifically, when a new application associated
with a coflow arrives, the algorithm is triggered to
determine its VM placement, scheduling priority, and
bandwidth allocation (allowing preemption). Line 4 of
Algorithm 1 invokes another algorithm to compute the
minimum CCT for the arriving coflow. In Section
4.2, we illustrate the details of minimizing the single
CCT through VM placement and network scheduling.
Among all incomplete coflows, the algorithm sets the
priorities according to their remaining completion time
in ascending order (lines 7–10). To avoid starvation, the

Algorithm 1 VirtCO main framework
1: procedure MRTF
2: input: C, arriving request Cnew , residual slots S,

residual bandwidth B, VM placement X
3: output: void
4: invoke minSingleCCT(Cnew ,S,B,X)
5: allocate Xnew , Bnew and update S, B
6: add Cnew to C
7: while C ¤ ∅ do
8: 8 Ci in C update the remaining ti
9: sort C by the remaining ti in ascending order

10: set the priority for all coflows in C in this order
11: Check the waiting time wait.Ci / in C
12: if 9wait.Ci / > � then
13: schedule Ci with the highest priority
14: end if
15: end while
16: end procedure

algorithm checks the waiting time of coflows in C and
sets a threshold to ensure that no coflow starves for an
arbitrary period � (lines 11–14). � is usually in minutes
and determined empirically by cloud providers.

4.2 Minimizing the completion time of a single
coflow

The problem of minimizing the CCT for a single coflow
in the cloud environment is formally stated as follows:
given the estimated traffic matrix of a coflow Ci , we try
to find a feasible placementXi of all its VMs onto PMs,
allocating feasible bandwidth emi and inmi for Ci on
each hm, to minimize its completion time ti . Although
single-flow optimization heuristics would allocate the
entire bandwidth of the link to the scheduled flow, a
desirable property of coflow is that completing any flow
faster than the bottleneck in a coflow does not affect
the CCT. Therefore, the minimum completion time of a
coflow can be attained as long as all flows finish at the
same time with the bottleneck flow. That is, all flows in
Ci should finish at the CCT ti .

Note that we enforce scheduling in the hypervisor
layer with coflow granularity. Under placement Xi , the
amount of data coflow that Ci sends from hm is smi , and
the coflow Ci received from hm is rmi . smi and rmi are
computed by8̂<̂

:
smi D

P
j

P
k

xmj .1 � x
m
k
/pi;j;k;

rmi D
P
j

P
k

xm
k
.1 � xmj /pi;j;k

(1)

Corollary 1 Having allocated the bandwidth emi
and inmi to Ci on one PM hm, we can determine the
minimum CCT through weighted fair sharing among
individual flows of Ci on hm, with the weight

wi;j;k D
pi;j;k

smi
(2)

Proof For notational simplicity, we define hm as
the sender host and hn as the receiver host. As all
flows in a coflow are completed at the same time,
we assume that ti D 1. Then, the egress and ingress
bandwidth allocated to each PM are equal to smi and
rni , respectively. As the data sent must be equal to
the data received,

P
m s

m
i D

P
n r

n
i . Let pm;n DP

j2m

P
k2n pi;j;k denote the aggregate flow sent from

hm to hn. Thus, we have
P
m

P
n pm;n D

P
n r

n
i . Let

pm;n be the bandwidth shared for flowm! n, and then
reduce

P
n from both sides. We then have

P
m pm;n D

rn. Thus, with pm;n as the bandwidth shared for all
flows sent from m, the data transfer finishes exactly

636 Tsinghua Science and Technology, October 2019, 24(5): 630–644

at ti D 1. Therefore, to achieve the optimal time ti ,
each pm;n shares the bandwidth withwm;n D pm;n=smi .
Furthermore, as pm;n is the aggregate flow of all pi;j;k ,
each flow shares the bandwidth with the proportion
wi;j;k D pi;j;k=s

m
i . �

Corollary 1 indicates the theoretical feasibility of
enforcing scheduling at the granularity of coflows and
hypervisors. This control granularity is able to attain
the same performance as the finer granularity of flows
and VMs. This design allows fewer rate limiters than
other implementations and reduces the computation
intensiveness of core algorithms.

