TSINGHUA SCIENCE AND TECHNOLOGY
ISSNI1I1007-0214 03/10 pp535-545
DOI: 10.26599/TST.2018.9010134
Volume 24, Number 5, October 2019

Memway: In-Memory Waylaying Acceleration for
Practical Rowhammer Attacks Against Binaries

Lai Xu, Rongwei Yu*, Lina Wang, and Weijie Liu

Abstract: The Rowhammer bug is a novel micro-architectural security threat, enabling powerful privilege-escalation
attacks on various mainstream platforms. It works by actively flipping bits in Dynamic Random Access Memory
(DRAM) cells with unprivileged instructions. In order to set up Rowhammer against binaries in the Linux page
cache, the Waylaying algorithm has previously been proposed. The Waylaying method stealthily relocates binaries
onto exploitable physical addresses without exhausting system memory. However, the proof-of-concept Waylaying
algorithm can be easily detected during page cache eviction because of its high disk 1/0 overhead and long running
time. This paper proposes the more advanced Memway algorithm, which improves on Waylaying in terms of both
I/0 overhead and speed. Running time and disk 1/O overhead are reduced by 90% by utilizing Linux tmpfs and in-
memory swapping to manage eviction files. Furthermore, by combining Memway with the unprivileged posix_fadvise
API, the binary relocation step is made 100 times faster. Equipped with our Memway-+fadvise relocation scheme,
we demonstrate practical Rowhammer attacks that take only 15-200 minutes to covertly relocate a victim binary,

and less than 3 seconds to flip the target instruction bit.
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1 Introduction

The Rowhammer bug is a software exploit of
the Dynamic Random Access Memory (DRAM)
hardware’s disturbance error'!l, in which the adversary
repeatedly accesses (“hammers”) adjacent DRAM
cells, causing charge loss and flipping certain bits
between them!?). It can bypass most Operating
System (OS)-based memory access control techniques
because the victim memory is not accessed at
all. The Rowhammer attack is considered to be
more intrusive than other micro-architectural covert
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channel attacks such as Meltdown'®!, Spectre!*!, or

Whisperl®!, for it is capable of actively modify memory
contents, enabling privilege-escalation and escape
attacks on various platforms. Since Rowhammer’s
initial discovery, researchers have tested it on various
targets, such as browser sandbox!®, Virtual Machine
(VM) page table!’!, secret key®!, scripts!®!, video
buffers!!%!, etc. Although most of these targets are
merely text and data, it is known that attacks against
codes and binaries represent a greater threat if they are
feasible.

One of the challenges in attacking binaries is how
to perform memory manipulation; that is, in order to
exploit random bit flips in DRAM memory against
codes, the adversary needs dedicated algorithms to
move the victim binary onto the target bug location.
In 2017, Gruss et al.'!! presented a novel flip-in-the-
wall attack against binary programs, while proposing
the Waylaying algorithm as the manipulation technique.
In the Waylaying algorithm, the operating system is
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forced to relocate binary images to random addresses
in the page cache. When this process is repeated
sufficient number of times, the binary will finally be
located at a certain bug address where the adversary
can easily launch a one-location Rowhammer attack.
The Waylaying algorithm is very stealthy, for it works
entirely in free space and does not increase memory
usage metrics. Additionally, by putting the attack
into Intel Software Guard Extensions (SGX) enclaves,
the adversary can avoid performance counter-based
detection schemes.

However, the Waylaying algorithm faces
shortcomings in practice, related to its low speed
and high I/O overhead. Experiments show that it takes
3-10 seconds to evict and relocate a target binary
once (depending on disk throughput), and this random
relocation may require repeating 10*—10° times. As
a result, the Waylaying process may take too long
time to complete. Because the Waylaying algorithm
is based on eviction (using disk files to evict page
cache contents), its heavy disk I/O overhead can be
easily detected outside enclaves. This also means that
it takes a long time to start new processes, because
the pre-cached code and data files have been totally
evicted. Although the original Waylaying algorithm
is capable of attacking binary programs, it lacks the
flexibility to do so effectively.

