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Key-Recovery Attacks on LED-Like Block Ciphers

Linhong Xu, Jiansheng Guo�, Jingyi Cui, and Mingming Li

Abstract: Asymmetric cryptographic schemes, represented by RSA, have been shown to be insecure under

quantum computing conditions. Correspondingly, there is a need to study whether the symmetric cryptosystem

can still guarantee high security with the advent of quantum computers. In this paper, based on the basic principles

of classical slide attacks and Simon’s algorithm, we take LED-like lightweight block ciphers as research objects

to present a security analysis under both classical and quantum attacks, fully considering the influence on the

security of the ciphers of adding the round constants. By analyzing the information leakage of round constants, we

can introduce the differential of the round constants to propose a classical slide attack on full-round LED-64 with

a probability of 1. The analysis result shows that LED-64 is unable to resist this kind of classical slide attack, but

that attack method is not applicable to LED-128. As for quantum attacks, by improving on existing quantum attack

methods we demonstrate a quantum single-key slide attack on LED-64 and a quantum related-key attack on LED-

128, and indicators of the two attack algorithms are analyzed in detail. The attack results show that adding round

constants does not completely improve the security of the ciphers, and quantum attacks can provide an exponential

speed-up over the same attacks in the classical model. It further illustrates that the block cipher that is proved to be

safe under classical settings is not necessarily secure under quantum conditions.
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1 Introduction

With the continuous development of quantum
computing, its application in the field of cryptography
has gradually become a research hotspot in academia
and industry. Cryptography has also entered the era
of post-quantum cryptography, one feature of which is
that the influence of quantum computers on the security
of existing cryptographic algorithms is now of great
concern.

Currently, much research is focusing on asymmetric
cryptographic schemes. The most famous discovery
is that RSA[1] can be broken in polynomial time

� Linhong Xu, Jiansheng Guo, Jingyi Cui, and Mingming Li
are with the Information Science and Technology Institute,
Zhengzhou 450001, China. E-mail: xlh right@126.com;
tsg 31@126.com; xd cjy@126.com; 18203622214@163.com.
�To whom correspondence should be addressed.

Manuscript received: 2018-10-16; accepted: 2018-11-10

under quantum computing conditions by way of Shor’s
algorithm[2]. For symmetric cryptographic schemes, it
is worth investigating whether security under quantum
computing conditions is consistent with that under
classical settings. The same algorithms that can achieve
exponential increase in speed in quantum computers
can also be applied to symmetric cryptography. For
example, Grover’s pioneering result[3] can reduce the
time complexity for exhaustive key attack on an n-
bit key block cipher from O.2n/ to O.2

n
2 /. Simon[4]

demonstrated an algorithm to calculate the period of a
given function in polynomial time.

Based on existing quantum algorithms, a series of
quantum cryptanalysis methods have been proposed.
In 2016, Kaplan et al.[5] gave a quantum slide attack
method to the iterative Even-Mansour (E-M) ciphers[6]

using the same round keys as Simon’s algorithm.
Leurent et al.[7] improved Grover’s algorithm to
provide general methods for quantum differential
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and linear analysis. The attacks in Refs. [5, 7] are
based on the promise that an adversary can use the
quantum superposition state to query the encryption
oracle and perform quantum computation operations,
this is the Q2 model assumption defined in Ref.
[7]. Correspondingly, if the adversary performs only
classical operations during the data collection phase and
performs quantum operations in the key recovery phase,
this is denoted as the Q1 model.

Similar quantum cryptanalysis methods based on the
Q2 model also appear in subsequent work. Kuwakado
and Morii[8, 9] proved that the 3-round Feistel and E-
M structure are insecure with superposition queries. In
2015, Roetteler and Steinwandt[10] presented a quantum
related-key attack based on Simon’s algorithm. In 2017,
Hosoyamada and Aoki[11] built on the work in Ref.
[5], proposed an improved polynomial-time quantum
related-key attack. In Ref. [11], the authors targeted
iterative E-M structural ciphers using different round
keys and gave a specific example of a key-recovery
attack on the 2-round E-M structural cipher. Leurent
and May[12] combined Grover’s algorithm with Simon’s
algorithm to demonstrate a quantum attack on the block
ciphers constructed by the FX structure.

The classical slide attack[13], such as the side-channel
attack for Ref. [14], is a very effective method of
cryptanalysis. This can be seen as a variant of the
related-key attack and the method is applicable in both
single-key and related-key models. In general, this
attack requires a block cipher and has the following
features:

(1) The same round function, or several rounds of the
round function form a period.

(2) A simple key schedule, such as using the same
master key for round keys.

In summary, the cipher has self-similarity. In order
to resist classical slide attack, cryptologist destroy
this self-similarity by adding round constants to the
ciphers. However, different ways of adding these round
constants also influence the ability to resist such an
attack.

Our contributions. The main objective of this paper
is to show the key-recovery attack on LED-like[15]

lightweight block ciphers under classical and quantum
computing settings. Section 2.2 gives the specific
properties of LED-like block ciphers.

(1) Under the classical setting, we improve the
original slide attack. By analyzing the information
leakage of round constants, we can introduce the

differential of the round constants to propose a classical
slide attack on full-round LED-64 with a probability
of 1. But this kind of classical slide attack is not
applicable to LED-128.