Given the above definitions, we formulate the
problem of minimizing ti as follows:

P D min ti (3)
subject to the following:8<:

sm
i

em
i

D ti ;

rm
i

inm
i

D ti ;
8m (3a)

(
emi 6 B

m
e ;

inmi 6 B
m
in;
8m (3b)X

m

xmj D 1; 8j (3c)X
j

xmj 6 slotm; 8m (3d)

Constraint Eq. (3a) enforces that the completion
time of all flows is equal to the CCT. With the
minimum bandwidth allocated, the residual bandwidth
is released to admit other coflows. Equations (3c) and
(3d) represent the placement constraints. However, the
original problem (3) is difficult to solve directly because
it is a nonlinear programming problem with binary
integer variables. To facilitate the solution, we define
˛i D 1=ti , then, Eq. (3) can be modified to

P 0 D max˛i (4)

The boundary conditions of Eq. (4) are given by

˛i
X
j

X
k

xmj .1 � x
m
k /pi;j;k 6 B

m
e ; 8m (4a)

˛i
X
j

X
k

xmk .1 � x
m
j /pi;j;k 6 B

m
in; 8m (4b)X

m

xmj D 1; 8j;X
j

xmj 6 slotm; 8m:

Then, we introduce two variables: W m
i;j;k

and V m
i;j;k

. Let

V m
i;j;k
D ˛ix

m
j .1 � x

m
k
/ and W m

i;j;k
D ˛ix

m
k
.1 � xmj /.

Substituting V m
i;j;k

and W m
i;j;k

into problem (4), and we
can transform this problem into the following:

P 0 D max˛i (5)
The boundary conditions of Eq. (5) are given byX

j

X
k

V mi;j;kpi;j;k 6 B
m
e ; 8m (5a)X

j

X
k

W m
i;j;kpi;j;k 6 B

m
i ; 8m (5b)X

m

V mi;j;k 6 ˛i ; 8j; k (5c)X
m

W m
i;j;k 6 ˛i ; 8j; k (5d)

Equation (5) represents an LP problem with the
limited scale of variables and constraints that can be
solved in a timely manner. We analyze the computation
complexity of the algorithm from two perspectives:
bandwidth allocation and VM placement. For the
aspect of bandwidth allocation, as we only conduct
rate limiting on each hypervisor, the variable scale is
limited to the number of physical hosts jH j. For VM
placement, each iteration of computation generates the
VM placement for an application, and the variables’
scale is bounded by jV j. The computation overhead
to run the LP is bounded by jH j and jV j. In
practice, the available jH j for hosting an application
is usually limited to several adjacent racks, which are
approximately dozens of hosts. The jV j requested by
an application is also extremely limited. Therefore, the
small scale optimization can be computed efficiently,
and with a small computation overhead.

After V m
i;j;k

andW m
i;j;k

are derived, xmj and xm
k

can be
computed by 8<: xmj .1 � x

m
k
/ D

Vm
i;j;k

˛i
;

xm
k
.1 � xmj / D

Wm
i;j;k

˛i

(6)

In the previous computation, as we relax the binary
integral variables to fractional ones, the solution may
contain some xmj that are decimal fractions. A fractional
xmj means that we need to divide the VM to place it
separately on different PMs, which is not practicable.
Thus, we resort to rounding xmj by placing VMj

on PM m0 where m0 D maxm xmj and set xm
0

j D 1.
In summary, the rationale for our algorithm is to
integrate coflow scheduling and VM placement to
achieve optimal scheduling, and then let VM placement
cooperate to approximate this goal. The heuristic for
pursuing a minimal CCT is summarized in Algorithm 2.

Finally, we analyze the performance of Algorithm 2
using the standard notion of approximation ratio. The

Dian Shen et al.: VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 637

Algorithm 2 Minimizing single coflow completion time
1: procedure MINSINGLECCT
2: input: Coflow i Ci , residual slots on PMs S, residual

bandwidth on PMs B, current VM placement X
3: output: ti , placement and scheduling of Ci

4: Retrieving the traffic matrix of Ci , store it in pi

5: Solve problem (5) with pi , S, B and X
6: for each VM j of Ci do
7: Find m0 where m0 D maxm xm

j

8: Set xm0

j
D 1

9: Set other xm
j
D 0

10: end for
11: substitute xm

j
to Eq. (4) and compute ˛i

12: ti D 1=˛i

13: return ti , Xi , Bi

14: end procedure

approximation ratio of Algorithm 2 is defined as the
supremum of tmin=ti , where tmin is the minimum CCT
of Ci and ti is CCT obtained by our algorithm.

Theorem 1 Algorithm 2 has the approximation ratio
of 2, that is,

ti 6 2tmin:
Proof To prove this theorem, the equivalent

proposition is ˛i > ˛max=2, where ˛i and ˛max are the
inverse of ti and tmin, respectively. We assume that
the objective of problem (5) is ˛upper. Problem (5) is
the binary relaxation of problem (4) and the feasible
solution of the linear formulation sets an upper bound
˛upper > ˛max.