Rowhammer, one of the newest micro-architectural
threats, is also considered one of the most intrusive.
This article proposes Memway, an improved version
of the Waylaying algorithm, as a new method for
engaging in Rowhammer attacks. Our proposed method
has significant advantages over Waylaying, in terms of
both speed and resources usage. Our method utilizes
the Linux tmpfs to hold the eviction file, and uses
in-memory swapping to perform eviction. Applying
detailed analysis of Linux page cache interfaces, we
combine Memway with the posix_fadvise API to make
highly efficient binary relocations, thereby shrinking
the total running time from days to minutes. Our
experimental results show that the speed of relocating a
target binary is around 100 times faster than Waylaying
on average.

In sum, the main contributions of this paper are as
follows:

e Memway utilizes Linux tmpfs to eliminate most
of the disk I/O overhead of the original Waylaying
algorithm, thereby executing page cache eviction more
quickly and with less impact on system performance.
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e The Memway+-fadvise binary relocation scheme
can effectively move a target binary onto an arbitrary
memory address. Experimental Rowhammer attack
scenarios applying our proposed method run much
more quickly, completing in a matter of minutes.

2 Background

2.1 Related works on Rowhammer attacks

DRAM manufacturers discovered the DRAM
disturbance error in modern Dual In-line Memory
Modules (DIMM) modules prior to 2013, but it
remained merely a hardware reliability issue until
2014, when Kim et al.[! and Seaborn and Dullien®
demonstrated the Rowhammer exploit. Instead of
exploiting software memory utilization vulnerabilities
(such as use-after-free!'”’ and API-tainting!'3),
Rowhammer takes advantage of hardware bugs to
breach higher-level software stacks, making it a more
fundamental and a more difficult one to detect and
recover from.

Since Rowhammer’s initial discovery, researchers
have tested it against various targets. Its potency
in circumventing OS access control and software-
based memory protection modules are well recognized.
Kim et al!'l gave the first systematic analysis of
the Rowhammer bug and carried out the mov+clflush
primitive. Seaborn and Dullien'® proposed the first
real-world attack scenario of escaping a NaCl sandbox
with a double-sided Rowhammer attack. Razavi et
al.B! exploited page deduplication to flip secret keys
in neighboring VMs. In this method, the adversary
abuses the kernel’s same-page merging mechanism to
lead the victim to use the bug page instead of its original
copy. In reaction to this attack, most public cloud
providers have now disabled page deduplication. In
another approach, Xiao et al.”l abused the Xen page
table Hypercall interface to copy a Page Directory Table
(PDT) to the bug page, then by flipping a certain page
directory item, showed that the adversary can use a
forged page table to perform a VM escape and gain
unlimited memory access. Gruss et al.''l' proposed
attacks against binary images in the page cache. The
author used Waylaying and Chasing to manipulate the
page cache, and presented a new hammering primitive
called “one-location hammering”, which was more
difficult to achieve success with but also more difficult
to detect. Cheng et al.'% exploited the User-after-
Kernel (UaK) shared memory to forge attacks, with
Memory Ambush provided as the manipulation method
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and the kernel’s video buffer used to execute a single-
sided Rowhammer attack.

On the other hand, Rowhammer mitigation
techniques have also aroused the interest of many
researchers. Hardware mitigation includes both
neutralization and elimination'"* approaches. As
for software mitigation, Gruss et al.'l' places the
existing methods into 5 categories: static analysis!'>!,
counter-based!!® memory abuse
prevention!!®!, and physical proximity prevention!!*!,
All of these mitigation methods make it harder for
an adversary to launch Rowhammer attacks, but only
next-generation memory may eliminate the hardware
flaw.

, pattern-based!'”!,

2.2 Linux page cache

The Linux page cache is a transparent cache holding
code and data files loaded from storage disks!?’!. The
OS preloads these files in free memory spaces so that
processes start more quickly, thus improving overall
system performance. There are two key characteristics
of the page cache. First, if a process only reads or
executes a file in the page cache, this portion of memory
will not count towards the process’s individual set,
and will still be counted as free space. Second, if the
memory is nearly full, the OS prefers to evict data
files, ahead of binaries, from the page cache to reclaim
memory.

The Linux memory subsystem maintains virtual
pages in two linked lists: active_list and inactive_list.
When free memory is scarce, the OS will start to swap
out inactive pages using certain eviction algorithms
(mainly Least Recently Used (LRU)). However, in
4.0 and later kernels, pages dismissed by LRU are
not evicted right away. Instead they will be put into
pagevecs, and the OS will swap pagevecs out in batches
when convenient. Consequently, userspace or kernel
developers can only require a page to be swapped out;
they cannot dictate the exact time or sequence for the
page to be swapped.