(2) Under the quantum setting, by improving the
existing attack methods, we show a quantum single-
key slide attack on LED-64 and a quantum related-
key attack on LED-128. The given quantum attacks are
based on the Q2 model. We then analyze the success
probability and complexity indicators of the attacks in
detail.

The attack results show that, for LED-like block
ciphers, an irrational way of adding round constants
does not necessarily improve the security of the ciphers
and the ciphers that are proven to be safe under classical
settings are not necessarily secure under quantum attack
conditions.

Organization. The paper is organized as follows.
First, Section 1 mainly introduces the research
background and significance of this article. Section
2 provides background knowledge for the research,
including the description of the quantum gate circuit,
the introduction of the LED-like block ciphers, and
the classic slide attack method. Section 3 describes
the basic principles of Simon’s algorithm and the
two quantum attack methods. Sections 4 and 5 then
take LED-64 and LED-128 as target ciphers and give
corresponding attack algorithms and analyze of various
indexes of these attack algorithms. Finally, Section 6
concludes the paper and points out some possible new
research directions.

2 Preliminaries

2.1 Symbol description

EK : A full-round block cipher.
K D .k1; k2; k3; : : : ; kr/: Round keys of an r-round

block cipher.
Pi : The i -th round function.
rc: Initial round constant of LED.
j   i: Quantum state.
m: Plaintext.
c: Ciphertext.

2.2 Basic quantum gates and circuits

The quantum gates that will be used later are briefly
introduced in this section.

For b 2 f0; 1g, x; y 2 f0; 1gn, Fig. 1 shows gate
H˝n, gate CNOT, and gate CCNOT. They are
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Fig. 1 (a) gate H˝n, (b) gate CNOT, and (c) gate CCNOT.

H˝njxi7!
1
p
2n

X
.�1/x�y jyi;

CNOT W jxi jyi7!jxi jy˚ xi;

CCNOT W jbi jxi jyi 7! jxi jy˚ bxi:
For the public random permutation P and the

function f , we call the quantum gates of P and
quantum oracle f , P W jxi jyi 7! jxi jy˚ P.x/i and
f W jxi jyi 7! jxi jy˚ f .x/i (see Fig. 2). Figure 3
shows a concrete representation of the quantum gate of
controlled P , CP Wjxxxi jyyyi 7! jxi jy˚ bP.x/i, and the
quantum circuit of controlled function f, Cf Wjxi jyi 7!
jxi jy˚ bf .x/i.

2.3 LED-like block ciphers

In 1997, Even and Mansour[6] proposed a simple
structure for constructing a cryptographic algorithm
using pseudo-random permutation. It was defined
as an E-M structure, and the corresponding security
proof was given. Specifically, for a pseudo-random
permutation P with n-bit size, and the keys k1
and k2, we can construct a cryptographic algorithm
Ek1;k2

.x/ D P.x ˚ k1/˚ k2. This algorithm is
considered to be secure under attacks with time
complexity lower than exhaustive search. Many
existing block ciphers are constructed based on this
structure, such as traditional block cipher-AES[16],
lightweight block ciphers PRINCE[17], and LED.

LED is a 64-bit lightweight block cipher proposed
by Guo et al.[15] in CHES-2011. The two main
variants of the cipher are LED-64 and LED-
128, which support the key size 64 and 128,

Fig. 2 (a) Quantum gate P and (b) quantum oracle of f.

Fig. 3 (a) CP and (b) Cf.

respectively. The corresponding numbers of rounds of
cipher are 32 and 48. In the round function part,
two key-size LED algorithms use the same round
operation. Each round consists of four transformations
in the sequence of AddConstants, SubCells, ShiftRows,
and MixColumns. The construction of LED-64 is a
generalized E-M structure with one key k1 and 8
steps. Each step includes four rounds. Slightly different
from LED-64, LED-128 includes 12 steps and alternate
uses the master keys k1 and k2 as the round key. For
more details of LED, see Ref. [15].

This paper mainly studies the LED-like lightweight
block ciphers with iterative E-M structure. Some
properties of this type block ciphers are as follows.

(1) The design of the ciphers can be regarded as
the iterative transformation based on the basic E-M
structure.

(2) The ciphers have a simple key schedule. For ex-
ample, LED uses the master key directly as the round
key.

(3) The round function uses different round constants
in a cipher, and each round constant is affected by the
previous round. If the previous round constants are
changed, the round constants in the subsequent round
will also change.

(4) The ciphers can use a single round operation as
a round function or, similar to LED, can use multiple
round operations as a round function. In accordance
with the aboved property (3), since the round constants
are inserted in the round functions of the ciphers, it is
obvious that each round function is different.

