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WiSH: WiFi-Based Real-Time Human Detection

Tianmeng Hang, Yue Zheng, Kun Qian, Chenshu Wu, Zheng Yang�, Xiancun Zhou,
Yunhao Liu, and Guilin Chen

Abstract: Sensorless sensing using wireless signals has been rapidly conceptualized and developed recently.

Among numerous applications of WiFi-based sensing, human presence detection acts as a primary and

fundamental function to boost applications in practice. Many complicated approaches have been proposed to

achieve high detection accuracy, but they frequently omit various practical constraints such as real-time capability,

computation efficiency, sampling rates, deployment efforts, etc. A practical detection system that works in real-

world applications is lacking. In this paper, we design and implement WiSH, a real-time system for contactless

human detection that is applicable for whole-day usage. WiSH employs lightweight yet effective methods and thus

enables detection under practical conditions even on resource-limited devices with low signal sampling rates. We

deploy WiSH on commodity desktops and customized tiny nodes in different everyday scenarios. The experimental

results demonstrate the superior performance of WiSH, which has a detection accuracy of >98% using a sampling

rate of 20 Hz with an average detection delay of merely 1.5 s. Thus, we believe WiSH is a promising system for

real-world deployment.
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1 Introduction

Wireless signals play an important role in our daily
lives. In the past, such signals were usually used as a
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sole communication medium. Nowadays, they appear
more frequently in the sensing area[1]. Sensorless
sensing has been quickly developed and enriched
from both theoretical foundations and innovative
applications. Received Signal Strength Indicator
(RSSI) has been adopted in indoor localization
systems. However, in complex situations, it suffers
from dramatic performance degradation because of
multipath fading and temporal dynamics. Channel
State Information (CSI) is able to discriminate
multipath characteristics and help analyze and capture
human motions. A number of motivating applications
have been enabled or improved, such as human
detection[2, 3], human activity monitoring[4], gesture
recognition and interaction[5], gait recognition[6],
smoking detection[7], keystroke recognition[8], sleep
monitoring[9], fall detection[10], and respiration and
heart rate monitoring[11], etc. While many researchers
continue to foster more attractive applications with
complicated designs, we argue that building and
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validating simple and effective sensing systems that
are applicable in practice are of equal importance and
value to the community.

As dedicated or wearable sensors are too heavy for
daily lives, many systems have proposed to enable
various human sensing applications without using
them. However, strict requisites must be followed if
sensing systems are deployed in real environments.
For example, dense links are required for accurate
localization and tracking[12]. Sleep monitoring systems
ask users to be very close to the wireless links for sleep
monitoring[9]. These systems may employ extensive
prior training for different locations for keystroke or
activity recognition[4, 8, 13]. A truly practical wireless
human sensing system that functions in the real-world
applications is lacking. In this paper, we aim to design
and implement a real-time system of contactless human
detection, which works in practice for whole-day usage
yet does not resort to impractical conditions such
as dense links, location-dependent prior trainings, or
interference-free environments.

Human detection, a primary and fundamental
function among plentiful applications, appears to
be one of the most practically applicable killer
applications, which is promising for real-world
deployment. Knowledge of human presence is a
valuable primitive for security monitoring, smart home
monitoring, exhibition interaction, mall analytics, and
factory environment control. Effective approaches have
been proposed for human detection[2, 3, 14]. However,
these methods suffer from several limitations for
real-time applications. Typically, they require prior
training and high sampling rates, and employ complex
algorithms, rendering them infeasible for energy-
efficient and real-time applications. In addition, most
existing systems are designed for arbitrary motion
sensing that perceives any locomotion instead of exact
human detection, which targets human presence events.

In this paper, we present WiSH, a lightweight system
for real-time Wireless Sensing of Human detection.
To boost applications in practice, WiSH employs
an efficient detection algorithm that works with one
single pair of transmitter and receiver and extremely
low sampling rates. Specifically, we extract simple
but effective features from both time and frequency
correlations of the received WiFi signals. On this
basis, we design a robust event filter to deal with
mis-alarms induced by instantaneous eruptions due to
uncertain environmental dynamics. The key insight is

that human presence events usually last for a certain
duration. Thanks to its effectiveness and robustness,
WiSH is widely applicable for whole-day deployment
in different practical scenarios.