Linux provides a number of APIs and file interfaces
for user programs to tweak the page cache. However,
when and where the OS puts the cached memory
remains transparent to userspace.

2.3 Linux ramdisk

Linux has three kinds of in-memory file systems,
namely tmpfs, ramfs, and ramdisk!*!l. The most
common is tmpfs, backing the OS’s temp directories.
Files in tmpfs are copied into the page cache in free

memory space, and tmpfs memory can be swapped. The
size limit of tmpfs is half of the physical memory size.
On the other hand, ramfs does not have a size limit
or swapping mechanism, and therefore is not used by
the OS by default and must be mounted manually. The
ramdisk (/dev/ramN) is an earlier block device interface
of the memory, the available size of which is very small.

3 In-Memory Acceleration of the Waylaying
Algorithm

3.1 Analysis of the vanilla Waylaying algorithm

The Waylaying algorithm proposed by Gruss et al.['!
aims to evict the target binary from the page cache and
force the OS to reload it into a different address. The
eviction is achieved by memory mapping a large disk
file with read and executable privileges, and reading
every 4 KB page of the file. As the OS loads this large
file into the page cache, the cache will consume all free
memory and finally start to evict existing code and data.
Free memory metrics are unchanged during the process.
A Linux API, mincore, can be used to conveniently
detect whether the target binary has been evicted from
the page cache, although a stealthier approach without
API calls is also made available.

We performed a detailed analysis of the speed of
the Waylaying algorithm, and found that the eviction
time mainly depends on two factors: the amount of
free memory and the memory/disk access time. Eviction
must be achieved by page swapping and, as mentioned
above in Section 2.2, the Linux system uses LRU
to swap pages by default. This means that, on every
iteration, the Waylaying algorithm must load an evict
file larger than the free memory size so as to make the
target binary image the least recently used. It is clear,
therefore, that the execution time will be longer with a
larger amount of free memory space.

Meanwhile, different portions of memory have
different access speeds. We tested the memory access
time and eviction rate of Waylaying as follows: we used
mmap() to load a randomized data file into memory,
read once from each 4 KB page, and measured the
access time. Access is usually uncached, because the
file is randomized and has a large size equal to the size
of physical memory. We repeated the process several
times to count the average eviction success rate. The
result is shown in Fig. 1, on which deeper dots represent
more frequent occurrences of certain access time.

Explanations to Fig. 1: As long as the evict file is
smaller than the available memory size, pages remain
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Fig.1 Access time of different portions of memory.

in memory and the access times are between 10% and
10* nanoseconds. The periodical tremors in the access
time chart may imply extra page table walks for newly
loaded memory ranges. The total time for all in-memory
access (from O to the available memory size) is less
than 1 second. However, no eviction occurs during this
period.

In contrast, when the available memory size is
exceeded, old pages must be swapped out to disk,
and the access times rise sharply towards 107 —108
nanoseconds, because 4 KB random reads are extremely
slow on Hard Disk Drives (HDDs). At the same time,
the eviction rate rises drastically by +100MB of
available memory, which is a desirable result.

Combining the above results, we conclude that
swapping is essential for eviction, but in a disk
swapping scenario, the memory access speed is
extremely slow.

3.2 Memway: In-memory swapping with tmpfs

To carry out eviction, the vanilla Waylaying algorithm
must use disk swapping, which is extremely slow.
To increase the speed, our algorithm uses memory
swapping instead of disk swapping, and make it work
entirely in memory. Accordingly, this section describes
the details of Memway, which uses the fmpfs ramdisk
as a substitute for disk swapping.

Because the OS does not allocate duplicated memory
for mmap() requests for files in the page cache-based
tmpfs, simply moving the evict file into fmpfs is not
sufficient to cause swapping. Thus, additional wrappers
are needed to make the OS treat tmpfs as a regular disk
file.

We can create a File System (FS) within the large
temp file, utilizing FS-layer abstraction to shield it from
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OS-level deduplication. Noting that many Linux file
systems, such as ext4 and xfs, also use page cache to
improve performance, and therefore are not applicable
in our scenario, our algorithm choose NTFS to hold the
evict file in tmpfs; it will be duplicated in memory when
being mmap()-ed. The tmpfs-based evict file hierarchy
is shown in Fig. 2.