2.4 Classical slide attack

The classic slide attack is not limited by the number
of rounds of the ciphers, and it can perform security
analysis on all-round cryptographic algorithms.
E is an n-bit block cipher with r rounds, E D

Pr ıPr�1ı� � �ıP1. Each Pi is the same round function,
and round keys are generated by the key schedule. The
idea of the original slide attack is mainly focused on the
slide element, which means that one encryption process
slides over another to ensure that the two encryption
processes are identical except for the difference in
encryption order. At this point, the adversary needs
to find two sets of plaintext-ciphertext pairs .m; c/ and
.m1; c1/ satisfying the relationship ofm1 D P1.m˚k/
and c1 D PrC1.c/ ˚ k. Based on this, the correct
key can be recovered, and the plaintext-ciphertext pair
which satisfies the corresponding relationship is called a
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slide pair. According to the principle of birthday attack,
2

n
2 plaintext-ciphertext pairs are needed to find the slide

pair in general, then the correct key can be recovered.
Figure 4 shows the original slide attack.

In this paper, we give an improved classical slide
attack method by introducing the differential of the
round constants, and then applying it to perform a
key-recovery attack on LED-like ciphers. For specific
examples, see Sections 4.1 and 5.1.

Here, we compare the ability of block ciphers to resist
classical slide attacks using different methods of adding
round constants and different key schedules.

(1) LED-64-like ciphers can resist the original slide
attack, but they are unable to resist the improved slide
attack presented below in Section 4.1.

(2) LED-128-like ciphers have the same method of
adding round constants as LED-64-like ciphers. They
also use the master keys directly as the round keys, but
the round keys form a loop every few rounds. This kind
of cipher can resist the original slide attack, and Section
5.1 below proves that it can also resist the improved
classical slide attack under the related-key conditions.

(3) For ciphers in which round constants are added
in the same way as LED-like ciphers (i.e., the round
keys used are derived from the master keys through key
schedule), each round key is not the same but there is
a certain link between them. Due to the correlation
between the round keys, an adversary can use the
improved slide attack based on the related-key model to
find the slide pair and filter out the correct key. That is,
such ciphers are generally unable to resist the improved
classical related-key slide attack.

(4) Ciphers using a fixed random number as the round
constants with no link between each round constant,
can resist the original slide attack and the improved
slide attack presented in this paper, regardless of the key
schedule of the ciphers.

3 Basic Principle of Quantum Attack

Grassl et al.[18] gave the exact number of qubits
and basic logic gates needed to attack AES by
Grover’s algorithm[3], and provided a basic method

Fig. 4 Original slide attack.

for constructing a quantum circuit of a cryptographic
algorithm. In the present paper, the assumption behind
the quantum attacks is that the adversary can perform
a quantum query to the encryption circuits and perform
quantum computation (Q2 model). Under the method
provided in Ref. [18], the encryption circuits can
be constructed, so that the attack assumption can
be implemented under the conditions of quantum
computing. In addition, when analyzing the complexity
of the attack algorithm under the Q2 model, it is
reasonable to only consider the complexity required for
the quantum query and classical computations, without
considering the computational complexity required to
construct a quantum circuit. The basic principles of
the Simon’s algorithm[4], the quantum slide attack, and
quantum related-key attack are introduced below.

3.1 Simon’s algorithm

Problem 1[4] Assume that f is a function, f W f0;
1gn ! f0; 1gn. For 8x 2 f0; 1gn and some s 2 f0; 1gn,
that satisfy f . x˚ s / = f .x/, how to find s?

The computational complexity required for the
optimal algorithm to solve the above problem under
classical settings is O.2

n
2 /. Simon[4] proposed an

exponential speed-up quantum algorithm that requires
only O.n/ quantum circuit queries to find the period s.

The quantum part of Simon’s algorithm mainly
serves to execute the following subroutine, where the
quantum query to the classical function f is formalized
in the standard way by a unitary transform Uf j xi j yi =
j xi j y˚ f .x/i. The main steps are as follows.

First construct the quantum circuit Q (see Fig. 5),
which contains the quantum oracle of the function
f , Uf . Select the first register as the data register
A, the second register as the target register B . Then,
measuring the quantum state of register B in j   1i,
and the quantum state of register A collapse to j   2i.
Applying another Hadamard transform leads j   2i to the
state

j   3i D
1
p
2

1
p
2n

X
.�1/y�z.1C .�1/y�s/j yi:

Measuring j   3i will result in vectors y 2 f0; 1gn. Note
that for y 2 f0; 1gn with y � s = y1 � s1 ˚ y2 � s2 ˚

Fig. 5 Quantum circuit of Simon’s algorithm.
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� � � ˚ yn � sn D 1, there is destructive interference
and the amplitudes of those strings vanish. Therefore,
the distribution of output vectors y is consistent with
the uniform distribution on set f y 2 f0; 1gnjy � s D
0g. Repeating this quantum procedure O.n/ times can
obtain the orthogonal space of s with high probability
(Lemma 1), which can be efficiently solved classically
to obtain the string s. More details are described in Ref.
[4].

Lemma 1[4] Assume there is a periodic function f
with period s, 9p0, 0 < p0 < 1 that satisfies

".f I s/ D max
t…f0;sg

Pr
x
Œf .x/ D f .x ˚ t/� 6 p0:

By repeating this quantum procedure cn times, sss can be
obtained with a probability at least 1 � .2.1Cp0

2
/c/n.