We implement WiSH on two types of devices:
commodity desktops and laptops and customized
embedded nodes, as shown in Fig. 1. The desktops are
commodity mini PCs, whereas the customized nodes
are tiny programmable routers that also support CSI
measurement yet with limited computing resource. The
tiny device is energy efficient, portable, easy to deploy,
and most importantly, inexpensive at about $10. A real-
time system applicable on such nodes can be easily
installed and is promising for practical everyday usage.
WiSH executes the complete detection procedure as
a standalone algorithm on end devices independently
and announces detection events locally or outputs the
detection results to a central server in real time, which
then visualizes the detected events.

To evaluate the performance of WiSH, we deploy
it in different scenarios such as laboratory offices,
classrooms, and home environments. We install a
vision-based system to obtain the ground truths. We
collect data for over 72 hours, which consists of
over 300 movement events. Results demonstrate that
WiSH achieves grateful detection performance even
with a low sampling rate of 20 Hz on resource-limited
devices. Specifically, WiSH yields a detection accuracy
of >98%. The average detection delay is 1.5 s, whereas
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the durations of all detected events overlap with true
events by 76.7%, which grows to 92.5% if the sampling
rate increases to 90 Hz.

In summary, our core contributions are as follows:
� We present WiSH, a real-time system for

contactless human detection for whole-day usage.
The design of WiSH fully accounts for various
practical constraints including accuracy, detection
delays, computation complexity, and signal sampling
rate, and thus renders WiSH applicable for real-world
deployment.
� We propose a lightweight method that harnesses

both frequency and time correlations for motion sensing
and employs a robust event filter for human detection,
which enables effective human presence event detection
even on resource-limited but easy-to-deploy devices
with low CSI sampling rates.
� We implement and deploy WiSH on commodity

PCs and customized cheap and portable devices. The
results demonstrate the promising applicability of
WiSH for practical daily monitoring.

The rest of the paper is organized as follows. We
describe the design goals in Section 2. The algorithms
are presented in Section 3. System implementation
and evaluation are provided in Sections 4 and 5,
respectively. We review the literature in Section 6 and
conclude this paper in Section 7.

2 Design Space

2.1 Application scenarios

Human detection is a long-standing and valuable
problem that has attracted numerous efforts from both
academic and industrial sides. Compared with previous
detection manners such as infra-red or vision-based
approaches, WiFi-based systems have advantages in
low costs, omni-directional coverage, through-wall
capabilities, and privacy-preserving features. Hence,
WiFi-based sensorless sensing is useful in various
applications.

Typically, wireless human detection can be used
for intruder detection for home security, storehouse
monitoring, and hotel services. Take hotels as an
example. A waiter should not disturb the customers
if they are detected to be in the room via a privacy-
friendly manner. Sleep monitoring can also benefit a lot
from sensorless sensing. The experience will be largely
enhanced if light can be intelligently turned on/off with
a system that automatically senses a person getting up
at night to urinate. Wireless sensing is also helpful to

smart home and smart building analytics. By analyzing
the presence durations and patterns of a user at home,
building architects can improve the indoor space design.
As a primitive, all these applications demand a practical
and easy-to-deploy system that is capable of whole-day
detection of human presence in real time.

2.2 Design goals

We expect WiSH to be a practical human detection
system for whole-day monitoring. To achieve this goal,
the system should meet the following properties.
� Accurate and robust. WiSH should accurately

detect human presence events, yet reduce false alarms
to the minimum extent.
� Real-time. WiSH should detect and report

human presence events in real time. Delay-sensitive
applications such as intruder detection may require
instantaneous results for emergency responses.
� Energy efficient. We envision the capability

of human sensing to be integrated in general
communication devices or installed on battery-powered
devices in the future. Thus, energy consumption, either
by CSI sampling or computation, should be as low as
possible.
� Low sampling rate. WiSH works on

communication devices in a non-invasive manner.
To restrict the influence on communication, a detection
system should yield reasonable accuracy with low
sampling rates.

Most existing systems achieve good performance but
rely on extremely high sampling rates (e.g., 100 Hz
to 1000 Hz[2, 15]) and do not work in real time. In
this paper, we design and implement WiSH, which
is expected to be capable of real-time detection
for whole-day applications. In contrast to mainly
considering detection precision, WiSH targets real-
world applicability and fully accounts for various
practical constraints including real-time capability,
energy efficiency, sampling rate limitation, computation
complexity, and deployment efforts.