As the tmpfs can fill at most half of the physical
memory size, and allowing for filesystem metadata
overheads, we can create an in-memory evict file that
is slightly smaller than half of physical memory. When
this file is mmap()-ed, the OS will load it into the other
half of the page cache, since NTFS does not support
page caching. These two counterparts of the evict file
can fill up the whole free space to achieve eviction. The
appropriate evict file size can be calculated as follows:

1 + OverflowRate
2 + MetadataRate’
EvictFSSize
1 + MetadataRate
where MemAvailable is the current available memory

EvictFSSize = MemAvailable x

EvictFileSize =

size, MetadataRate is the overhead of file-system
metadata, and OverflowRate is a multiplier of the
available memory size to make the file bigger
so as to ensure eviction of the page cache. The
corresponding evict file generation scheme is described
in Algorithm 1.

After the evict file is created, we can use it to invoke
page cache eviction. Our proposed Memway page cache

Memway eviction

A 4

Evict file

Target binary image
Used NTFS
memory

Remaining free memory | tmpfs. up to 50% physical memory size

Page cache

Available memory

Physical memory

Fig. 2 Evict file hierarchy.

Algorithm 1 In-memory evict file generation scheme

Input: Desired sizes EvictFSSize and EvictFileSize

Output: Target evict file £ with desired size

Use fallocate() to create file F in tmpfs with size =
EvictFSSize

Use mkntfs to create NTFS filesystem in F

Mount F to directory D as a loop device

Use fallocate() to create file E with size = EvictFileSize
inside directory D

Use E as the target evict file.

-
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w
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eviction algorithm is depicted in Fig. 3. In Fig. 3a, we
populate half of the available memory with the evict
file in tmpfs, using the file hierarchy outlined above.
The evict file is then mmap()-ed into the remaining free
space in Fig. 3b, so that the target binary is evicted from
the page cache. We repeat the process in Fig. 3c, so
that the OS will reload the binary randomly until the
target hits one of the exploitable addresses (as defined
by Rowhammer templates, explained below in Section
5.2).

One issue with rmpfs is that it may be swapped
to disk and thus fail to invoke eviction with a given
EvictFileSize. This can be avoided by disabling swap
partitions or by using ramfs instead. In practice, cluster
servers with large memory pools may in fact disable
swap partitions, because their load-balancing system
will migrate workloads, avoid memory depletion or
swap overheads. This opens up attack surfaces for our
approach.

4 Efficient User-Space Page Cache Mani-
Pulation with Memway+Fadvise

Because of the pagevec mechanism described in Section
2.2, neither the user nor the kernel can directly control
when and where to evict the page cache. The Waylaying
process must run many times while waiting for the
random relocation by the OS to deliver the binary
to the target position. This section describes how to

interfaces for controlling page caches besides eviction;
they are listed in Table 1.

These approaches can be divided into two categories:
system call-based and eviction-based. System call-
based approaches include the posix_fadvise and fork
methods, which are very fast but unlikely to reach
new pages. In contrast, eviction-based Waylaying and
Memway methods overhaul the whole page cache so
that the OS always reallocates random new pages for
the target binary. However, they are extremely slow and
inflict a heavy disk load on the system.

4.2 Combined binary relocation scheme

We can combine these two approaches to achieve
both good speed and wide memory coverage. To
begin, posix_fadvise is used to quickly relocate the
target binary, and repeated until it fails to generate
a new address in N continuous runs. The Memway
algorithm is then executed for once to rearrange the
whole page cache; because the page cache is thereby
overhauled, the target is forced towards a new address
and subsequent posix_fadvise calls can again generate
new addresses.