3.2 Quantum slide attack

In 2016, Kaplan et al.[5] proposed a quantum slide
attack algorithm for recovering the keys of block
ciphers in polynomial time by Simon’s algorithm. They
then applied the quantum slide attack to iterative E-M
structural ciphers using the same round keys and round
functions. In this paper, we improve the attack method
and give a quantum slide attack on LED-64-like ciphers
using same round keys and different round functions.
Note that, the different round functions in this paper are
specific to their use in the round function, with the rest
of the operations remaining the same.

Assume that E1 is an r-round block cipher. Its block
size and key size are both n-bit. Every round uses
the same round key k, k 2 f0; 1gn. The i -th round
function is defined as Pi , i 2 f1; 2; : : : ; rg. For each
Pi , except for the values of the round constants used
in AddConstants, the rest of the operations are all the
same. It is clear that each Pi can be seen as an n-bit
random permutation. The block cipher can be expressed
as
C D E1.X/ D .Pkr

ıPkr�1
ı � � � ıPk2

ıPk1
/.X/˚k;

among it, Pkr
D Pr.x ˚ k/. Choosing such two

block ciphers E1 and E2. C D E1.X/ and C 0 D
E2.X/ D .Pkr

0 ı Pkr�1
0 ı � � � ı Pk2

0 ı Pk1
0/.X/ ˚ k;

Pkr
0 D P 0r.x˚k/. Among these, in order to satisfy the

conditions of slide attack, we introduce a differential
in the initial round constant, leading to P 0i D PiC1,
.1 6 i 6 r/, for the round function P 0i in E2 and the
round function Pi in E1. Lemma 2 introduces a class
of periodic functions.

Lemma 2[5] Assume that there are two block ciphers
E1 and E2 as described above, P1 and Pr C 1 are the

first and the .r C 1/-th round function of the cipher E1,
respectively. We define the following function g,

g W f0; 1gnC1 ! f0; 1gn;

g.bjjx/ D

(
PrC1.E1.x//˚ x; b D 0;

E2.P1.x//˚ x; b D 1:

For all x 2 f0; 1gn and b 2 f0; 1g, g is a periodic
function with s = 1jjk.

In order to apply Lemma 1 to obtain s, we bound
".g; 1jjk/,

".g; 1jjk/ D max
.��� jjt/…f.0jj0/;.1jjk/g

Pr
x
Œg.bjjx/ D

g .b ˚ ��� jjx ˚ ttt /�;

assuming that both PrC1 ı E1 and E2 ı P1 are
indistinguishable from random permutations.

Lemma 3[5] For the function defined in Lemma 2, it
satisfies

".g; 1jjk/ D max
.��� jjt/…f.0jj0/;.1jjk/g

Pr
x
Œg.bjjx/ D

g .b ˚ ��� jjx ˚ t/� 6
1

2
:

According to Lemmas 2 and 3, the function satisfies
the promises of Simon’s problem with s = 1jjk, so
that the key k of E1 can be recovered with O.cn/

complexity. The quantum circuit Ug is shown in
Fig. 6, which modifies Fig. 7 in Ref. [11] to make the
representation more accurate. The attack application of
LED-64 is given in Section 4.2.

3.3 Quantum related-key attack

In 2017, based on the work of Kaplan et al.[5],
Hosoyamada and Aoki[11] presented a quantum related-
key cryptanalysis technique for a class of ciphers
constructed by iterative E-M structure using different

Fig. 6 Quantum circuit Ug.

Fig. 7 Related-key slide attack.
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round keys and the same round function. Inspired by
Ref. [11], this paper proposes a quantum related-key
attack algorithm to LED-like ciphers using different
round keys and different round functions. In Section
5, the attack application of LED-128 is given.

Defining an r-round block cipher EK , with block
size n-bit, key size 2n-bit, and the round function Pi ,
i 2 f1; 2; : : : ; rg. K D .k1; k2; k3; : : : ; kr ; krC1/

represents the round keys generated by the key-schedule
and krC1 denotes the whitening key. Assuming an
adversary can query such two quantum oracles EK and
E 0K0 ,
C D EK.X/ D .Pkr

ıPkr�1
ı� � �ıPk2

ıPk1
/.X/˚krC1;

C 0 D E 0K0.X/ D .Pk0r ıPk0r�1
ı � � � ıPk0

1
/.X 0/˚k0rC1:

Among these, Pkr
D Pr.x ˚ kr/, P 0kr

D P 0r.x˚ k
0
r/.

K and K 0 represent two different keys. K D .k1;
k2; : : : ; kr ; krC1/ and K 0 D .k01; k

0
2; : : : ; k

0
r ; k
0
rC1/,

K 0 satisfies k0j D kjC1 .1 6 j 6 r C 1/. The round
function in E 0K0 and EK satisfies P 0i D PiC1, 1 6 i 6
r C 1.

In Ref. [11], the authors first extended the problem
solved by Simon’s algorithm and gave a method to find
the period of periodic functions up to constant addition.
Based on this method of Ref. [11], we introduce a
new application of iterative E-M structure ciphers using
different round keys and different round functions in
Section 5.2.

Problem 2[11] Defining a function �, � W f0; 1gn !
f0; 1gn, vector s, and 


 2 f0; 1gn, for 8x 2 f0; 1gn, that
satisfies � . x˚ s / = �.x/˚ 


 , how to find s and 


?