Multiplier xmj .1 � x
m
k
/ is mathematically equal to a

graph cut where j and k are vertices and edge hj; ki
cuts vertex m from M � m. The physical meaning of
this cut is that we place VM j in host hm with the
proportion xmj . In our heuristic, we only pick the xmj
with the largest value and discard the rest. Let Cm

.j;k/

be the weight of cut hj; ki, and let the value of xmj be
the value of Cm

.j;k/
. Accordingly, let amj be the value of

cut Am
.j;k/

in the optimal solution. Finally, we have a set
of cuts C that separates every m from M , which is the
final placement.

Note that each cut Cm
.j;k/

is an incident at two of
these components. Each edge will be in two of the cuts,
hence,

P
w.Cm

.j;k/
/ D 2w.C /. Therefore, we haveX

m

xmj .1 � x
m
k / 6

X
m

w.Cm.j;k// 6X
m

w.Am.j;k// D 2w.A/;

˛i D

P
m

V m
i;j;kP

m

.xmj .1 � x
m
k
//
>

P
m

V m
i;j;k

2
P
m

.amj .1 � a
m
k
//
D

˛
upper
i

2
>
˛max
i

2
: �

The analytical result provides the worst-case
guarantee of this algorithm. Theoretically, a loose
bound is derived, but in practice this algorithm works
effetively in improving the CCT for real applications in
the cloud environment.

5 Evaluation

5.1 Experiment setup

Testbed. The testbed is built using a leaf-spine
architecture. We select 18 servers from 2 racks
connected to 2 leaf top-of-rack switches with 1-Gbps
links. Each leaf switch is connected to a spine switch
using 10-Gbps links, ensuring full bisection bandwidth.
The switches are configured as standard output-queued
switches. The server is equipped with two 6-core Xeon
2.66 GHz processors, 24 GB memory, and a dedicated
hard drive (a maximum of 12 VM slots). Each VM
is configured with 2–4 GB memory, 100–200 GB hard
disk, and 1–2 dedicated CPU cores (1–2 VM slots).
The server and network oversubscription ratio are set
to be 1.

Workloads. The real-world workloads of the
applications we have deployed are as follows:

RECOMM is a Hadoop-based[7] application that
conducts several rounds of collaborative filtering to
recommend movies to users. We synthesized 1, 2, and
5 GB datasets from MovieLens.

PAGER is a Spark-based[8] application that computes
page-rank values for an input graph. The input graphs
generated by Spark has 0.5, 1, and 4 million nodes.

Given the combination of applications and input
data sizes, we collect 6 sets of workload traces. Each
of them is deployed on 10–40 VMs. We collect the
statistics of these coflows’ characteristics as defined
in Varys[6]. As shown in Table 2, the workload traces
cover a wide range of applications with various coflow
characteristics.

We also deploy on 60 VMs with background traffic.
These VMs communicate with a varying number of
random VMs in a uniform distribution between 5 and
20. The data communication between a pair of VMs is
uniformly distributed between 1 and 400 Mbps.

Comparison of schemes. We have implemented the
following:

As introduced in Section 2, the SEBF algorithm is the
optimal method of coflow scheduling. We implement

638 Tsinghua Science and Technology, October 2019, 24(5): 630–644

Table 2 Benchmarking applications and coflow
characteristics.

Application Coflow characteristics

Name Dataset Size
(GB) Width Length

(GB)
Skew
(GB)

PAGER-0.5M 0.5�106 2.98 10 0.72 0.3
PAGER-1M 1�106 4.45 20 0.98 0.45
PAGER-4M 4�106 19.53 40 2.55 0.92

RECOMM-1G 1 GB 7.68 10 4.88 1.5
RECOMM-2G 2 GB 16.21 20 8.54 3.78
RECOMM-5G 5 GB 33.37 40 12.4 4.21

the SEBF algorithm and use fair sharing of bandwidth
as its counterpart. Regarding VM management, we
compare traffic-aware VM management, a graph-cut-
based implementation of which is demonstrated in
Ref. [21], against random placement. We obtain the
following 4 combinatorial mechanisms:

Baseline represents the naive situation in which no
VMs are co-resident and flows are scheduled based on
fair sharing.

SEBF-R represents the situation in which coflows
are scheduled by SEBF method and VMs are randomly
placed.

FS-TA represents the scenario with fair sharing
among flows but without coflow-aware scheduling, and
in which VMs are placed by the traffic-aware VM
placement.

SEBF-TA represents the scheme in which the coflow
scheduling with SEBF and traffic-aware VM placement
are conducted independently.