3 Methods

3.1 System flow

WiSH is a system that utilizes CSI to implement
human detection. CSI depicts channel properties of a
wireless link and is provided by off-the-shelf Network
Interface Cards (NICs) with slight driver modification.
In static/dynamic environments, CSI exhibits different
characteristics. Thus, CSI is a favorable indicator of a
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moving human with proper features extracted. As we
aim to implement real-time human detection, latency,
computational cost, and energy cost should also be
considered when designing features. How to propose
a lightweight detection algorithm is the first challenge
we need to undertake. Furthermore, due to the presence
of noise and radio frequency interference, CSI might
be unstable even without moving targets. False alarms
will arise if we cannot filter the exceptional events.
Therefore, the second challenge is to implement a
robust event filter on the basis of the observation
that dynamic changes in the propagation environment
induced by humans usually lasts for a sufficiently
long duration. We find that different antennas of the
receiver might suffer various degrees of dynamics when
a person is walking. And channel properties might vary
even if the surroundings slightly change. In order to
promote the robustness and sensitiveness of the system,
a suitable self-calibration mechanism must be adopted.

Figure 1 depicts the overall framework of WiSH.
The system first retrieves CSI by exchanging Internet
Control Message Protocol (ICMP) packets between
sensors. The obtained CSI is then fed into the
upper layer for further processing. First, features of
correlation in both time and frequency domains are
calculated. Subsequently, a threshold is applied to
the features to preliminarily detect moving entities in
the monitoring area. The preliminary noisy detection
result is further filtered based on the limitation of the
minimum length of moving event. With trustworthy
ground truth obtained during a specific time such as
midnight when there are likely no moving entities
in the monitoring area, the system calibrates itself
to select stable antennas and update the preliminary
threshold. The system alarms once the output indicates
the existence of moving entities.

3.2 Detection algorithm

With CSI Tool[16] deployed on commodity WiFi devices,

CSI can be collected in the following format:
H D ŒH.f1/;H.f2/; : : : ;H.fk/; : : : ;H.fN /�

T;

k 2 Œ1; N � (1)
where N denotes the total number of subcarriers in an
Orthogonal Frequency Division Multiplexing (OFDM)
symbol, and fk denotes the central frequency of the
k-th subcarrier. H.fk/ is defined as

H.fk/ D jH.fk/jej†H.fk/ (2)

where jH.fk/j and †H.fk/ denote the amplitude
and phase, respectively. Raw phase information is
usually random due to noise, packet boundary detection
uncertainty, central frequency offset, and sampling
frequency offset[17]. Thus, we only utilize the amplitude
of CSI to detect movement events.

To implement the human detection algorithm, we first
collect continuous CSI measurements over a sliding
window W . Suppose that the sliding window consists
of T CSI measurements under a specific sampling rate,
then a matrix M in the time-frequency domain can be
expressed as

M DŒH1;H2; : : : ;Hi ; : : : ;HT � D

ŒST
1 ; S

T
2 ; : : : ; S

T
j ; : : : ; S

T
F �

T (3)

whereHi denotes the CSI collected at the i -th sampling
time in the sliding window, and Sj denotes the CSI
sequence of the j -th subcarrier.

The core idea of motion detection is to quantize
variations of CSI. However, simply calculating
variances of CSI suffers from hardware issues such
as power control. Instead, we use correlation of CSI
in both time and frequency domains to indicate the
existence of movement events. Specifically, in the time
domain, we calculate cross-correlation of each pair of
CSI. Figure 2 shows the average cross-correlations of
different CSI pairs in a sliding window. Intuitively,
when the environment is static, all CSI measurements
in the sliding window are highly correlated, with cross-
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correlation higher than 0.95. By contrast, when entities
are moving in the environment, the cross-correlation
between different CSI measurements significantly
decreases to 0.8.

In addition to the time domain, we further study the
correlating property of CSI in the frequency domain.
Specifically, the cross-correlation of CSI sequences
of different subcarriers is calculated. Figure 3 plots
the distribution of cross-correlation in the frequency
domain in the presence and absence of moving entities.
The dot on each subcarrier bar means the median
cross-correlation in frequency. Clearly, the existence
of moving entities statistically decreases the cross-
correlation of most subcarriers. However, the variation
of frequency correlation is not as stable as that of time
correlation.

To leverage cross-correlation in both time and
frequency domains, we select median values of both
correlation data, and integrate both correlations as
Motion Indicator (MI):

MI D Nct e0:1 Ncf (4)

where Nct is the median time correlation, and Ncf is the
median frequency correlation. A coefficient of 0:1 and
the exponential operator are used to accommodate the
noisy fluctuation of frequency correlation. We employ
training data to determine the most suitable coefficient.
A threshold is applied for MI to preliminarily detect
motion of entities in the monitor area. Note that
movement events result in lower values of MI, and we
regard such MIs as positive in this paper.