We consider the differential of � to solve this
problem. Defining the differential of �,

���u�.x/ D �.x/˚ � . x ˚ u / ;u 2 f0; 1gn:
Then for8w 2 span.s;u/ D is˚ju .i; j 2 f0; 1g/, and
8x 2 f0; 1gn,���u� . x˚w / =���u�.x/.

An error in Ref. [11] needs to be pointed out here.
For a fixed u, Hosoyamada and Aoki[11] thought that the
function ���u� was a double-periodic function with the
period of s and u. But we actually find that ���u�.x/ is
a multi-periodic function with periods fs, u, s˚ug. Let
���u�.x/ D ', for 8w 2 span.s, u / and 8x 2 f0; 1gn,
that satisfies ' .x ˚ w/ D '.x/. In other words, ' is a
multi-periodic function with three periods fs, u, s˚ug.
We can prove the following Lemma similar to Lemmas
2 and 3. The quantum circuit of ���u�.x/ is shown in
Fig. 8.

Lemma 4[11] The function definition is similar to
Lemma 2,

g W f0; 1gnC1 ! f0; 1gn;

Fig. 8 Quantum circuit of���u���(x).

g.bjjx/ D

(
PrC1.E1.x//˚ x; b D 0;

E2.P1.x//˚ x; b D 1:

For 8u0 2 f0; 1gnnf0ng and u = . 0jju0 /, defining
the differential function of g,

'.x/ D���ug.x/ D g.x/˚ g.x ˚ u/:
For 8x 2 f0; 1gn and b 2 f0; 1g, ' is a function that has
three periods w, w2 fspan .s = .1jjk1/;u /n0g, Here, E1
and E2 correspond to EK and E 0K0 , respectively.

In order to apply Simon’s algorithm to obtain the
period sss, we also bound
".���ugI fspan.s;u/n0g/ D max

t…span.s; u/
Pr
x
Œ���ug.x/ D

���ug.x ˚ t/�:
The same assumption is made here as in Ref. [7], that

both PrC1 ıE1 and E2 ıP1 are indistinguishable from
random permutations.

Lemma 5[11] For the function ���ug.x/ = ' defined
in Lemma 4, it satisfies

".���ugI s;u/ D max
t…span.s; u/

Œ���ug.x/ D���ug.x˚t/� <
1

2
:

Lemma 6[11] For the functions g and ���ug.x/ =
' given by Lemma 4, we assume that there exists
a positive number p0 < 1, vector u0 2 f0; 1gn, and
u = . 0jju0 / , such that " . 'I fspan .s,u / n0g / 6 p0.
Then we can obtain s with probability at least 1 �
.2..1 C p0/=2/

c/n by querying the subroutine of
Simon’s algorithm cn times.

The detailed proof process of Lemmas 4 and 5 can be
found in Ref. [11].

In what follows, Sections 4 and 5 take LED-64
and LED-128 as examples and give the results of
the security analysis of LED-like block ciphers under
classical and quantum attack conditions.

4 Slide Attacks on LED-64

4.1 Classical slide attack on LED-64

In this section, based on the idea of original slide
attack, we introduce a differential in the initial round
constant of LED-64 to ensure the self-similarity of the
cipher, giving an improved slide attack on LED-64. The
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analysis results show that LED-64-like block ciphers
are unable to resist the improved slide attack. The
following describes the classic-improved slide attack
algorithm for LED-64 and analyzes the indexes of this
attack algorithm. Note that, since LED-64 is consisted
of 8 steps and each step includes 4 rounds, we consider
every 4 round operations as a round function Pi .1 6
i 6 r/, r D 8.

4.1.1 Attack Algorithm 1
Step 1 Generate plaintext-ciphertext pairs, by
randomly selecting plaintexts and encrypting them
to obtain corresponding ciphertexts under the known-
plaintext attack setting. For the initial round constant
rc D .rc6; rc5; rc4; rc3; rc2; rc1/, select its difference
�rc D .0; 0; 1; 1; 1; 1/. Then, randomly select 232

plaintexts m0, encrypt them to obtain corresponding
ciphertexts c0 under the condition of changing the
round constants, thereby generating 264 plaintext pairs
.m;m0/ and the corresponding ciphertext pairs .c; c0/.

Step 2 Find the slide pair. A slide pair needs to
satisfy the following equation:

P1.m˚ k1/ D m
0; P9.c/˚ k1 D c

0:

According to the above equation, a key k1 can be
obtained from a plaintext pair .m;m0/, and a key k01 can
be obtained from the ciphertext pair .c; c0/, correspond-
ing to the plaintext pair. If k01 D k1, then the exact
plaintext-ciphertext pair is the desired slide pair, and the
key obtained is the correct key.

4.1.2 Complexity analysis of attack Algorithm 1
Theorem 1 As in the case of the classical slide attack
on LED-64, the required data complexity is 233, time
complexity is 262, and the success probability is up to 1.

Proof In terms of data complexity, since the
probability of searching for a slide pair is 2�64, 2 � 232

known-plaintexts are required, and 264 plaintext pairs
.m; c/ and .m0; c0/ are generated to obtain a slide pair
and the correct key.