The major competitor of VirtCO is SEBF-TA
because these two state-of-the-art methods are most
commonly used. By comparing these schemes, we can
examine the benefits results from the two elements of
VirtCO: VM placement and scheduling.

5.2 Experiment results

In this section, the experiment is organized to answer
the following questions:
� How effective is VirtCO by jointly considering VM

placement and coflow scheduling? (test cases 1–3)
� When is VirtCO most beneficial in improving the

average CCT? (test cases 4–6)
To define the effectiveness of VirtCO, we use the

relative speed-up, which is defined as the amount of
time that VirtCO saved (or added) to the completion
time of an application. For instance, if an application
runs for 100 s with SEBF-TA and 80 s with VirtCO,
then the relative speed-up is .100 � 80/=100 D 20%.

Test case 1 (Minimizing the single CCT). We
compare the completion time of workloads under
VirtCO and its competitors. The results are shown in
Fig. 3. We observe that, for the PAGER application,
VirtCO achieves a performance improvement of
approximately 58.3% over Baseline. SEBF-TA

Baseline

SEBF-R

FS-TA

SEBF-TA

VirtCO

C
C

T
(s

)

350
300
250
200
150
100
50
0 0.5 1

Dataset (×106)
4

(a) CCT comparison of PAGER

Baseline

SEBF-R

FS-TA

SEBF-TA

VirtCOC
C

T
(s

)

700

1 2
Dataset (GB)

5

650
600
500
400
300
200
100
 0

(b) CCT comparison of RECOMM

SEBF-R

FS-TA

SEBF-TA

VirtCO

0.5 1
Dataset (×106)

4

C
C

T
im

pr
ov

m
en

t (
%

)

100

80

60

40

20

 0

(c) CCT improvement of PAGER compared with Baseline

SEBF-R

FS-TA

SEBF-TA

VirtCO

1 2
Dataset (GB)

5

C
C

T
im

pr
ov

m
en

t (
%

)

100

80

60

40

20

 0

(d) CCT improvement of RECOMM compared with
Baseline

Fig. 3 Effectiveness of VirtCO in improving single CCT.

Dian Shen et al.: VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 639

experiences a decrease in performance of
approximately 16:7% D 58:3% � 41:6% when
compared with VirtCO. The improvement is more
obvious for the RECOMM applications, the traffic
skew of which is higher than that of other applications.
Running with various dataset sizes, VirtCO improves
CCT by more than 60% over Baseline. With the
increasing dataset size, we observe larger performance
losses by SEBF-TA because under VirtCO, the
bottleneck flows can utilize the entire PM bandwidth to
accelerate the CCT. The results of these real workloads
indicate the effectiveness of VirtCO in reducing the
completion time of a single coflow, mainly because of
the ability of this framework to efficiently utilize the
network.

Compared with other schemes, SEBF-R is 3%–4%
better than FS-TA for the PAGER applications. We
find the opposite for RECOMM, for which FS-
TA is up to 20% better. The takeaway is that
VM placement contributes the most toward reducing
CCT with a large skew, because when the traffic
matrix is highly skewed, traffic-aware placement can
significantly reduce data transfer. When the number of
flows increases, scheduling plays a more important role.

Test case 2 (Minimizing the average CCT). The
primary goal of our method is to reduce the average
CCT so that the overall network efficiency of the data
center can be improved. In this test case, we measure
the average CCT when running all 6 benchmarking
workloads concurrently. The results are presented in
Fig. 4. Without background traffic, the improvement
that VirtCO achieves over SEBF-TA is approximately
36:5%. The improvement over Baseline is as high
as 79:1%. In the scenario where background traffic
exists, the average CCT increases and the performance
improvement decreases. As our framework has no
control over the background traffic, it occupies available
slots and reduces the optimization space. Although the
background traffic restricts its benefits, VirtCO still
achieves a 24:1% improvement over SEBF-TA in terms
of average CCT.

Test case 3 (Overhead). The computation overhead
is closely related to the efficiency and scalability
of VirtCO. For the controller, the overhead we are
concerned with is the time required to generate the joint
scheduling at the arrival of each coflow. In previous test
cases, we record the computation time of each round
of scheduling and placement decisions. The results are

3000

2500

2000

1500

1000

500

0

Bas
elin

e

SE
BF
-R

FS-
TA

SE
BF
-TA

Vir
tCO

A
ve

ra
ge

 C
C

T
(s

)

(a) Average CCT comparison under different schemes

100

Bas
elin

e

SE
BF
-R

FS-
TA

SE
BF
-TA

A
ve

ra
ge

 C
C

T
im

pr
ov

em
en

t
by

 V
irt

C
O

 (%
)

80

60

40

20

0

(b) Average CCT improvement achieved by VirtCO when
compared to various competitors

Fig. 4 Effectiveness of VirtCO in improving average CCT.

shown in the Cumulative Distribution Function (CDF)
figures in Fig. 5. We observe from Fig. 5a that, in our
settings, the computation overhead is acceptable such
that more than 80% of the decisions can be derived
within 5.5 s. As our algorithm runs either in the VM
launching or profiling phase, the extra computation
time is negligible compared with the VM launch time
(typically several minutes).