In particular, when we calculate cross-correlation in
frequency, we do not have to calculate all the cross-
correlations between every subcarrier. Instead, we
randomly select some subcarriers from all subcarriers
and only calculate their cross-correlation. With this

method, operation time is largely shortened and overall
performance is almost similar. The detection algorithm
is detailed in Algorithm 1.

3.3 Robust event filter

WiFi operates in the free 2.4/5 GHz ISM band, which
is exceedingly crowded especially in modern buildings.
Apart from our own system, a great number of radio
devices are also functioning and we can hardly find an
interference-free channel. In order to resist interference,
a WiFi receiver might adjust power to guarantee
correct decoding. It might also change the modulation
and coding scheme index when the communication
quality of the channel degrades. Both of above result
in the observation that CSI amplitude suffers abrupt
fluctuations occasionally. False alarms will arise in

Algorithm 1 Motion indicator calculation
Input: M : F � T CSI matrix
Output: MI: Motion indicator

/* Calculate correlation of CSI samples*/
for all t1; t2 D 1; : : : ; T do
ct .t1; t2/ D

H T
t1

Ht2

kHt1
kkHt2

k

end for
Nct D Median.ct .t1; t2//

/* Calculate correlation of CSI subcarriers*/
Randomly pick a certain number of subcarriers from all
subcarriers
for all f1; f2 D 1; : : : ; Fselect do

cf .f1; f2/ D
Sf1

ST
f2

kSf1
kkSf2

k

end for
Ncf D Median.cf .f1; f2//

/* Calculate motion indicator */
MI D Nct e0:1 Ncf
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the event of a sufficient number of exceptional CSI
measurements in the sliding window.

To decrease false alarms, we propose a robust event
filter on the basis that human presence events usually
last for a sufficiently long time. By contrast, eruptions
induced by interference do not appear continuously. We
formally illustrate how the event filter works in the
following. Suppose that for sliding widow Wi , the
corresponding motion indicator MIi is determined to
have a positive status. We then observe the following
MIs continuously. Only when all the values in the
sequence MIi ;MIiC1; : : : ;MIiCd1�1 are lower than
the threshold will the system alarm the presence
of moving entities (see Fig. 4a). Besides, as we
adopt a fixed threshold for motion indicators, human
movements might be ignored if the corresponding MIs
fluctuate around the threshold. The phenomenon is not
uncommon as the effects that human movements exert
on CSI might degrade at specific locations. Therefore,
as long as the interval between two positive motion
indicators MIj and MIk is less than d2, we regard
the sequence MIj ;MIjC1; : : : ;MIk as positive (see Fig.
4b). The pseudocode is shown in Algorithm 2.

3.4 Self-calibration

For both detection algorithm and event filter, thresholds
need to be determined preliminarily through training
when the system is deployed. Considering that the
environment settings might vary and channel properties
also change, the value of thresholds might need to
be recalibrated over a few days. A heuristic approach
is to exploit the data collected after midnight (e.g.,
3:00 a.m.–4:00 a.m.) for recalibration because moving
entities are hardly present.

The performance of WiSH is also sensitive to antenna
choice. As different antennas of the WiFi receiver
correspond to different propagation environments, CSI

Algorithm 2 Principles of the event filter
Input:

MIS: 1 � T Motion indicator sequence
�: Threshold for motion indicator
d1; d2: Thresholds for event filter

Output: DS: 1 � T Detection sequence

/* Detection with rough threshold */
for all t D 1; : : : ; T do

DSt D fMISt < �g

end for

/* Filter false alarms of motion */
for Successive DSt;:::;tCLC1 do

if DSt D 0 and DStCLC1 D 0 then
if DStC1;:::;tCL D 1 and L < d1 then

DStC1;:::;tCL D 0

end if
end if

end for

/* Filter static false alarms */
for Successive DSt;:::;tCLC1 do

if DSt D 1 and DStCLC1 D 1 then
if DStC1;:::;tCL D 0 and L < d2 � 2 then

DStC1;:::;tCL D 1

end if
end if

end for

collected by each antenna is distinct. Moreover, the
dynamics of CSI induced by moving entities are at
different degrees. Thus, the sensitivity of the antenna
is crucial in detection accuracy. If the antenna is rather
insensitive, then micro movements will be concealed.
However, the performance will also degrade if the
antenna is too sensitive. In such case, noise can be
also regarded as movements and false alarms can
arise. Therefore, improper antennas must be discarded.
WiSH can automatically achieve antenna selection via
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detection accuracy comparison when recalibrating the
thresholds.