Time complexity mainly involves two parts of the
algorithm. One is the encryption of 233 plaintexts
in Step 1. The other is that all plaintext-ciphertext
pairs need to perform two steps of encryption. In other
words, it needs 2 � 264=8 D 262 full-round LED-64
encryptions.

In summary, for attack Algorithm 1, the required data
complexity is 233 known-plaintexts, time complexity
is 262 full-round LED-64 encryptions, and the success
probability is 1. �

This attack shows that the proposition in Ref. [13]

that LED-64 can resist a slide attack is incorrect.

4.2 Quantum slide attack on LED-64

Based on the quantum slide attack method given in
Section 3.2, we introduce a differential in the round
constant, that is, the original LED-64 is represented
by E1, while E2 represents the altered LED-64 with
a change in the initial round constant. Here, n D 64,
r D 8. The function g1 is defined as follows:

g1 W f0; 1g
nC1
! f0; 1gn;

g.bjjx/ D

(
PrC1.E1.x//˚ x; b D 0;

E2.P1.x//˚ x; b D 1:

In accordance with Lemma 2, the period s of the
function g is .1jjk1/. Based on this function, and
combined with Lemma 3, attack Algorithm 2 using
Simon’s algorithm to recover the key k1 is given below.

4.2.1 Attack Algorithm 2
Step 1 Construct the quantum circuit Ug1

suitable for
Simon’s algorithm as shown in Fig. 6. Among this,
CEi .i D 1; 2/ and CPj .j D 1; 9/ are constructed from
oracle E1 and E2, and from gate CPj .j D 1; 9/ as
shown in Fig. 3, respectively.

Step 2 Choose the set L to store the vector y. Initially
assign L D 0. Choose 4n+1 qubit states, stored in
the registers A, B , C , D, and F , in order from top to
bottom, respectively. Note that register A only stores
1-bit control information, while each of the remaining
registers is an n-bit register. Apply Hadamard transform
H˝n to the register B to attain an equal superposition
state j���1i. Repeat the following loop (Steps 3.1 and 3.2)
at most c.nC 1/ times.

Step 3.1 Make a quantum query to the function to
map the state j���1i to j���2i, stored in register F . Measure
the register F , the register B collapses to the state

j���3i D
1
p
2
. j zij 0i C j z˚ sij0i/:

Then, apply H˝nC1 to the register B to attain

j���4i D
1

p
2nC2

X
.�1/y�z.1C .�1/y�s/j yi:

Measure register B at this time to get the random
vector y that satisfies y � s = 0.

Step 3.2 Use a classical algorithm[19] to determine
whether y is linearly independent of the vectors in L. If
it is independent, define it yi (i represents the number of
elements already stored in L, counting from 0), and add
yi to L. If i < n � 1, return to Step 3.1 and continue
to the next loop. If i D n � 1, this means we have n
linearly-independent vectors in L and we are to break
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the loop and shift operation to Step 5. On the other
hand, if it is dependent, discard it and return to Step 3.1
and continue the next loop.

Step 4 The attack fails if the above loop ends
naturally after c.nC 1/ times.

Step 5 Reaching this step indicates that the attack
succeeds. Add the .nC 1/-th vector yn, which is
linearly-independent of the elements of L and not
orthogonal to s. Such that this constructs a system of
.nC 1/ independent equations satisfying

yi � s D

(
0; i D 0; 1; : : : ; n � 1;

1; i D n:

Thus, use the improved Gaussian elimination
method[19] to solve the system for s D .1jjk1/ and
then output the key k1.
4.2.2 Complexity analysis of attack Algorithm 2
In this paper, the quantum attack algorithms are based
on Q2 model. Therefore, the required complexity of
constructing the quantum circuits is not considered in
the complexity analysis process. Based on Ref. [4]
and Lemma 1, we set c D 3 in Step 2, thus
operating the loop (Steps 3.1 and 3.2) 3.n C 1/

times. The success probability of attack Algorithm 2 is
1 � .2..1C 1

2
/=2/3/n � 99:9%. Below, we specifically

analyze the complexity required for a successful attack.
Referring to the definition in Ref. [11], we describe

the assumptions for time complexity of quantum
query operations. We treat an n-bit operation or an
nC 1 operation as a unit operation. Following these
assumptions, we regard querying the following gates as
a unit time:

(1) n-bit and (n C 1)-bit Hadamard transformation
H˝n, H˝nC1;

(2) XOR operation on two n-bit strings;
(3) Quantum gate CPj ; and
(4) Encryption oracle Ei ,

Ei W j xij yi 7! j xij y˚Ei .x/i:
This definition is clearly reasonable under the

assumption of the Q2 model. Compared to it, the
complexity required for the XOR operation on two 1-bit
states is negligible.

Theorem 2 As in the case of the quantum slide attack
on LED-64, the probability of success is about 99:9%,
the required space complexity is 29, time complexity is
212 quantum query and 226 classical computation.

Proof According to attack Algorithm 2 and the
quantum circuit of Fig. 6, the attack requires 4nC 1
qubits in total. That is, the space complexity is

approximately 29. The time complexity of this attack
is mainly composed of the quantum query operation
complexity and the classical computational complexity.