Regarding the overhead introduced by the edge
module, we are mainly concerned with the extra
CPU usage when enforcing scheduling policies. We
continually measure the extra CPU usage during coflow
transferring compared with the case in which no edge
module is used (no rate limiting). As shown in Fig. 5b,
the CPU overhead is less than 2% in 80% of the time
(one core). The results confirm the practicability of the
software and lightweight implementation of VirtCO.

Test case 4 (Impact of coflow width). In each round
of the experiment, we send 20 coflows with the same
width into the network. We observe from Fig. 6 that
the performance improvement of SEBF-TA gradually
degrades. When the coflow width is small, VMs are
more likely to be placed in the same host; thus, the
traffic could be reduced considerably, as could the CCT.
With increasing coflow width, greater network collision
occurs, especially in the virtualization environment.

640 Tsinghua Science and Technology, October 2019, 24(5): 630–644

0 5
Computation time (s)

10

0.2

0.4

0.6

0.8

1.0
C
D
F

(a) Computation time of each round of decision

0

0.2

0.4

0.6

0.8

1.0

C
D
F

2.5
CPU overhead (%)

5

(b) CPU overhead on each hypervisor

Fig. 5 Overhead introduced by VirtCO.

0

400

800

1200

1600

2000

10 20 30 40 50 60

Baseline SEBF-TA VirtCO

Coflow width

A
ve

ra
ge

 C
C

T
(s

)

(a) Average CCT comparison

0

20

40

60

80

100

10 20 30 40 50 60

vs. Baseline vs. SEBF-TA

C
C

T
im

pr
ov

em
en

t (
%

)

Coflow width

(b) Performance improvement achieved by VirtCO

Fig. 6 Impact of coflow width.

As flows are not aware of their co-residence, network
collision may occur; thus the benefit of SEBF-TA
decreases. When the coflow width is sufficiently small,
the placement dominates the performance. However,

as the width further increases, network collision
dominates the performance degradation, where VirtCO
demonstrates its benefits. VirtCO is highly competitive
and is recommended for scenarios with large coflow
widths.

Test case 5 (Impact of coflow length). Coflow
length is the size of the largest flow of the coflows.
As shown in Fig. 7, the coflow length dominates its
CCT so that the CCT under Baseline increases nearly
linearly. In this case, the improvement from using
VirtCO is stable at 40%–50% of Baseline. Traffic-
aware VM placement is the most beneficial in this
scenario in which the co-resident VMs can considerably
reduce traffic. Our method inherits this benefit, and
makes further improvements by considering the coflow
semantics of applications. In this case, VirtCO leads
to a 17%–20% improvement over SEBF-TA in this
test case. From Fig. 7b, minimal correlation can
be observed between performance improvement and
increasing coflow length.

Test case 6 (Impact of coflow skew). To investigate
the impact of coflow skew, we send out coflows with
skew in the range of 0:1–3 GB. Figure 8 shows that
VirtCO outperforms other methods when the coflow
skew increases. Initially, with a balanced dataset, the
performance improvements of VirtCO over Baseline
and SEBF-TA are 23.5% and 30.6%, respectively.

0

400

800

1200

1600

2000

2400

2800

1 2 4 8 12 16

Baseline SEBF-TA VirtCO

A
ve

ra
ge

 C
C

T
(s

)

Coflow length (GB)

(a) Average CCT comparison

0

20

40

60

80

100

1 2 4 8 12 16

vs. Baseline vs. SEBF-TA

Coflow length (GB)

C
C

T
im

pr
ov

em
en

t (
%

)

(b) Performance improvement achieved by VirtCO

Fig. 7 Impact of coflow length.

Dian Shen et al.: VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 641

0

400

800

1200

1600

0.1 0.5 1.0 1.5 2.0 2.5 3.0

Baseline SEBF-TA VirtCO

A
ve

ra
ge

 C
C

T
(s

)

Coflow skew (GB)

(a) Average CCT comparison

0

20

40

60

80

100

0.1 0.5 1.0 1.5 2.0 2.5 3.0

vs. Baseline vs. SEBF-TA

C
C

T
im

pr
ov

em
en

t (
%

)

Coflow skew (GB)

(b) Performance improvement achieved by VirtCO

Fig. 8 Impact of coflow skew.