4 Implementation

To deploy WiSH, we use two tiny WiFi nodes (shown
in Fig. 5) as the transmitter and receiver. The node
supports IEEE 802.11n standard, and we choose one
channel in 2.4 GHz ISM band to operate WiSH. The
transmitting node is equipped with one antenna, and
the receiving node is equipped with three antennas.
Thus, three groups of CSI which correspond to three
individual wireless links are collected, and we splice
them together to create a whole matrix as shown in
Eq. (3). In contrast to traditional WiFi devices that are
utilized to perform sensing applications (e.g, laptops
and mini desktops), the node only uses 128 MB DDR2
RAM. In addition, the highest sampling rate is around
15 – 20 Hz because it is limited by hardware capability.
This sampling rate is much lower than the used
sampling rate of 100 – 1000 Hz in prior work[2, 6, 13].

However, the node exhibits the following favorable
features. First, it is in low energy levels. In standby
mode (WiFi turned off), the power is merely 462 MW.
The power increases to 660 MW when there is a
small communication flow. And the power in full load
mode is 990 MW. Second, the cost of the node is
only 10 dollars. Furthermore, the node is portable and
easy to deploy. We use C language to implement the
methodology and operate it in OpenWrt, which is an

Fig. 5 Tiny WiFi nodes.

embedded operating system based on Linux. In order
to exhibit real-time detection results, we also build a
website that is depicted in Fig. 6. The red box indicates
moving entities during this time duration.

To further investigate how the sampling rate affects
the performance of the proposed methodology, we
transfer the system to the traditional wireless platform.
A TP-LINK TL-WDR7500 WiFi router that supports
IEEE 802.11n standard functions as the transmitter, and
a mini desktop (physical size 170 mm � 170 mm) with
three antennas works as the receiver. The mini desktop
is equipped with an Intel 5300 NIC and runs Ubuntu
12.04 OS. With Linux 802.11n CSI Tool deployed, the
mini desktop can collect CSI measurements.

5 Evaluation

5.1 Experimental settings

Our experiments can be classified into two categories.
First, to evaluate the performance of WiSH with
tiny nodes deployed, we conduct experiments in a
classroom, a meeting room, and a dormitory room.
The classroom is 6 m � 10 m large, and the nodes are
placed at the front of the classroom. In this case, we
investigate how movement events at different locations,
the distance between two nodes, the speed of the
moving entity, and other factors affect the performance
of WiSH. The effective covering range of WiSH can
be determined via experiment results. The meeting
room and dormitory room are 6 m � 3 m large and
3 m � 4 m large, respectively. WiSH is deployed in the
above scenarios to monitor whether intrusion or moving
events occur. The two tiny nodes are placed along the
diagonal of the room. The transmitting node is 4 m away
from the receiving node. Both are placed 1.2 m high.
The floor plans are depicted in Fig. 7.

Second, given the limited hardware capacity of tiny
nodes, we deploy the mini desktop and WiFi router in
the classroom and meeting room to further investigate

Fig. 6 Real-time GUI website.
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how the sampling rate affects the performance of the
proposed methodology.

In order to obtain the ground truth of environmental
conditions, we place a 360 D600 camera, which has
a wide-angle lens, around the receiver. The range of
vision covers the monitoring area.

5.2 Performance

5.2.1 Evaluation metric
We use the following metrics to extensively evaluate the
performance of our system and compare it with those of
PADS[2] and FIMD[3].
� True Positive rate of human Movement Event

(ME-TP). ME-TP is the probability that a human
presence event is correctly detected.
� False Alarm (FA). FA is the number of false alarms

of movement events when no human is actually present.
� True Positive and True Negative rates of human

Movement Duration (denoted as MD-TP and MD-
TN, respectively). MD-TP (MD-TN) calculates the
overlapping time periods between detected movement
(non-movement) events and ground truths.
� Errors of Movement Beginning (MBE) and Ending

time (MEE). MBE and MEE are the delays (time biases
with respect to ground truths) when an event is detected
to start or end, respectively. A motion event’s start
means when a user begins to move in the monitoring
area, and a motion event’s end means when a user stops
moving in the monitoring area.

5.2.2 Overall performance
With tiny WiFi nodes deployed in the meeting room for
one day and in the dormitory room for two days, we
evaluate the overall performance of WiSH. The results
are shown in Table 1.