In regards to the quantum query, inside a loop,
Step 3.1 needs to query the Hadamard transformation
twice, CPj three times, CEi three times, and the XOR
operation on two n-bit strings once, over Fig. 6. Among
these, a complete CEi consists of 3 unit operations (see
Fig. 3). This sums to 15 unit operations being performed
for each iteration of Step 3.1. Attack Algorithm 2
repeats the loop at most about c.nC 1/ times, therefore
the total required time complexity of quantum query
operations is 3 � .64C 1/ � 15 � 212.

The time complexity of the classical computation is
mainly determined by Steps 3.2 and 5. Based on the
improved Gaussian elimination method in Ref. [19], for
each iteration of Step 3.2, we not only need to judge the
linear dependence of the vector y and the elements in
L, but also ensure that the matrix l generated by the set
has the simplest form, where l = Œy0; y1; : : : ; yn�1�T. In
a loop, the classical computational complexity required
for Step 3.2 is about .nC 1/3.

In Step 5, according to the n � .n C 1/-dimensional
matrix l, we add the .n C 1/-th vector yn, which is
linearly independent on the elements of L and not
orthogonal to s, then construct a system of n C 1

independent equations. Solving the system for s =
.1jjk/, the required classical computational complexity
is about .nC 1/2.

In total, the time complexity required for the classical
computation is c.nC 1/� .nC 1/3C .nC 1/2 � 226.

In summary, for attack Algorithm 2, the probability
of success is about 99:9%, the required space
complexity is 29, and time complexity is 212 quantum
query and 226 classical computation. �

5 Key-Recovery Attacks on LED-128

5.1 Classical slide attack on LED-128

For LED-128, we first analyze its security with the
improved classical slide attack method proposed in
Section 4.1 under a related-key model. We choose the
related-key k0j D kjC1 .1 6 j 6 r/. That is, for the
plaintext pairs .m;m0/ and the corresponding ciphertext
pairs .c; c0/, the slide pair needs to satisfy P1.m˚

k1/ D m
0 and P13.c/˚ k2 D c0. Since k1 and k2 are

independent 64-bit keys, the probability of recovering



Linhong Xu et al.: Key-Recovery Attacks on LED-Like Block Ciphers 593

the correct key is 2�128. This means the required time
complexity of this attack is equal to brute force. In
other words, the classical related-key slide attack cannot
effectively recover the keys of LED-128. However,
quantum related-key attack can evaluate the cipher in
polynomial time.

5.2 Quantum related-key attack on LED-128

For LED-128 we introduce a differential in the round
constant and choose the related-key to construct E1 and
E2 by the quantum related-key method described in
Section 3.3. In E1, we use the key K, and the related-
key K 0 is used in E2, where

K D .k1; k2; k1; k2; k1; k2; k1; k2; k1; k2; k1; k2; k1/;

K 0 D .k2; k1; k2; k1; k2; k1; k2; k1; k2; k1; k2; k1; k2/:

E1 therefore represents the original LED-128, and
E2 represents the changed LED-128 with altered initial
round constants and using the related-key. Define the
following function g2,

g2 W f0; 1g
nC1
! f0; 1gn;

g2.bjjx/ D

(
P13.E1.x//˚ x; b D 0;

E2.P1.x//˚ x; b D 1:

For the equation

g2.0jjx/ D g2..0jjx/˚ .1jjk1//˚ .k1 ˚ k2/;

we know that the period of g2 is s = .1jjk1/, and the
constant is k1 ˚ k2. According to Lemma 4, if

u0 2 f0; 1gnnf0ng; u D .0jju0/

is chosen, the period of ���ug2.x/ D g2.x/ ˚ g2.x ˚

u/ is w;w 2 fspanŒ.1jjk1/;u�n0g: The specific attack
algorithm for solving the keys k1 and k2 is given by
Simon’s algorithm and Lemma 6.

5.2.1 Attack Algorithm 3
Step 1 Arbitrarily choose u0 2 f0; 1gnnf0ng, and let
u D .0jju0/. Construct the circuit for ���ug2 based on
the function g2.

Step 2 Choose the set L to store the vector y,
initially assign L D 0. Choose 8n C 2 qubit states,
stored in the registers A1, B1, C1, D1, F1, A2, B2, C2,
D2, and F2, in order from top to bottom. Note
that registers A1 and A2 store only 1-bit control
information, while each of the remaining registers is an
n-bit register. Apply Hadamard transform H˝n to the
register B1 to attain an equal superposition state

ˇ̌
���01
˛
.

Repeat the following loop (Steps 3.1 and 3.2) at most
c.nC 1/ times.