The difference between VirtCO and SEBF-TA is
small: SEBF-TA experiences a performance loss of
only 7.1%. However, the improvement of VirtCO is
particularly obvious when the skew is as large as 3 GB,
with 61:2% and 40:5% improvements over Baseline and
SEBF-TA, respectively. Skew is a characteristic that
might significantly influence both the VM placement
and coflow scheduling. The separate consideration
of these two important gradients is insufficient, which
agrees with the theoretical analysis of this problem.
VirtCO is most beneficial for large coflow skews.

In summary, VirtCO significantly reduces the average
CCT in the virtualization environment with limited
overhead. VirtCO is most beneficial when the skew
and width of coflows are large; these are typical
characteristics of emerging big data applications and
parallel processing frameworks[6].

6 Related Work

Flow scheduling: Coflow was introduced by
Chowdhury et al.[6], they proposed the SEBF heuristic
for scheduling coflows. Then Chowdhury and Stoica[10]

introduced the non-clairvoyant coflow scheduling
without priori knowledge of coflow information. Qiu et
al.[11] formulated a discrete model to solve the coflow
scheduling problem. Zhao[15] considered routing with
scheduling and proposed a coflow-aware network

optimization framework that integrates routing and
scheduling for better application performance. Zhang
et al.[17] proposed a method for identifying coflows
through traffic analysis. Chen et al.[22] optimized CCTs
with utility max-min fairness. Lu[23] designed an SDN-
enhanced flow scheduling method to simultaneously
meet deadlines and ensure the rates for non-deadline
flows.

Network-ware task scheduling: Extensive research
has been conducted on network-ware task scheduling
with the same objective as ours. To name a few, Refs.
[16, 24, 25] optimized the task placement with network
flow considerations. Although these studies were aimed
at task-level scheduling, they do not account for VMs.
In the multi-tenant environment, virtualization prevails
for the advantages in security and ease of management.
To this end, instead of scheduling tasks in an unknown
environment, VirtCO enables the data center provider
to conduct wise and coordinated scheduling with a
panoramic view of the infrastructure. Moreover, VirtCO
does not contradict network-ware task scheduling and
composing VirtCO and network-ware task scheduling
could lead to an improvement in network efficiency.

Traffic-aware VM management: Traffic-aware VM
management problem was first modeled by Meng et
al.[13]; in this study, VMs with large mutual bandwidth
usage are assigned to PMs in close proximity. The
literature on this topic is vast, and we only name a
few here. Li et al.[14] addressed the tradeoff between
communication cost and resource utilization. Zhao et
al.[26] optimized both VM placement and topology
design to achieve higher traffic scalability. Wang
et al.[27] addressed the issue of VM migration. Li
et al.[28] proposed a VM allocation mechanism to
minimize the sum of the VMs’ network diameters
for all tenants. Additionally, many VM management
mechanisms account for other resources, such as CPU
and memory. As these resources are explicitly requested
when launching VMs, VirtCO considers them as
constraints for VM placement. Furthermore, VirtCO is
compatible with VM placement for various objectives.

7 Discussion and Conclusion

Network impact on application performance.
Although some researchers have noted a limited effect
of the network on the overall performance of big data
applications[29], recent study[30] has demonstrated
significant performance gains for applications moving

642 Tsinghua Science and Technology, October 2019, 24(5): 630–644

from a 1 Gbps to a 10 Gbps network. Our work confirms
the latter result; this bottleneck is only relieved when
the network reaches 40 Gbps. In multi-tenant cloud
environments, network resources are shared among
tenants, and no single tenant can exclusively utilize
high bandwidths. Therefore, optimizing network
efficiency in this scenario could benefit application
performance and release larger space to accommodate
additional requests.

VM migration. In our experimental analysis, we
find that VM migrations could further improve network
efficiency by dynamically adjusting VM placement
although the overhead incurred is extremely high. In
the extreme case, memory pages and tens of gigabytes
of local data are transferred during migration. Thus,
in this study, we avoid migrations by determining VM
placement ahead of VM launch. We plan to consider
timely and cautious migration decisions in future work.

To conclude, this study addressed the problem of
joint coflow scheduling and VM placement in cloud
data centers. A practical solution, VirtCO, was designed
and implemented to combine VM placement and coflow
scheduling seamlessly. We formulated a joint coflow
scheduling and VM placement problem and proposed
efficient heuristics for solving it. Extensive evaluations
with real-world applications showed that VirtCO
preserves remarkable performance advantages over
state-of-the-art mechanisms. Furthermore, VirtCO is
practical and readily deployable within current data
center architectures. Taking joint coflow and VM
scheduling as a starting point, VirtCO demonstrates
that VM management and flow scheduling can be
jointly optimized for improved network infrastructure
efficiency in data centers. Moreover, with the
emergence of geo-distributed data centers[31], VirtCO
provides a practical solution for managing the network-
driven infrastructure.