We observe that the ME-TP rate exceeds 98% in
both scenarios. The MD-TP rate (duration accuracy)

Table 1 Overall performance of WiSH.

Scenario
ME-TP

(%)
FA

MD-TP
(%)

MD-TN
(%)

MBE
(s)

MEE
(s)

Meeting room 98:83 4 81 91:45 1:46 2:95

Dormitory room 98:58 6 82 94:25 1:48 2:08

is relatively low compared with the ME-TP rate
(event accuracy). It is rational if we take the speed
of the moving target, sensitivity variety at different
locations, and other factors into consideration, which
are comprehensively discussed hereinafter. False alarms
can be further minimized if we choose a channel
that suffers less radio frequency interference as other
devices may operate in the same channel.

To evaluate the real-time performance of the
system, we calculate the deviation of boundaries of
movement events. Table 1 shows the average MBE
and MEE in the two scenarios. The time delay of
detecting whether a movement event starts (MBE)
cannot be avoided because we utilize a time series
to perform human detection robustly as illustrated
in Section 3.3. However, we believe the delays
are tolerable considering the average time span of
movement events. Note that MEE is much larger than
MBE. The rationale lies in that CSI cannot be static as
soon as the target stops moving. Thus MD-TN cannot
reach 100% as well. Figure 8 shows the distribution
of MBE and MEE of 170 movement events that occur
in the meeting room. The median deviation is 1.35 s
for the beginning time and 1.07 s for the ending time.
About 90% of motion events can be correctly detected
with deviation less than 2.2 s. Note that MEE can be
a negative value because micro movements might be
discarded by the system.

We choose different numbers of selected subcarriers
and employ the detection algorithm on 17 005 records to
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prove the efficiency of our selection mechanism before
calculating the cross-correlation in frequency domain.
Table 2 shows that 45 selected subcarriers can guarantee
ME-TP and the desired deviation time; simultaneously,
the operation time is largely shortened.

We also operate FIMD[3] and PADS[2] on the tiny
nodes to verify the low computational complexity
of WiSH and compare their detection accuracy. The
difference among the three systems is the methodology
used to calculate the MI (see Section 3.2). WiSH
utilizes the correlation of CSI amplitude in both time
and frequency domains. FIMD uses only the time
correlation of CSI amplitude, and it adopts a more
sophisticated method, which calculates eigenvalues of
the correlation matrix. PADS employs both amplitude

Table 2 Performance with different numbers of selected
subcarriers.

Number of
selected subcarriers

ME-TP
(%) FA Deviation

time (s)
Time cost

(s)
90 98:75 0 1:63 2544:19

45 98:75 0 1:59 740:36

30 96:25 0 1:67 344:74

and phase information to extract features, and it
also performs eigenvalue decomposition. With CSI
collected in 15 minutes as input, WiSH, FIMD, and
PADS take 0:0145, 0:8911, and 1:7765 s, respectively,
to calculate MI. Thus, PADS and FIMD cannot meet
the requirements of real time if the system operates
with a low sampling rate in one day. Figure 9 shows
the distribution of the true positive rate of motion
duration for 70 events. The performance of WiSH is
comparable with that of FIMD in terms of duration
accuracy. However, WiSH avoids complex calculations
of eigenvalues and is more feasible for embedded
devices, which have limited computational resources.

5.2.3 Parameter study
Now we study the impacts of different parameters on
the system’s performance.

Distance between transmitter and receiver. We
conduct the experiments in a classroom. The distance
between the transmitting node and receiving node varies
from 2 m to 4 m. A volunteer is asked to walk evenly
in a square area of 4 m � 6 m in which the nodes are
placed. As Fig. 10 shows, when the distance decreases
to 2 m, the ME-TP rate drops to below 90%. The main
reason is that if the nodes are placed too close to each
other, Line-Of-Sight (LOS) will surpass other paths.
Human movements exert a low influence on CSI, and
WiSH fails to report some events. Thus, we choose 4 m
as the proper distance between the transmitter (Tx) and
receiver (Rx) for other parameter studies.

Distance between human and LOS. In order to
determine the effective covering range of WiSH with
tiny nodes deployed, a volunteer is asked to walk along
a route that is parallel with LOS. The vertical distance
between the route and LOS changes from 0 to 3 m. As
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Fig. 9 Detection accuracy of WiSH and FIMD.
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Fig. 10 Impact of distance between Tx and Rx.

the distance increases to 3 m, the ME-TP rate drops
dramatically to around 58% as shown in Fig. 11. Thus,
if the moving target is located too far away from the
nodes, then WiSH may not work. However, we believe
that this problem can be handled well if additional
nodes are deployed in the classroom.