Step 3.1 Make a quantum query to the quantum
circuit ���ug2 to map the state

ˇ̌
���01
˛

to
ˇ̌
���02
˛
, stored in

register F2. Measure register F2, register B1 collapses
to the state

ˇ̌
���03
˛
. Then, apply H˝nC1 to register B1 to

attain ˇ̌
���04
˛
D

1
p
2nC2

X
.�1/y�z.1C .�1/y�sC

.�1/y�u C .�1/y�.u˚s//j yi:
Measure register B1 at this time to get the random

vector y, that satisfies
y � w D 0; w 2 fspan Œ s;u � n0g:

Step 3.2 The procedure is little different from
Step 3.2 of attack Algorithm 2. Using a classical
algorithm[19] to determine whether y is linearly
independent of the vector in L. If it is independent,
define it yi ( i represents the number of elements already
stored in L, counting from 0), and add yi to L. If
i < n � 2, return to Step 3.1 and continue to the next
loop. If i D n � 2, this means we have n � 1 linearly-
independent vectors in L, we break the loop and shift
operation to Step 5. On the other hand, if it is dependent,
discarded it and return to Step 3.1 and continue the
next loop. Note that we only construct L with n � 1
linearly-independent vectors because we need to solve
the multiple non-zero solutions of the system in Step 5.

Step 4 The attack fails if the above loop ends
naturally after c.nC 1/ times.

Step 5 Reaching this step indicates that the attack
succeeds. Add the n-th vector yn�1, which is linearly-
independent of the elements of L and not orthogonal to
w. such that this constructs a system of n independent
equations satisfying

yi � w D

(
0; i D 0; 1; : : : ; n � 2;

1; i D n � 1:

Thus, use the improved Gaussian elimination
method[19] to solve the system for w, then find
V D span.u; s/, obtain k1, and calculate k2. Output the
keys k1 and k2.

5.2.2 Complexity analysis of attack Algorithm 3
The same as Section 4.2.2, the required complexity
of constructing the quantum circuits is not considered
in the complexity analysis process. Based on Refs.
[4, 11] and Lemma 6, we set c D 3 in Step 2, thus
repeating the loop (Steps 3.1 and 3.2) 3.n C 1/ times.
The success probability of attack Algorithm 3 is 1 �
.2..1C 1

2
/=2/3/n � 99:9%. The required complexity

is mainly divided into two parts: space complexity and
time complexity.
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Theorem 3 As in the case of the quantum related-
key attack on LED-128, the probability of success is
about 99:9%, the required space complexity is 210, and
time complexity is 214 quantum query and 226 classical
computation.

Proof According to the above attack procedure, the
attack requires 8nC 2 qubits in total. That is, the space
complexity is not more than 210. The time complexity
is mainly composed of the quantum query operation
complexity and the classical computational complexity.

In regards to the quantum query, Step 3.1 performs
the Hadamard transformation twice, the unit quantum
gate operation 27 times and the unit XOR operation 17
times per iteration (see Fig. 9). The full attack algorithm
repeats the loop at most about c.nC1/ times. Therefore,
the time complexity of quantum query operation is 3 �
.64C 1/ � 46 � 214.

The time complexity of the classical computation is
mainly determined by Steps 3.2 and 5. For Step 3.2,
the classical computational complexity required is same
as the attack Algorithm 2 which is about .nC 1/3 in a
loop. In Step 5, we find the vector space V = span .u, s /
and then calculate k1 and k2. For this, the required
classical computational complexity is not more than
.nC 1/3.

In total, the time complexity required for the classical
computation is c.nC 1/4 C .nC 1/3 � 226.

In summary, for attack Algorithm 3, the success prob-
ability is about 99:9%, the required space complexity
is 210, time complexity is 214 quantum query and 226

classical computation. �

Fig. 9 Quantum circuit of���ug.x/.

6 Conclusion

In this paper, through the study of the properties
of LED-like block ciphers, we use the improved
classical slide attack and quantum attack methods
to perform key-recovery attacks on LED-like block
ciphers. Under the classical settings, the adversary can
use the attack Algorithm 1 given in this paper to recover
the master key of LED-64 with the success probability
1 and the complexity below brute-force. However, this
attack method is not applicable to LED-128. Under
the conditions of quantum computers, the adversary
can give quantum key-recovery attacks on LED-64
and LED-128 in polynomial time and the success
probability is both 99:9%. For the quantum attack on
LED-64, the required space complexity is 29, time
complexity is 212 quantum query and 226 classical
computation. For the quantum attack on LED-128,
the required space complexity is 210, time complexity
is 214 quantum query and 226 classical computation.
The above attacks show that the method of adding
round constants has a certain influence on the safety
of a cipher, and symmetric cryptographic algorithms
that are proved to be secure under classical settings
are not necessarily secure under quantum computing
conditions.

However, there are certain flaws in the study
presented in this paper, which point to the areas of focus
for future research. Two such openings are:

(1) If a cipher uses a fixed round constant in
each round and there is no correlation between the
round constants, resulting in the round functions being
different in each round of the cipher, the idea of slide
attack is not then applicable. The question thus arises
of how to perform a quantum key-recovery attack.

(2) In addition, there is a need to consider the effect of
the whitening keys on the security of the ciphers under
a quantum attack. The analysis of the FX structure
block cipher proposed by Leurent et al.[12], combining
Grover’s algorithm and Simon’s algorithm, provides a
research path. Learning from this idea, combined with
a variety of quantum computing algorithms, it is worth
studying whether it is possible to design an effective
quantum key-recovery attack method for Feistel, ARX
structural block ciphers.
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