Acknowledgment

This work was supported by the National Key R&D
Program of China (No. 2017YFB1003000), the National
Natural Science Foundation of China (Nos. 61572129,
61602112, 61502097, 61702096, 61320106007, and
61632008), the International S&T Cooperation Program
of China (No. 2015DFA10490), the National Science
Foundation of Jiangsu Province (Nos. BK20160695 and
BK20170689), the Jiangsu Provincial Key Laboratory of
Network and Information Security (No. BM2003201), the
Key Laboratory of Computer Network and Information

Integration of Ministry of Education of China (No.
93K-9), and partially supported by the Collaborative
Innovation Center of Novel Software Technology and
Industrialization and Collaborative Innovation Center of
Wireless Communications Technology.

References

[1] Amazon Elastic Compute Cloud, http://aws.amazon.
com/ec2/, 2018.

[2] J. C. Mogul and L. Popa, What we talk about when we
talk about cloud network performance, in Proceedings of
the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM’12), Helsinki, Finland, 2012,
pp. 44–48.

[3] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, The only
constant is change: Incorporating time-varying network
reservations in data centers, in Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM’12), Helsinki, Finland, 2012,
pp. 199–210.

[4] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica, Managing data transfers in computer clusters
with orchestra, in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM’12), Toronto, Canada, 2011, pp. 98–109.

[5] J. Jiang, S. Ma, B. Li, and B. Li, Symbiosis: Network-
aware task scheduling in data-parallel frameworks,
in Proceedings of IEEE Conference on Computer
Communications (INFOCOM’16), San Francisco, CA,
USA, 2016, pp. 1–9.

[6] M. Chowdhury, Y. Zhong, and I. Stoica, Efficient coflow
scheduling with varys, in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication
(SIGCOMM’14), Chicago, IL, USA, 2014, pp. 443–454.

[7] J. Dean and S. Ghemawat, Mapreduce: Simplified data
processing on large clusters, Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, MJ. Franklin, S. Shenker, and I. Stoica,
Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing, in Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’12), San Jose, CA, USA, 2012, pp.
2–2.

[9] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski, Pregel: A system
for large-scale graph processing, in Proceedings of the
ACM SIGMOD International Conference on Management
of Data (SIGMOD’10), Indianapolis, IN, USA, 2010, pp.
135–146.

[10] M. Chowdhury and I. Stoica, Efficient coflow scheduling
without prior knowledge, in Proceedings of the
Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM’15), London, UK,
2015, pp. 393–406.

[11] Z. Qiu, C. Stein, and Y. Zhong, Minimizing the

Dian Shen et al.: VirtCO: Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 643

total weighted completion time of coflows in datacenter
networks, in Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’15),
Portland, OR, USA, 2015, pp. 294–303.

[12] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J. Kang,
and P. Sharma, Application-driven bandwidth guarantees
in datacenters, in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM’14), Chicago, IL, USA, 2014, pp. 467–478.

[13] X. Meng, V. Pappas, and L. Zhang, Improving the
scalability of data center networks with traffic-
aware virtual machine placement, in Proceedings
of IEEE Conference on Computer Communications
(INFOCOM’10), San Diego, CA, USA, 2010, pp. 1–9.

[14] X. Li, J. Wu, S. Tang, and S. Lu, Let’s stay together:
Towards traffic aware virtual machine placement in data
centers, in Proceedings of IEEE Conference on Computer
Communications (INFOCOM’14), Toronto, Canada, 2014,
pp. 1842–1850.

[15] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y.
Yang, D. Li, and S. Wang, Rapier: Integrating routing
and scheduling for coflow-aware data center networks,
in Proceedings of IEEE Conference on Computer
Communications (INFOCOM’15), Hong Kong, China,
2015, pp. 424–432.

[16] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev,
and M. Caesar, Network-aware scheduling for data-
parallel jobs: Plan when you can, in Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM’15), London, UK, 2015, pp.
407–420.

[17] H. Zhang, L. Chen, B. Yi, K. Chen, M Chowdhury, and
Y. Geng, Coda: Toward automatically identifying and
scheduling coflows in the dark, in Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM’16), Florianopolis, Brazil,
2016, pp. 160–173.

[18] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner,
Cicada: Introducing predictive guarantees for cloud
networks, in Proceedings of USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud’14), Philadelphia,
PA, USA, 2014, pp. 14–19.