Distance between human and transmitter. If the
moving event occurs at different locations, then CSI
might suffer dynamics at various degrees. Therefore,
we ask a volunteer to walk along a route that is
perpendicular to LOS in order to validate the robustness
of WiSH. The total length of the route is 6 m. As shown
in Fig. 12, the ME-TP rate remains over 92% regardless
of the distance between a human and transmitter. Thus,
we believe such factor only exerts a slight influence on
the performance of WiSH.

Moving speed. Fast human movements result in
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drastic changes in CSI amplitude in both time domain
and frequency domains. However, the instantaneous
velocity of slow movements is rather small, and
moving events cannot be captured by simply employing
the correlation property of CSI. With the robust
filter proposed in Section 3.3, WiSH is capable of
detecting slow movements effectively as well. As
Fig. 13 illustrates, WiSH demonstrates high accuracy
regardless of speed variations. Even if the moving target
walks slowly in the monitoring area, the ME-TP rate
exceeds 99%.

Detection threshold. Intuitively, a large detection
threshold will lead to increased sensitivity. As shown
in Fig. 14a, ME-TP increases with rising detection
threshold. However, when the detection threshold
exceeds 0.98, some correlation values in static cases
are below the threshold, so false alarms start to
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increase. Figure 14b shows the change of duration
accuracy against the detection threshold. Consistently,
MD-TP increases and MD-TN decreases as the
detection threshold increases. Although the balance
point for duration accuracy is 0.975, we focus on a
more accurate ME-TP and fewer false alarms. Thus, we
choose 0.959 as the final detection threshold.

Sliding window size. Intuitively, the performance of
WiSH will improve if the sliding window size is larger
as the corresponding observation time is expanded. As
shown in Fig. 15, ME-TP increases apparently when the
window size rises to 2 s. However, when the window
size is too large, ME-TP will decrease instead. This
trend is reasonable because when the duration of human
movements is very small, the corresponding dynamic
CSI measurements only occupy a tiny proportion
compared with the static period. Thus, the system will
consider this case as a static one, and ME-TP falls.

Now we analyze how MD-TP is impacted by
the sliding window size. When the window size
decreases, the system will become more sensitive to
human movements. Therefore, MD-TP increases as the
window size decreases. Nevertheless, given that abrupt
fluctuations in CSI occasionally occur, the overall
performance will degrade when the window size is
too small. Thus, a trade-off is necessary, and 1.2 s is
regarded as a proper sliding window size.

Thresholds in the robust event filter. As mentioned
in Section 3.3, we need to adopt two thresholds d1

and d2 for fewer false alarms and human movements
missing. We refer to d1 and d2 as the minimum moving
event duration and the minimum static event duration,
respectively. As shown in Fig. 16a, d1 exerts more
influence on ME-TP than d2. Moreover, false alarms
decrease drastically when proper thresholds are selected
(see Fig. 16b). To ensure both a high ME-TP rate and a
small number of false alarms, we choose the minimum
moving event duration as 1.1 s and the minimum static
event duration as 1.1 s.
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Sampling rate. Although we aim to enable accurate
movement detection with low sampling rate limitation
(less than 20 Hz) on our tiny nodes, we also evaluate and
compare the performance under different sample rates.
The experiments are conducted with the traditional
wireless platform, which consists of a router and a mini
desktop. As Fig. 17 shows, the MD-TN rate changes
slightly with increasing sampling rate, but the ME-
TP rate remains at 100%. As increasing sampling rate
results in additional CSI measurements collected, the
detection methodology will become more robust if the
sliding window size does not vary. We observe that the
ratio of detected duration correctly overlapping with
true events increases from 76.7% to 92.5% when the
sampling rate increases from 20 Hz to 90 Hz.