Our Memway+fadvise binary relocation algorithm is
described in Algorithm 2. As the posix_fadvise API call
is significantly faster than pure Waylaying, enumerating
over memory pages with our method can be far more

Table1 Comparison of page cache manipulation interfaces.

combine state-of-the-art page cache eviction schemes Interface Privileged Speed (s) New-page (%)
with Memway. /proc/vm/drop_caches Yes <10 >80
4.1 Analysis of page cache eviction interfaces Waylayvlng/Me.mway No <10 >90
posix_fadvise No <0.1 <10
Section 3 has proposed Memway to achieve fast fork Chasing!'"! No <1073 <1
eviction-based binary relocation. Meanwhile, Linux has
------ Page cache (free) _------Page cache (filled) B B B
------ Target binary
------ Copy of evict file [
Flippable = Flippable address
el sidtlress - - 3 (Template hit)
— — In-memory = == —
eviction
------ Evict file in tmpfs -~ Evict file in tmpfs - Evict file in tmpfs

(a) Evict file fills tmpfs

. ------ Target (evicted)
(b) Evict file is mmap()-ed to evict target binary

Target reloaded randomly by OS
(c) Repeat until hitting an exploitable template

Fig. 3 Illustration of the page cache eviction process of Memway algorithm.
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Algorithm 2 Memway+fadvise relocation scheme

Input: bt: BinaryTarget target binary info
(described in Section 5)
T’,: Template collection of all hammer templates
Result: The in-memory image of target binary will be
moved onto any of the template addresses.
repeat_count < 0, paddr_tried < {}

1
2 mmap bt.binary with read-only access

3 Access bt.base once to load it into memory

4 p < physical address of bt.base read from pagemap
5 munmap bt.binary, clean up memory

6 for each t in 7}, do

7 if (p, bt.offset, bt.value) ==

8 (t.base, t.offset, t.value) then

9 | return; /* matches found */

10 else

1 if p not in paddr_tried then

12 insert p into paddr _tried

13 repeat_count < 0

14 else

15 ‘ repeat_count += 1

16 end

17 if repeat_count > threshold then

18 repeat_count < 0

19 use Memway to relocate binary

20 else

21 posix_fadvise(bt.binary, 0, bt.size,

POSIX_FADV_DONTNEED)

22 end

23 end
24 end

25 goto Step 2

efficient, as shown in Section 6.

5 Row-Hammering Binaries in Practice

This section provides details of a practical Rowhammer
attack against binaries, with Memway and the combined
binary relocation scheme proposed in Section 4.

5.1 Preparation: Memory and binary analysis

In order to find bit flips and use them to invoke
meaningful alterations in binary code, the preparatory
steps of offline memory and binary analysis must be
undertaken.

Memory analysis is needed to find out the target
machine’s Central Processing Unit (CPU) and DIMM
to infer the physical-to-DRAM address
mapping scheme. This scheme is critical because the
adversary needs to precisely control the DRAM rows
during the attack process. The measuring algorithms
are provided in earlier research; e.g., Refs. [7,22]. This

models,
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process can be done offline — once the model types are
recognized, the adversary can use a similar hardware
build to measure the DRAM mappings, which will be
applicable on every machine with the same hardware.
Another offline job is binary analysis, which involves
finding out some critical bytes within the code, where
a single bit flip will cause an exploitable change in
behavior. For example, one bit flip might turn a jnz
instruction into a jz. This can be done with one of many
static binary analysis tools. The flippable target bits in
binaries are defined as a 4-ary tuple:
BinaryTarget — (binary, base, offset, value),

where binary is target binary file; base and offset
are target page base address (4k-aligned) and in-page
offset; and value is the flipped byte value.

5.2 Templating

Because the addresses of potential bug points vary with
each DIMM, we need to scan the physical memory
of the target machine for as many bug positions as
possible. This process is called “templating”, and
the flippable bytes (bits) are named “Rowhammer
templates”. Because bug positions are unique and stable
on each DIMM unit, templating needs to be done only
once, and any number of subsequent attacks can make
use of the results.

The templating phase is done with existing
Rowhammer primitives, such as the Double-sided
and/or Single-sided Rowhammer. The scanner allocates
a portion of the system memory, hammers each row
within, and examines possible bit flips.

We define the template as a tuple. When the scanner
finds a flip, it will record the template in data file.

Template — (base, offset, value, p, q. dir, fp, fr),

where base and offset are victim page base address
and in-page offset, locating the target byte; value is
the flipped byte value, locating the flipped bit within
the victim byte; p and ¢ are double-sided hammering
physical addresses to invoke bit flips; dir is the flipping
direction, either 0-1 or 1-0; and f, and f, are
auxiliary arguments flips-per-page and flips-per-row,
respectively. These arguments tell how many flips will
occur in the target page/row when hammering p and q.