[19] J. Perry, H. Balakrishnan, and D. Shah, Flowtune:
Flowlet control for datacenter networks. in Proceedings
of USENIX Conference on Networked Systems Design and
Implementation (NSDI’17), Boston, MA, USA, 2017, pp.
421–435.

[20] OpenStack Open Source Cloud Computing Software,
https://www.openstack.org/, 2018.

[21] D. Shen, J. Luo, F. Dong, and J. Zhang, Appbag:
Application-aware bandwidth allocation for virtual
machines in cloud environment, in 45th International
Conference on Parallel Processing (ICPP), Philadelphia,
PA, USA, 2016, pp. 21–30.

[22] L. Chen, W. Cui, B. Li, and B. Li, Optimizing
coflow completion times with utility max-min fairness,
in Proceedings of IEEE Conference on Computer
Communications (INFOCOM’16), San Francisco, CA,
USA, 2016, pp. 1755–1763.

[23] Y. Lu, Sed: An SDN-based explicit-deadline-aware TCP
for cloud data center networks, Tsinghua Science and
Technology, vol. 21, no. 5, pp. 491–499, 2016.

[24] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T.
N. Vijaykumar, Shufflewatcher: Shuffle-aware scheduling
in multi-tenant MapReduce clusters, in Proceedings
of USENIX Annual Technical Conference (ATC’14),
Philadelphia, PA, USA, 2014, pp. 1–12.

[25] A. Munir, T. He, R. Raghavendra, F. Li, and A. X. Liu,
Network scheduling aware task placement in datacenters,
in Proceedings of the International Conference on
Emerging Networking Experiments and Technologies
(CoNEXT’16), Irvine, CA, USA, 2016, pp. 221–235.

[26] Y. Zhao, Y. Huang, K. Chen, M. Yu, S. Wang, and D. S. Li,
Joint VM placement and topology optimization for traffic
scalability in dynamic datacenter networks, Computer
Networks, vol. 80, pp. 109–123, 2015.

[27] H. Wang, Y. Li, Y. Zhang, and D. Jin, Virtual
machine migration planning in software-defined networks,
in Proceedings of IEEE Conference on Computer
Communications (INFOCOM’15), Hong Kong, China,
2015, pp. 487–495.

[28] J. Li, D. Li, Y. Ye, and X. Lu, Efficient multi-tenant virtual
machine allocation in cloud data centers, Tsinghua Science
and Technology, vol. 20, no. 1, pp. 81–89, 2015.

[29] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.
G. Chun, Making sense of performance in data analytics
frameworks, in Proceedings of USENIX Conference
on Networked Systems Design and Implementation
(NSDI’15), Oakland, CA, USA, 2015, pp. 293–307.

[30] A. Trivedi, P. Stuedi, J. Pfefferle, R. Stoica, B. Metzler,
I. Koltsidas, and N. Ioannou, On the [ir] relevance of
network performance for data processing, in Proceedings
of USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud’16), Denver, CO, USA, 2016, pp. 126–131.

[31] J. Zhang, J. Chen, J. Luo, and A. Song, Efficient location-
aware data placement for data-intensive applications in
geo-distributed scientific data centers, Tsinghua Science
and Technology, vol. 21, no. 5, pp. 471–481, 2016.

644 Tsinghua Science and Technology, October 2019, 24(5): 630–644

Dian Shen is currently an assistant
professor in the School of Computer
Science and Engineering, Southeast
University, China. He received the
bachelor, master, and PhD degrees from
Southeast University, China, in 2010,
2012, and 2018, respectively. His research
interests include cloud computing,

virtualization, and data center network.

Junzhou Luo is a full professor in
the School of Computer Science and
Engineering, Southeast University, China.
He received the BS degree in applied
mathematics from Southeast University in
1982, and then got the MS and PhD degrees
in computer science both from Southeast
University in 1992 and 2000, respectively.

His research interests include network security, cloud computing,
and wireless LAN.

Fang Dong is currently an associate
professor in School of Computer Science
and Engineering, Southeast University,
China. He received the BS and MS
degrees in computer science from Nanjing
University of Science and Technology,
China, in 2004 and 2006, respectively,
and received the PhD degree in computer

science from Southeast University in 2011. His current research
interests include cloud computing, task scheduling, and big data
processing.

Junxue Zhang is currently a PhD
candidate in the Department of Computer
Science and Engineering (CSE) at
Hong Kong University of Science and
Technology. He received the bachelor and
master degrees from Southeast University,
China, in 2013 and 2016, respectively. His
current interest is data center networking.