6 Related Work

6.1 RF-based passive moving human detection

Considering that vision-based human detection
systems[18–20] function with strict constraints (e.g., LOS
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and lighting) and require heavy computing, researchers
are devoted to finding alternatives. The concept of
RF-based passive localization/detection originates in
a previous work[21], which aims to localize or track a
person without carrying any RF devices. To implement
device-free systems, many prior works utilize RSSI,
which can be obtained from WiFi devices[22], ZigBee
nodes[23], and RFID readers[24, 25]. The rationale lies
in that the variance of RSSI increases when moving
entities exist in the monitoring area. However, the
performance of RSSI-based moving human detection
algorithms might suffer from dramatic degradation[26]

due to multipath effects and temporal dynamics.
Many research efforts have been devoted

to CSI-based schemes because CSI can be
exported from off-the-shelf NICs with slight driver
modification[16]. Compared with RSSI, CSI provides
both amplitude and phase information. It is also capable
of discriminating multipath characteristics. Therefore,
the system’s performance can be largely improved
by exploiting CSI. On the basis that the temporal
correlation of CSI is much higher in static environment,
Ref. [3] implements accurate fine-grained burst motion
detection. Omni-PHD harnesses the histogram feature
of the subcarrier amplitudes to implement omni-
directional passive human detection[15]. PADS[2] is the
first effort to leverage phase information in passive
target detection. R-TTWD[27] proposes a subcarrier
dimension-based feature to implement through-the-
wall detection. RoMD[28] also takes the impacts
of antenna selection into consideration. Most prior
studies, however, still suffer from several limitations
for real-time applications. Typically, they usually
require prior training, extremely high sampling rates,
and complex algorithms, which make them infeasible
for energy-efficient and real-time applications. In this
paper, we propose a lightweight system for real-time
sensing of human detection. The system only requires
a low sampling rate and can function on embedded
devices with limited computational resources.

6.2 WiFi-based activity recognition

Apart from human presence detection, a large number
of innovative applications and systems have emerged
by exploiting WiFi, including localization[29–32],
gesture recognition[5, 33, 34], gait recognition[6], smoking
detection[7], sleep monitoring[9, 35], fall detection[10],
respiration and heart rate monitoring[11, 36], etc. Recent
works can be mainly divided into two categories. Some

rely on location and environment-dependent features[4],
such as CSI amplitude profiles. The recognition model
needs to be re-trained for each different scenario. Others
extract environment-independent features from original
CSI, such as velocity[37, 38] and Doppler shifts[33, 39].
However, many works still adopt learning-based
solutions and rely on rigorous requisites. Keystroke
and activity recognition systems[4, 8, 13] use off-the-
shelf WiFi devices, and they require extensive prior
training at different locations in order to achieve
high recognition accuracy. For accurate localization
and tracking in Refs. [12, 37], dense links must
be deployed preliminarily. Sleep and respiration
monitoring systems[9, 40] require users to be sufficiently
close to the wireless links. Otherwise, the detection
accuracy cannot be guaranteed. And most sensing
applications only work in rather ideal environments
without interference. In this paper, we design and
implement a real-time passive human detection system
that does not rely on rigorous requisites and works
in practice. WiSH employs lightweight but effective
methods and enables detection even on resource-limited
devices with rather low sampling rates.

7 Conclusion

This paper presents the design and implementation of
WiSH, a real-time human presence detection system
for whole-day usage. Considering various practical
constraints, we propose a lightweight yet effective
detection method based on both time and frequency
correlations of CSI measurements. To sift out CSI
eruptions due to irrelevant instantaneous motions or
environmental changes, we further design a robust event
filter that identifies targeted human presence events. We
implement WiSH on resource-limited RF devices and
evaluate its performance in different scenarios. Results
demonstrate that WiSH achieves a remarkable detection
accuracy that exceeds 98%. With the sampling rate
of 20 Hz, the average detection delay is merely 1.5 s
and the durations of all detected events overlap with
true events by 76:7%, which grows to 92:5% if the
sampling rate increases to 90 Hz. We believe that WiSH
is a practical system for real-time human detection in
practice, and it can be deployed at large scale for long-
term monitoring in real-world scenarios.

8 Future Work

In the monitoring rectangle area, we can obtain results
with high accuracy around the LOS between sender and
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receiver tiny nodes. However, if a human moves in the
area far from this LOS, the system may not function
because of long distance and low sampling rate. To
solve this problem, we can deploy additional receiver
nodes to cover the monitoring area as wide as possible.
Furthermore, we can combine data collected by all
receiver nodes together to achieve higher accuracy, but
synchronizing all nodes is a major challenge.

In this study, we only use CSI amplitude in both
time domain and frequency domains and have already
achieved high accuracy. However, other parameters
such as noise-signal ratio have not been utilized
yet. Given that we need to find a balance between
accuracy and operation time under limited computing
environment, under the premise of short operation time,
we may use other parameters in the future to improve
our model and achieve increased accuracy.
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