The adversary then needs to match the Binarylarget
tuple obtained during binary analysis with the
templates. While the offset should be equal and the
value and direction should match, we also need to
avoid unexpected alterations in other positions of target
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code; therefore, we expect f, = f» = 1 in a working
template.

5.3 Memory manipulation with Memway

After finding appropriate templates, the adversary needs
to use memory manipulation to place the target onto
one of them. The goal of relocation is to make
BinaryTarget.base==Tmpl.base, which means that the
base address of the victim page (rather than the base
address of the binary) is put on the target. We use
the optimized Memway algorithm to achieve efficient
relocation.

As mentioned in the appendix of Ref. [11], the speed
of manipulation is mainly related to (1) the physical
memory size; (2) the speed of a single relocation
operation; (3) the number of exploitable templates; and
(4) the number of exploitable positions in the binary.
The typical run time of the original Waylaying method
ranged from 10 — 500 hours. Memway shrinks this
run time to 10 — 200 minutes, which is an order of
magnitude faster.

5.4 Hammering and post-exploit

With proper memory manipulation, it is very easy to
launch the successive steps: we acquire address p
and ¢, and hammer the target binary. After the target
code bit is flipped, the binary’s behavior will change
accordingly, and the adversary can exploit this change
towards privilege escalation or circumvention.

6 Experiments

6.1 Testbed

This paper launches experiments on an Intel i15-3470
platform, with a single DDR3-1600 4GB DIMM
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module made by Hyundai (Hynix). We use this DRAM
module because its row address mapping is straight-
forward: the higher 15 bits of physical address are
directly mapped to row addresses. There are 32768
rows on this module and the row size (all cells with the
same row number) is 128 KB, 32 pages per row.

6.2 Comparison with original Waylaying

The execution time, I/O overhead, and memory
consumption of Memway compared with the original
Waylaying method are depicted in Fig. 4. The left y-axis
shows the percentage of disk load and the target eviction
rate, while the right y-axis refers to the execution time
of a single eviction.

In the Waylaying scenario, the amount of available
memory is 3558 MB. All three indicators rise sharply
when the evict file size is larger than 3558 MB, and the
running time is more than 10 seconds. Meanwhile, in
the Memway scenario, the amount of available memory
is 980 MB. This is because the Memway algorithm has
utilized maximum tmpfs space. The three lines also rise
when the evict file size is around 900 MB, however the
total execution time is less than 2 seconds.

From the above figures, it is seen that the running
time of our algorithm is significantly lower than the
original Waylaying. The disk load reaches 100% only
when the memory limit is exceeded. This is because the
main contribution to load in Memway is the repeated
reloading of the same target binary from in-memory
tmpfs, rather than random 4 KB disk reads. Therefore,
the overhead is significantly lower. While our approach
costs about half of all available space, the system
monitor will show the rest as still available (about 35%
free space, which is lower than typical alert levels). The
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Fig. 4 Disk load/evict rate (%) and evict time (s) over evict file size (MB) for (a) Waylaying and (b) Memway algorithm.
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memory consumption is all attributable to tmpfs, while
the adversary’s actual memory cost is negligible.

6.3 Memory coverage of repeated binary
relocation

Binary relocation schemes are critical in building
attacks against binaries. The memory coverage over
time of these schemes is depicted in Fig. 5.

Our Memway+fadvise scheme can obtain a stable
increase in unique pages, whereas using posix_fadvise
or Memway alone is much less effective. Although
the Chasing method can quickly enumerate more than
2x10* unique pages, it suddenly stops growing at that
point because of the exhaustion of fork() resources.

We expect that repeatedly running a relocation
scheme can reach more new pages rather than used
pages. Therefore, we introduce uniqueness as a measure
of the effectiveness of different schemes. Let n(7) be the
number of new pages scanned within ¢ seconds, and p()
be the number of all pages scanned, then the uniqueness
u(t) is their ratio:

u(t) = M

p(t)

A high uniqueness rate implies a low repeat rate. The
uniqueness rate for each of the four schemes is shown
in Fig. 6.

Our method (Memway+fadvise) maintains >50%
uniqueness; that is, more than 50% of reached pages are
new. Chasing and posix_fadvise both suffer from low
uniqueness (high repeat rate) such that used alone they
cannot scan the whole memory. Although Memway
(when used alone) has the highest uniqueness rate (for
it is constantly overhauling the page cache), it is order

------ Fadvise
—— Memway
= — — Chasing

S —e— Memway+fadvise

Unique pages (x107)
w
T

Time (s)

Fig. 5 Memory coverage of different relocation schemes.
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of magnitudes slower than other mixed approaches.
Therefore, using Memway alone cannot scan a lot of
memory in a short period of time.

6.4 Rowhammer against binaries

To demonstrate a real attack scenario, we used
our Memway+fadvise relocation scheme to attack an
unmodified test program binary. The steps and results
are as follows.

Analysis. The test program prints out a string of
underlines (““_”, 0x5f). Binary analysis shows that the
corresponding string field is at offset Oxfaf0. If any
of the underline bytes are flipped to zero by the attack,
they can become other printable characters such as “[”
(0x5b) or “O” (0x4f).

Templating. We ran the templating process on our
test machine for 24 hours and found >50 000 flippable
locations. 14 locations have their offsets on 0xaf0,
which can be used as templates for this attack. The
templating result of some 512 MB memory is depicted
in Fig. 7. Each block represents a complete memory
row, which is 128 KB in size, and there are 4096 rows
within 512 MB memory range. (Overall row size
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128 KB = 8 bits/cell x 1024 columns x 8 Banks/Chipx
8 Chips/Rank x 2 Ranks/Module. The Bank/Rank
data is extracted by CPU-Z and Hynix DIMM
specifications.)

The deeper a block is, the more bit flips were found
in the corresponding row. In the most vulnerable row,
more than 40 flips were detected within the row size of
128 KB.

Manipulation. After templating, we briefly held
2GB of memory, found the attack pages, and freed
all others. Then we used Memway+-fadvise to perform
memory manipulation. The target binary is placed onto
one of the locations within 15— 100 minutes.

Hammering and post-exploit. Now that we had
placed the target binary on site, we first ran it once to
check its original behavior. We then Row-hammered
1000000 times on the template locations and ran
the program again. After hammering, the target byte
(0xfaf0) was flipped from 0x5f into 0x4f, while the disk
file remained untouched.

Figure 8 displays the Rowhammer result. After
4752 seconds, 572236 random relocations were made
with Memway+fadvise. The victim page finally reached
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Fig. 7 Flips found within 500 MB range of DDR-3 module. Each block represents a complete memory row, which is 128 KB in

size; each horizontal line has 100 blocks.
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Fig. 8 Rowhammer result. “O” in result line is flipped by Rowhammer.
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0x22a2a000, and 0x2aa2aaf( is a bug address which
can flip Ox5f(“_”) into O0x4f(“O”). After 1000000
rounds of Double-sided hammering on 0x22a09000 and
0x22aa4d000, taking less than 1 second, the target binary
string was successfully altered and the result string
displayed a letter “O” among the underlines. Because
our template satisfies f, = f, = 1, the other pages
of the binary were left untouched. Consequently, the
victim binary’s in-memory behavior was successfully
altered without crashing any part of the binary or the
OS.

7 Conclusion and Future Works

The Rowhammer bug is a recent, intrusive micro-
architectural threat. The proof-of-concept Waylaying
algorithm has some practical shortcomings because
of its inefficiency and high disk I/O overhead. This
paper presents the Memway algorithm to address
these shortcomings. As shown in our experiments, the
running time and disk I/O overhead of our method
is reduced by 90%, and the binary relocation step is
accelerated by 100 times when Memway is further
combined with the unprivileged posix_fadvise API.
More importantly, equipped with the Memway+fadvise
relocation scheme, it takes only minutes to covertly
relocate a victim binary. Therefore, our proposed
methods are practical for Row-hammering attacks
against binaries.

Some problems to be solved are (1) building effective
attacks on container environments and (2) testing
Rowhammer bugs on newer generation memory units.

(1) Popular container virtualization solutions, such as
Docker/Moby, use layered file-systems such as aufs to
save space and memory, which implies that identical
binaries between containers may well be shared in
memory. Memway can be used to build Rowhammer
attacks against these setups.

(2) The row addressing schemes of DDR4 memory
can be easily reverse-engineered, which means that
Rowhammer attacks are still feasible on DDRA4.
Experiments on the Rowhammer vulnerability of newer
modules are essential to detect and prevent attacks
against next-generation memory units such as DDRS.
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